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Abstract

We cast the problem of detecting and isolating
regions of abnormal cortical tissue in the MRIs
of epilepsy patients in an image segmentation
framework. Employing a multiscale approach we
divide the surface images into segments of differ-
ent sizes and then classify each segment as be-
ing an outlier, by comparing it to the same re-
gion across controls. The final classification is
obtained by fusing the outlier probabilities ob-
tained at multiple scales using a tree-structured
hierarchical conditional random field (HCRF).
The proposed method correctly detects abnormal
regions in 90% of patients whose abnormality
was detected via routine visual inspection of their
clinical MRI. More importantly, it detects abnor-
malities in 80% of patients whose abnormality
escaped visual inspection by expert radiologists.

1. Introduction

The ultimate goal of our interdisciplinary research is to im-
prove detection of structural brain lesions in people with
medication-resistant epilepsy, so that the lesional tissue can
be surgically removed. The first step is to locate the lesion
generating the seizures using the patient’s clinical MRI. If
the lesion is detected via visual inspection (MRI-positive),
then inter-cranial electrodes (IEEG) are implanted in the
target region to monitor seizure activity to further local-
ize the region responsible for causing the seizures. Yet, in
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Focal Cortical Dysplasia (FCD), the most common form
of medication-resistant epilepsy, 70-80% of histologically
verified cases escape visual detection by expert radiologists
(Thesen et al., 2011); in the absence of a visually detected le-
sion (MRI-negative), the success of surgical resection drops
from 66% to 29% (Bell et al., 2009). In this case IEEG is
used, but without a specific target it loses its efficacy in lo-
cating the lesion.

In this paper, we present an automated method for detect-
ing FCD lesions using surface-based morphometry. The
proposed method first applies a multiscale segmentation
of the cortical surface and then combines the results via
a hierarchical conditional random field (HCRF) (Reynolds
& Murphy, 2007). Because we do not have accurately la-
beled training data, we cast the problem as an outlier detec-
tion task and thus extend the HCRF framework proposed
in (Reynolds & Murphy, 2007) to perform outlier detection.
The resulting outlier regions (lesions), sorted by their prob-
ability and surface area, are shown to a team of neurora-
diologists and neurosurgeons who can combine the MRI
lesion-detection results with other information such as the
pattern of seizure onset and the patient’s IEEG to deter-
mine the final candidate resection zone. In a dataset con-
sisting of patients who have undergone resective surgery
for whom the resected tissue was histopathologically veri-
fied to contain FCD lesions, the proposed method correctly
identified lesions in 90% of the MRI-positive patients. But
more importantly, for 80% of the MRI-negative patients
who were seizure-free after resective surgery, it detected
lesions within the resected region.

HCRFs have been effectively applied in computer vision
for semantic image labeling (Plath et al., 2009), figure-
ground segmentation (Reynolds & Murphy, 2007) and object
detection (Awasthi et al., 2007). To train the HCREF, previ-
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ous applications required either that each pixel in the image
have a label or that a bounding box around the object(s) of
interest is provided. Consequently, the accuracy of the la-
bels directly impacts the final performance of the HCRF. In
this paper, we propose an extension of the HCRF-based im-
age segmentation and object detection framework for prob-
lems in which pixel-level labels are not available. For our
task, we are given the MRIs of patients and of normal con-
trols, but information about which pixels form a lesion in
the patient MRIs is either missing or highly noisy. Thus,
we have a global label for each image indicating either that
the image contains no lesions (our healthy controls) or that
it contains one or more lesions (our FCD patients). In Sec-
tion 2 we explain in more detail why we cannot use the
lesions/resection zones of previously treated patients as la-
bels during training.

