
CCCG 2015, Kingston, Ontario, August 10–12, 2015

A Faster 4-Approximation Algorithm for the Unit Disk Cover Problem

Ahmad Biniaz∗ Paul Liu† Anil Maheshwari∗ Michiel Smid∗

Abstract

Given a set P of n points in the plane, we consider
the problem of covering P with a minimum number
of unit disks. This problem is known to be NP-hard.
We present a simple 4-approximation algorithm for
this problem which runs in O(n log n)-time and uses
the plane-sweep technique. Previous algorithms that
achieve the same approximation ratio have a higher time
complexity. We also show how to extend this algorithm
to other metrics, and to three dimensions.

1 Introduction

In this paper we consider the unit disk cover (UDC)
problem. Given a set P of n points in the plane, the
UDC problem asks for the minimum number of disks of
prescribed radius r (or simply unit disks of radius 1),
which cover all points of P . Unless otherwise specified,
we assume that the disks are in the L2-norm. This
problem is motivated by VLSI design, facility location,
and motion planning.

The UDC problem is known to be NP-hard in the
L1, L2, and L∞ norms [7]. For points in Rd and any
integer l ≥ 1, it is possible to approximate the UDC

problem in the L2-norm within a factor of
(
1 + 1

l

)d
with

running time (dl)O(d)nO((dl)d) [11] and within a factor of

2
(
1 + 1

l

)d-1
with running time (dl)O(d)nO(dd) [10]. For

points under the L1 and L∞ norms, similar ideas lead to

a
(
1 + 1

l

)d
approximation algorithm with running time

ldn2l
d+1 [11] and a

(
1 + 1

l

)d-1
approximation algorithm

with running time dlO(d-1)nO(dld-1) [10]. However, these
algorithms are mainly of theoretical interest, and are
impractical for large data sets.

Gonzalez [10] presented a 2-approximation algorithm
for the UDC problem in the L1 and L∞ norms and an
8-approximation in the L2-norm. These algorithms run
in O(n logS)-time, where S ≤ n is the number of disks
in an optimal solution. A constant approximation algo-
rithm running in O(n3 log n)-time is also presented in
[4]. The algorithm uses the fact that the UDC problem
is equivalent to a set cover in a range space of finite

∗School of Computer Science, Carleton University, Ottawa,
Canada. Research supported by NSERC.
†Department of Computer Science, University of British

Columbia.

VC dimension. However, no efforts were made to op-
timize or determine the exact value of the approxima-
tion factor. By constraining the disk centers to lie on a
grid, Franceschetti et al. [8] developed, for any l ≥ 1,
an O(Kn) time algorithm with approximation factor
3(1 + 1

l)2, where K is a function of l and the size of the
approximation grid. A 2.8334-approximation algorithm
which runs in O(n(log n log log n)2)-time is presented in
[9]. We note that this algorithm is quite difficult to
implement, and has a high constant factor in the run-
ning time. Using a different approach of dividing the
input into vertical strips, Liu and Lu [12] presented a
25
6 -approximation algorithm for this problem running in
O(n log n) time. A listing of all the algorithms as well
as their approximation factors is given in Table 1.

Reference Approximation Running Time
[10] 2

(
1 + 1

l

)
O(l2n7)

[10] 8 O(n logS)
[4] O(1) O(n3 log n)

[8] 3
(
1 + 1

l

)2
O(Kn)

[9] 2.8334 O(n(log n log log n)2)
[12] 25/6 O(n log n)

This paper 4 O(n log n)

Table 1: A history of approximation algorithms for the
unit disk cover problem in L2.

There are numerous variants of the UDC problem. If
the disk centers are constrained to an arbitrary point
set Q, the UDC problem becomes the discrete unit disk
cover problem (DUDC), which is also NP-hard. Many
approximation algorithms are proposed for the DUDC
problem, where the best known approximation factor is
9 + ε for any 0 < ε ≤ 6 [2]. An instance of the UDC
problem can be reduced to an instance of the DUDC
problem as follows. Any solution for the UDC problem
can be transformed so that each unit disk D has at
least 2 input points on its boundary or an input point
on its center; in the former case the center of D can be
computed easily. Since each disk has unit radius, any
pair of input points defines at most two possible centers
for disks in our cover. Hence by choosing Q to be the
union of P and these O(n2) centers, an instance of the
DUDC problem is obtained. Thus, any approximation
algorithm for the DUDC problem gives a solution for
the UDC problem with the same approximation factor.

In the L∞-norm, the UDC problem further reduces to

27th Canadian Conference on Computational Geometry, 2015

the minimum clique cover problem [6]. The reduction
uses the Lt unit disk graph on P . Each point in P
corresponds to a vertex in the graph, and every edge
(u, v) in the graph corresponds to intersecting Lt unit
discs centered at u and v. Any family F of unit squares
(L∞ unit disks) satisfies Helly’s property: if each pair
of squares in F has a non-empty intersection, then the
intersection of all squares in F is non-empty. Hence
any clique in the L∞ unit disc graph can be covered
by a single L∞ unit disc. Unfortunately, this reduction
does not hold in the L2-norm. The minimum clique
problem on both the L∞ and L2 unit disk graphs has a
large body of work, see [6] and the references contained
therein.