In our approach, we use surface-based morphometry
(SBM) (Dale et al., 1999) to extract the cortical surface from
the T1 weighted structural MRI scans. The key advan-
tage of using SBM is that the cortical surfaces of differ-
ent individuals can be registered to an average surface al-
lowing for point-wise comparisons between different in-
dividuals. Section 2 briefly introduces SBM, the differ-
ent morphological features that can be extracted within the
SBM framework, and describes the current state of the
art in lesion detection using SBM and its shortcomings.
In Section 3 we detail how we pose the lesion detection
task within the object detection/segmentation framework,
where the saliency of the target object is defined based
on its “outlier-ness”. We evaluate our results within an
information-retrieval framework where the detected clus-
ters are ranked based on their probability and surface area.
Section 4, provides the detail of our ranking and evalua-
tion methodology and it also provides an empirical com-
parison of our approach and a recent approach reported in
the epilepsy literature. We also compare the performance
of the proposed approach with a senior neuroradiologist at
one of the world’s leading tertiary epilepsy treatment cen-
ters. In this experiment the findings of the expert and the
HCREF based approach were found to be highly correlated
in the case of MRI-positive patients. For MRI-negative pa-
tients, the expert was unable to detect any lesion with or
without the use of the HCRF approach.

Our work makes a significant contribution toward the de-
tection of FCD lesions. Our empirical evaluation demon-
strates that not only are we able to detect lesions in a higher
number of MRI-negative patients as compared to the state
of the art, but we are able to detect lesions that escape
detection by one of the world’s most expert neuroradiolo-
gists. Thus this work has the potential to increase the num-
ber of patients who are referred to resective surgery, which

remains underutilized® (Tllez-Zenteno et al., 2005) despite a
growing number of studies that demonstrate its efficacy.

Our contribution to machine learning in addition to mak-
ing progress on a challenging and important application is
a new method for using HCRFs for binary object detec-
tion/segmentation for which only image captions are avail-
able. A caveat to this contribution is that the images must
be able to be accurately registered such that a one-to-one
correspondence can be made between sub-regions.

2. SBM and Lesion Detection

Surface based morphometry (SBM) provides the means
to characterize and analyze the human brain by explic-
itly modeling the cortex using a suitable geometric model
(Dale et al., 1999). The cortical surface represents the outer
layer of the brain modeled as a folded two-dimensional sur-
face. It is extracted by delineating the boundary between
the gray and white matter using T1-weighted MRI images
(Dale et al., 1999). After extraction, different morphological
transforms can be applied to register the cortical surface
to a standard surface also known as a group-atlas. Reg-
istration is achieved by aligning specific sulcal and gyral
features across the reconstructed cortical surfaces allow-
ing for a more precise comparison of individual cortical
structures across subjects (Fischl & Dale, 2000). SBM has
been used successfully for analyzing and detecting neu-
rological abnormalities in various neurological disorders
such as schizophrenia (Rimol et al., 2012), autism (Nordahl
et al., 2007), and epilepsy (Thesen et al., 2011).

Different morphological features such as cortical thick-
ness, curvature, gray-white contrast (GWC) etc., can be
extracted to characterize the cortex. Recently, SBM has
been used in conjunction with machine learning and statis-
tical techniques to identify lesions in FCD patients. Besson
et al., (Besson et al., 2008) use texture, GWC and a number
of morphological features including cortical thickness to
represent each vertex on the reconstructed cortical surface.
They then train a neural network to classify each vertex as
being normal or lesional. Similarly, Thesen et al., (Thesen
etal.,2011) use a uni-variate z-score based thresholding ap-
proach on registered SBM data to classify each vertex as
being lesional or normal, using cortical thickness, GWC,
curvature, sulcal depth and Jacobian-distortion, individu-
ally. They nominate cortical thickness along with GWC as
being the most informative features for FCD lesion detec-
tion. In our empirical evaluation we use this latter z-score
approach (Thesen et al., 2011) as the baseline from which
to compare results from our HCRF method; therefore, we

tPatients who lack an MRI-visible lesion are less likely to be
referred to specialized epilepsy centers by neurologists (Benbadis
etal., 2003) and a high number of epilepsy specialists are reluctant
to operate without a well-defined lesion.
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similarly employ cortical thickness to facilitate compari-
son. A comprehensive review of automated FCD lesion
detection can be found in Bernasconi et al.,(Bernasconi et al.,
2011). These studies classify individual vertices of the cor-
tical surface as lesional or normal, using labeled training
data from MRI-positive patients and controls. There are
four crucial issues that these studies fail to address:

(1) The goal of resective surgery is to remove the entire
lesion. If any part of the lesion is left behind, the outcome
will not be successful. This introduces label noise, because
the expert-marked lesion can contain normal vertices; the
margin around the lesion is marked in a “generous” manner
so as to increase the chances of capturing the entire lesion.

(2) These studies assume that individual vertices are i.i.d.,
completely ignoring the spatial correlation that exists be-
tween neighboring vertices. It has been shown in other do-
mains such as object detection and segmentation in natural
images, that modeling spatial correlations leads to superior
performance (Reynolds & Murphy, 2007; Plath et al., 2009).

(3) Usually a post-processing method is employed to re-
duce the false positive rate. In this strategy a portion of the
vertices labeled lesional by the classifier are relabeled as
normal. This can be done by training a second-level clas-
sifier to classify the detected clusters as lesional or non-
lesional (Besson et al., 2008). Also different heuristics can
also be used such as the surface area of the detected clusters
(Thesen et al., 2011). Discarding any detected region based
on its size or surface area can result in discarding the actual
lesion or part of the lesion, because FCD can be located in
any part of the cortex, is highly variable in size, and may
occur in multiple lobes (Blumcke et al., 2011).

(4) Results are evaluated on MRI-positive patients, but the
real challenge is to find lesions in MRI-negative patients.

Our proposed method is designed to explicitly address
these issues. First, we model lesion detection as an outlier
detection problem. The assumption is that a lesional re-
gion is an outlier in a suitable feature space when compared
to the same region across a control population. This view
eliminates the use of noisy class labels. Second, instead
of classifying individual vertices we classify segmented
patches of the cortex. The patches are obtained using unsu-
pervised segmentation of the flattened cortex that isolates
regions of homogeneous feature values. As the size of the
FCD lesions has a wide range, using a single scale to isolate
the lesion may not be effective. To minimize the chances of
missing the lesion, we employ a multiscale strategy where
the segmentation is carried out at different scales of varying
granularity. The interplay between the patches obtained in
this scale hierarchy is modeled as a tree structured HCREF,
rooted at the most crude scale and having leaves at the finest
scale. Third, we rank the detections based on a criterion

that takes into account both the probability that a detected
cluster is abnormal along with its surface area. Therefore,
larger clusters with a higher probability of being abnormal
are ranked most highly. This ranking approach eliminates
the need to post process the results, and provides a natu-
ral way of presenting the results to a radiologist to function
as a focus of attention mechanism. Finally, we evaluate
our approach on both MRI-positive and MRI-negative pa-
tients. The next section describes the details of the HCRF
construction and inference.

3. Outlier Detection using HCRF's

In the original HCRF framework proposed for figure-
ground segmentation (Reynolds & Murphy, 2007), an image
is first segmented into a number of patches at different
scales. Each patch is then classified as being part of the
background or foreground, using a suitable binary clas-
sifier based on image features such as texture, SIFT, etc.
Exploiting the fact that the labels assigned to overlapping
patches between different scales should agree, an HCRF
(a tree-structured conditional random field) is constructed
to model these inter-scale interactions. The image is thus
modeled as a forest, where the root node for each tree cor-
responds to a patch obtained at the coarsest scale, while
the leaves reside at the finest scale. The joint probability
of all the patch labels is estimated by running inference
on the HCRFs. The image is segmented by thresholding
the final probabilities at the leaves. Plath et al.,(Plath et al.,
2009) extend this framework to work with more than two
classes. Mutliclass image labeling using HCRFs is also
done in (Awasthi et al., 2007), where instead of obtaining
image patches using segmentation, the authors impose a
grid structure on the image at different scales and model
the HCREF as a quad-tree structure. These multiscale meth-
ods are highly sensitive to the accuracy of pixel-level la-
bels. For example in (Reynolds & Murphy, 2007) the bound-
ing boxes around the ROI in training images were manually
refined to eliminate extraneous pixels and this resulted in a
significant increase in accuracy.

In our problem domain we have training data from two dis-
tinct types of epilepsy patients: MRI-positive and MRI-
negative. For the MRI-positive patients we could use the
radiologist-traced lesion as local vertex-level labels, and
for MRI-negative patients the resected region could serve
the same purpose. However, as explained previously these
labels tend to be highly noisy and using them to train the
classifiers will result in noisy predictions. To ameliorate
this problem we extend the HCRF framework proposed in
(Reynolds & Murphy, 2007) to perform semi-supervised out-
lier detection on registered image data. Thus, we define an
FCD lesion as a region of the brain which will be consid-
ered an outlier when compared to the same region across
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a population of normal controls. Before describing the ex-
tension we first describe our approach to segmentation.

3.1. Segmentation

Recall that in SBM the cortex is modeled as a two-
dimensional surface, which on average contains approxi-
mately 0.15 million vertices. Even though it is possible
to flatten the entire cortex, segmentation and the result-
ing HCRFs for the resulting image would require signif-
icant computational resources. Thus, to reduce the pro-
cessing overload we have chosen to subdivide the detec-
tion task into smaller regions of the cortical surface defined
by a standard atlas, which outlines cortical regions based
on their morpho-functional properties (Fischl et al., 2002).
These regions are also known as parcellations. Instead of
segmenting the entire cortical surface at once, we isolate
these parcellations one at a time and flatten them individu-
ally to obtain a standard two dimensional image, which we
then segment at multiple scales. Any morphological feature
(e.g., cortical thickness), can be used to represent the inten-
sity values of the resulting image. Figure 1 illustrates the
overall HCRF construction process for a given parcellation
image. We have chosen to model the cortex using cortical
thickness (Fischl & Dale, 2000), which has been established
as one of the most informative features for the detection of
FCD lesions (Thesen et al., 2011).

We use quick shift (Vedaldi & Soatto, 2008b) for unsuper-
vised segmentation. One of the main advantages for using
quick shift is that the number and size of segments need not
be specified. Additionally, quick shift does not penalize for
boundary regions, and produces a diverse set of segments
having different shapes and sizes. It should be noted that
any segmentation method can be used, as long as it has the
ability to segment the image at different scales.

The standard quick shift algorithm is a fast mode seeking
algorithm similar to mean shift (Comaniciu & Meer, 2002). It
performs a hierarchical segmentation of the image, where
the sub-trees represent image segments. It has two param-
eters namely the size of the Gaussian kernel (o) used by
a Parzen window density estimator, and the maximum dis-
tance (A) between two pixels permitted while remaining
part of the same segment. We vary the scale parameter o to
change the average size of segments, and set A to be a mul-
tiple of o (Vedaldi & Fulkerson, 2008a). Thus, higher values
of o produce larger segments.

3.2. Multiscale HCRFs

Once the multiscale segmentation is complete for a partic-
ular subject, we obtain a set of patches at different scales.
Let I} be the p™ patch obtained at the k" scale. We can
collect the corresponding patches from all controls and then
estimate a label y € {0, 1} for I*, where y = 1 indicates

Parcellation Image
-

x

‘2

,““A

Neuro-anatomical Atlas i ¢ l ,

Segmentation at different scales

Figure 1. Construction of the HCRF. A standard neuroanatomical
atlas (left), and the isolated parcellation image (top-right). Corti-
cal thickness values are used to represent the image. On the bot-
tom we have the super-pixels obtained at two different scales us-
ing Quickshift. Each super-pixel on the coarser scale (botrom-left)
becomes a root having children at the finer scale (bottom-right).

that 1. r]f is an outlier. This label cannot be considered inde-
pendent from the labels of other patches that overlap with
I at other scales.

We model the joint prediction of these mutually dependent
labels of all the patches using a tree structured HCRF. Let
I;f“ be an image patch at level k£ + 1, it has a parent I(’; at
the immediately coarser level k, such that I (’; has maximal
overlap with I (Reynolds & Murphy, 2007). We find the
index g as follows:

Tianaab i

q = argmax ————— (1)
a 15|

Each patch at the coarsest scale is the root of a tree having

leaves at the finest scale. Therefore, the image is repre-

sented by a forest, where each tree is modeled as an HCRF,

as shown in Figure 1.

CRFs model the joint conditional probability distribution
of all the patch labels y = (y1, . ..,y ) in the tree based on
the input cortical thickness values (x). Generally, this can
be written as:

1
p(ylz,0) = Z2(.0) H¢(yz‘\9€a9) .1_([)1/)(%1/77(1')) 2

where, 7(.) represents the parent patch, and Z(z, 6) is the
normalization constant also called the partition function.
¢(.) is called the node potential and represents the local
evidence for the label y; based on the observed data x. The
edge potentials that model the coupling between adjacent
labels are represented by v(.). As the graph is a tree we
can efficiently calculate Z(x, #) and the posterior probabil-
ities of the patch labels at all scales using standard belief
propagation (Pearl, 1988).

When labeled training data is available the node and
edge potentials are parameterized, and the parameters are
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learned jointly (see (Sutton & McCallum, 2010) for details).
For our application, because the labels are noisy and we
have chosen to work in an unsupervised manner, we set the
node and edge potentials as described next.

3.2.1. NODE POTENTIALS

The node potential is modeled to reflect our belief about the
abnormality of an individual image patch. We have cho-
sen to work with local outlier probabilities (LoOP) (Kriegel
et al., 2009), a standardized version of local outlier fac-
tor (LOF) (Breunig et al., 2000). LoOP produces standard-
ized scores within the range [0, 1] which can be treated
as the probability that a data point is an outlier. This is
an important design choice because running inference on
non-standardized scores, which may not be comparable be-
tween different scales, can produce meaningless results.

3.2.2. EDGE POTENTIALS

Each edge in the HCREF represents the dependency between
the “parent” image patch at scale ¢ and the “’child” patch at
scale t + 1. We set the edge potential to reflect the visual
similarity between the two patches, using the chi-squared
distance between the histograms of scale invariant feature
transform (SIFT) features (Lowe, 1999) of the parent and
child patches. Thus the labels of image patches that bear
close visual similarity to each other in the scale hierarchy
are more strongly coupled than those with lower similar-
ity. This heuristic is similar to one chosen by Reynolds and
Murphy (Reynolds & Murphy, 2007).

To estimate the histograms of the SIFT features for each
image, we initially learn a codebook of m codewords us-
ing the control data. For each control image in the subset
we flatten and isolate the parcellation, and then calculate a
SIFT feature vector at each pixel. These vectors are then
clustered into m clusters using k-means clustering. A sep-
arate codebook is learned for each parcellation. The edge
potential between two adjacent nodes in the tree is then cal-
culated as (Reynolds & Murphy, 2007; Plath et al., 2009):
eY"Mij

e V-Mij

w(yi’yj) - [e%mj eV Mij } 3)
where, v is a free parameter that represents the strength of
coupling between adjacent levels in the CRF and 7;; =
e~ X (@i,;), x; represents the normalized histogram of
SIFT features for the /*" patch in the HCRF, and x?(.,.)
is the chi-squared distance between two normalized his-
tograms.

3.2.3. LESION DETECTION

For each subject, we calculate the posterior probabilities
at each node of the HCRF for every parcellation by run-
ning belief propagation (Pearl, 1988). The final detection is

Figure 2. Detection results for an MRI positive subject shown on
an inflated model of the lateral cortical surface. The actual lesion
is delineated as the white circled region and the detection results
are shown as filled yellow regions. Detected clusters after thresh-
olding outlier probabilities at each individual scale (a)-(c), after
running belief propagation (d), and using the z-score based ap-
proach (e). The results are shown for the highest ranking thresh-
old without any post-processing. (f) shows the lesion highlighted
on a T1 MRI slice.

obtained by thresholding the posterior beliefs at the leaves
of each HCRF (Reynolds & Murphy, 2007; Plath et al., 2009).
Different strategies for thresholding can be used, such as
defining a single threshold across all subjects, or calculat-
ing a threshold for each subject individually. In this work
we calculate an adaptive threshold for each patient sepa-
rately. This decision is based on the observations that 1)
FCD lesions can be manifested differently for different in-
dividuals, and 2) cortical thickness varies with different de-
mographic factors such as gender and age (Salat et al., 2004).
To this end, we sort the posterior probabilities and define
the threshold as the lowest probability among the top K
probability estimates. In practice the value of K can be
left as a free parameter that the user can vary to see the
different regions which are deemed lesional with varying
levels of confidence. Thus, the radiologist has a knob to
turn which shows more/fewer possible lesions.

4. Results

Our data consists of MRI-positive and MRI-negative pa-
tients who have undergone resective surgery and for whom
their resected tissue was histopathologically verified to
contain abnormal tissue. Each patient who undergoes
surgery is assigned an “Engel” class. An Engel class of 1
represents complete seizure freedom while an Engel class
of 4 represents no improvement. We selected only patients
with an Engel class outcome of 1 for our experiments in or-
der to verify that the region resected was indeed the primary
lesion and that no additional epileptogenic lesions were
present in other parts of the brain. This resulted in a dataset
with fifteen MRI-negative patients. This may appear to be a



Hierarchical Conditional Random Fields for Outlier Detection

small dataset, but few patients proceed to surgery when no
visible lesion is found on their MRI, and of those that do,
less than a third experience complete seizure freedom (Bell
etal., 2009). We also include experimental results on a small
set of 10 MRI-positive patients, but want to reemphasize
that our method is not needed for MRI-positive patients as
their lesion is visible.

Imaging for both the subjects and the controls was per-
formed on a Siemens Allegra 3T scanner. Image acqui-
sitions included a conventional 3-plane localizer and a T1-
weighted volume pulse sequence (TE=3.25 ms, TR =2530
ms, TT =1100 ms, flip angle =7 deg field of view (FOV) =
256 mm, matrix = 2566256, vertex size =1 x 1 x 1.3 mm,
scan time: 8:07 min). Acquisition parameters were opti-
mized for increased gray/white matter image contrast. The
T1-weighted image was reoriented into a common space,
roughly similar to alignment based on the AC-PC line. Im-
ages were corrected for nonlinear warping caused by no-
uniform fields created by the gradient coils. In this study
we have a total of 115 controls, 55 males (33.7£12.5 years)
and 60 females (32.0 4= 11.5 years). It should be noted that
all the subjects were scanned on the same scanner, and the
data used here is based on these research scans, which is
different from their original clinical scans.

4.1. Data Pre-processing and Parameter Selection

After the surface has been reconstructed using the
freesurfer software (http://surfer.nmr.mgh.harvard.edu/) we
used the Desikan-Killiany atlas (Desikan et al., 2006) to iso-
late the different parcellations. It should be noted that any
suitable neuroanatomical atlas can be used to subdivide the
cortical surface. Each parcellation is flattened to obtain a
standard 2-d image, where the intensity of each pixel is rep-
resented by cortical thickness.

To select the parameters for the various aspects of our
method, we used a validation set consisting of two MRI-
positive and two MRI-negative patients, which are distinct
from the patients used to evaluate our method. We used
all 115 controls to learn a codebook of SIFT features for
every parcellation. Dense SIFT features were calculated at
each pixel. We tested vocabulary sizes of 50, 100 and 500
and selected a vocabulary size of 50 as it resulted in higher
recall and precision on the validation set. This codebook
was used subsequently to estimate the histograms of SIFT
features at each pixel location for all patient parcellation
images in the test set.

Each parcellation image was segmented at three different
scales using quick shift. We used o = {2, 3,4} and A was
set to 50. These values were chosen so that the smallest
possible lesion in our validation set is over-segmented i.e.,
there are multiple segments that contain the lesional area.
This increases the probability that a patch can be entirely
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Figure 3. Comparison of detection rate (a) between then HCRF
based approach and the z-score based baseline method for MRI-
positive patients. The detection rate is the percentage of the pa-
tients for whom the detected clusters overlapped with the lesional
area. (b) and (c) compare the recall and precision, respectively.

formed from lesion vertices, rather than having patches that
partially overlap with the lesion, which would be harder to
detect as outliers.

Finally, before performing outlier detection, we apply a
standard dimension reduction technique on each patch us-
ing principal component analysis (PCA). Note that the
PCA is done using only the control data. We retained the
top m principal components that accounted for 95% of the
variance in data. To set the parameters for outlier detec-
tion, based on results for the validation set, we set k = 10
in LoOP and ~ (c.f. equation (3)) was set to 50.

Whether an image patch is an outlier depends on the set
of controls used to learn the “normal” model. As cortical
thickness varies both by age and gender, ideally, we could
choose a customized set of controls for each patient, but
currently we do not have enough controls to customize for
age, but we do select controls based on the patient’s gender.

4.2. Evaluation Methodology

The final detection for each subject is determined by thresh-
olding the posterior probabilities at the leaves of the CREF,
which represent the segments obtained at the finest scale.
We determine the detection thresholds by dividing the last
percentile of the final outlier probabilities into ten equal
parts. The first threshold corresponds to the lowest proba-
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Figure 4. Comparison of detection rate (a) between then HCRF
based approach and the z-score based baseline method for MRI-
negative patients. The detection rate is the percentage of the pa-
tients for whom the detected clusters overlapped with their resec-
tion. (b) and (c) compare the recall and precision respectively.

bility in the highest 0.1% scores and so on. For the results
presented in this section we determine five such thresholds
to get five different possible detections. Because, this is
an adaptive mechanism, it has a possible drawback that it
always detects something even when the probabilities are
very small. Thus we set 1 x 10~* as the minimum proba-
bility, such that no threshold is calculated below this value.

We have chosen to evaluate and contrast the performance of
the detection techniques in an information retrieval frame-
work. We first calculate the clusters by thresholding the
posterior probability at a given threshold. All the detected
clusters are then ranked according to their surface area.

We compare the results of our proposed technique against
a recently reported technique that also employs cortical
thickness (Thesen et al., 2011) to detect FCD lesions using
SBM. In this baseline approach first all the control and sub-
ject surfaces are registered to the average surface. After
registration, it calculates the z-scores at each vertex for the
subjects, which are then thresholded to obtain the detection
results. We calculate the z-score based on gender matched
controls instead of using all the controls. To facilitate com-
parison we calculate multiple thresholds in the exact same
manner as outlined above for HCRF. We omit the last step
of Thesen et al’s method, which post processes the detec-
tions to eliminate “small” clusters.

4.2.1. DETERMINING DETECTION RATES

We compare the accuracy of our detection rates to the z-
score method by determining the number of patients with
top ranked clusters within the lesion/resection zone for
each method. To this end, we calculate five thresholds
based on the outlier probabilities for the HRCF method,
and similarly for the z-score method. After ranking the de-
tected clusters based on their surface area, at each threshold
we consider a subject to be correctly detected if a cluster
amongst the top n completely or partially overlaps with the
lesion/resection. Figure 2 shows the clusters detected by
the baseline and the HCREF, for an MRI-positive patient.

Figure 3(a) shows the comparison of the detection rates for
MRI-positive patients. HCRF performs better than the z-
score baseline across all the five thresholds, for both top
five and top ten detections. Similarly, Figure 4(a) shows
the same comparison for MRI-negative patients. Here, the
HCREF does not dominate across all thresholds; its detection
rate increases as the threshold becomes more lenient (from
the third threshold onwards). HCRF detects the lesion in
12 (80%) patients, while the baseline detects only 9 (60%)
subjects when considering top ten clusters.

4.2.2. DETERMINING PRECISION AND RECALL

In order to compare the quality of detections, we calcu-
lated the precision and recall for both HCRF and the z-
score based method. To this end, we consider all detected
clusters. We define recall as the ratio of the total surface
area of all the clusters that overlap with the lesion/resection
zone to the surface area of the lesion/resection zone. Sim-
ilarly, we define precision as the ratio of the surface areas
of clusters overlapping with the lesion/resection zone to the
sum of the surface area of all the detected clusters.

HCRF produces higher recall for both the MRI-positive
(Figure 3(b)) and MRI-negative (Figure 4(b)) subjects. In
the case of MRI-positive subjects this difference is more
pronounced and we observe that for both methods the
maximum recall for MRI-positive subjects is significantly
higher than for MRI-negative subjects.

Figures 3(c) and 4(c) show the precision for MRI-positive
and MRI-negative subjects, respectively. Z-score performs
better for the MRI-positive patients and the picture is mixed
for the MRI-Negative patients. Accurately calculating pre-
cision is challenging for several reasons. A patient can have
abnormalities outside the lesion/resection zone which may
not be epileptogenic. Abnormal cortical thinning remote
from the epileptogenic onset region has been observed in
focal epilepsy (McDonald et al., 2008; Lin et al., 2007) and
attributed to the destructive impact of chronic seizures on
brain structure rather than developmental lesions. This
might result in elevated extra-lesional false positives when
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cortical thickness is used as the primary feature. Figure 5
shows such an example. Figure 5a-b shows the results of
the HCRF detection on an MRI-positive patient, as can be
seen there are a number of clusters, that lie outside the re-
section zone and should be considered as false positives.
Figure 5d shows a T1 MRI slice, where the circled area
delineates a severely abnormal area (confirmed by an ex-
pert neuroradiologist) outside the resection zone, that cor-
responds to the largest cluster detected by HCRF. These
observations led us to ask a human expert to examine these
areas more closely which we describe next.

4.2.3. COMPARISON TO HUMAN EXPERT

We compared the results of HCRF detection, to the se-
nior neuroradiologist, at one of the worlds$ leading tertiary
epilepsy treatment centers. The radiologist was first pre-
sented with the anonymized clinical scans of each subject,
this included T1 and T2 weighted MRI along with FLAIR.
He was then asked to identify any possible abnormality,
being totally blind to any post-surgical data and the HCRF
detection results. We compared his findings to the clusters
found by HCRF at the most lenient (fifth) threshold.

For this experiment, we require patients that had a full pre-
surgical MRI dataset (e.g., T2-weighted images, FLAIR).
Note that pre-surgical clinical MRI sequences were not ob-
tainable for many subjects due to their having been referred
from external centers. This set of patients included six of
the MRI-positive patients and only 3 of the MRI-negative
patients. We included three MRI-negative patients who did
not have an Engel outcome of 1 (i.e., they were not seizure
free) because we had their clinical scans.

For the MRI-positive patients, the radiologist detected ab-
normalities in all six cases, that correlated with the HCRF
detections for five subjects considering the top five clus-
ters, and with all six in the top ten clusters. For three of
the MRI-positive subjects his findings also identified ab-
normal regions that overlapped with extra-lesional clusters
detected by HCRF that ranked amongst the top ten. An ex-
ample is depicted in Figure 5. In the case of MRI-negative
subjects, the radiologist was unable to identify any visible
abnormality in all six subjects. HCRF on other hand iden-
tified three subjects out of a total of five that had outcomes
of Engel class 1-3. For one MRI-negative subject with an
Engel-4 outcome, HCRF found no cluster among the top
ten that overlapped with his resection zone.

The preliminary results on the MRI-negative patients, al-
beit on a small sample, are promising because the HCRF
method is able to identify high ranked clusters within the
resection zones of MRI-negative patients who have com-
plete to partial seizure freedom after surgery. Overall, the
results indicate that the HCRF approach has a higher sensi-
tivity to histopathologically-confirmed lesions that are not

Figure 5. An MRI-positive for whom the clusters detected outside
the resection are also abnormal. Detected clusters using HCRF
(a)-(b). The resected area (c), and the area corresponding to the
largest cluster outside the resection (d) shown on a T1 MRI slice.

visible to an expert radiologist, even when a full set of clin-
ical MRI sequences are available for review.

5. Conclusion

In this work we have extended the multiscale HCRF frame-
work traditionally used for supervised image segmentation
and object localization to perform semi-supervised out-
lier detection. We have applied this proposed method to
the challenging task of detecting cortical lesions in pa-
tients suffering from treatment resistant epilepsy, using
their surface-based MRI morphometric data. Our results
show that for MRI-positive subjects, we are able to cor-
rectly localize lesions in 90% of the subjects. As compared
to the z-score approach we not only correctly localize the
lesion in a higher number of patients, but we do so with a
substantially higher recall. Similarly, in the case of MRI-
negative patients we are able to achieve a detection rate
of 80%, as compared to the baseline z-score detection rate
of 60% and the human expert rate of 0%. For the MRI-
negative patients, the HCRF approach achieves both higher
recall and precision (at higher thresholds). Our next steps
are to incorporate HCRF results into the weekly meeting
of radiologist and neurosurgeons to help in IEEG place-
ment for MRI-negative patients who may be candidates for
surgery. To improve on our current approach we have two
initial avenues. We will assess whether performance im-
proves if we include other features such as gray-white con-
trast, and cortical curvature. Second, we want to further ex-
tend the proposed HCRF framework to incorporate the re-
section zones as “soft labels” to learn its parameters jointly.
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