We present an O(n log n)-time constant-ratio approx-
imation algorithm for the UDC problem in Lt-norms. In
Section 2, we present a 4-approximation algorithm for
this problem in the Euclidean norm (L2-norm). By us-
ing the plane sweep technique, we show in Section 3 that
this algorithm can be implemented to run in O(n log n)
time. We emphasize that this algorithm is usable in
practical settings and simple to implement. The most
costly step is sorting of the points with respect to some
dimension. In Section 4, we extend this algorithm to
other Lt-norms. It is a 2-approximation for t ∈ {1,∞},
a 6-approximation for t > 2, and a 5-approximation for
1 < t < 2. Concluding remarks and extension to three
dimensions are presented in Section 5.

2 A 4-Approximation Algorithm in L2

In this section we consider the UDC problem in the
Euclidean norm. Given a point set P in the plane, let
Copt be an optimal unit disk cover for P . Recall that
the unit disks have radius 1. The unit disk intersection
graph, UDIG(P), is defined to have the points of P as
its vertices and has a straight-line edge between two
points p, q ∈ P if and only if |pq| ≤ 2, where |pq| is the
Euclidean distance between p and q. We begin with the
following observation:

Observation 1 For two points p, q ∈ P , if (p, q) /∈
UDIG(P), then p and q cannot be covered by a unit
disk.

An independent set in UDIG(P) is a subset I of P
such that there is no edge between any pair of points in
I. I is said to be a maximal independent set if for all
p ∈ P \I, I∪{p} is not an independent set in UDIG(P).
A maximal independent set in UDIG(P) can easily be
found by a greedy algorithm.

Assume I is a maximal independent set in UDIG(P).
By Observation 1, the size of any independent set in
UDIG(P) is a lower bound for the number of disks
needed to cover P . Therefore,

|I| ≤ |Copt|. (1)

It is known that to cover a disk of radius 2, seven
unit disks of radius 1 are necessary and sufficient; see
Figure 1. Moreover, to cover a ball of radius 2 in three
dimension, 21 unit balls are necessary and sufficient [1].
Based on that, a 7-approximation algorithm for the
UDC problem is obtained as follows. Let I be any max-
imal independent set in UDIG(P). For a point p ∈ I,
let D(p, 2) be the disk of radius 2 which is centered at
p. Let d(p) be a disk in any unit disk cover which cov-
ers p. By Observation 1, none of the points of P which
are at distance greater than 2 from p can be covered
by d(p). Therefore, all points of P which are not in
D(p, 2) must be covered by disks different from d(p).
Moreover, all points of P which are covered by d(p) are
in D(p, 2). Therefore, by covering D(p, 2) with seven
unit disks (Figure 1), for all p ∈ I, a 7-approximation
algorithm is obtained. Note that UDIG(P) may have
up to O(n2) edges, and hence the time complexity of
computing UDIG(P) is quadratic in the worst case.

p 2

1

D(p, 2)

Figure 1: D(p, 2) can be covered by 7 unit disks.

Now we show how to reduce the approximation ratio
to 4. Let p be the leftmost point in P . In case of degen-
eracy, we consider the leftmost point with the smallest
y-coordinate. Let ` be the vertical line passing through
p. Let R(p) be the intersection of D(p, 2) with the half-
plane to the right of `, i.e., R(p) is the right half-disk of
D(p, 2) (see Figure 2(a)). As discussed earlier, all points
of P which are covered by d(p) are in D(p, 2) and con-
sequently in R(p). As shown in Figure 2(a), R(p) can
be covered by 4 unit disks. Figure 2(b) shows a config-
uration of seven points in R(p) such that at least four
unit disks are needed to cover all these seven points: in
any unit disk cover, the disk which covers p can cover at
most one of the points on the boundary. The remaining
five points need at least three unit disks to be covered.

For a point p and a given point set I, the distance,
d(p, I), between p and I is defined as the minimum
Euclidean distance between p and any point in I, i.e.,

CCCG 2015, Kingston, Ontario, August 10–12, 2015

p 2

1

p

(a) (b)

Figure 2: (a) Any half-disk of radius 2 can be covered
by four unit disks. (b) Seven points in a half-disk of
radius 2 which cannot be covered by less than four unit
disks.

d(p, I) = min{|pq| : q ∈ I}. If I = ∅, then d(p, I) = ∞.
Our 4-approximation algorithm is given in Algorithm 1.
The output of this algorithm is a set C of unit disks that
cover P . The algorithm starts by creating a sorted list of
points from left to right. Then it repeatedly selects and
deletes the first element in the list, say p. If d(p, I) ≤ 2,
then p is already covered by some disk in C. Otherwise,
i.e., if d(p, I) > 2, the algorithm covers R(p) by four
unit disks, and adds them to C. Finally it returns the
set C of unit disks.

Algorithm 1 UnitDiskCover(P)

Input: A point set P in the plane.
Output: A set C of unit disks that cover P .

1: C ← ∅
2: I ← ∅
3: L← list of points in P sorted from left to right
4: while L is not empty do
5: p← first element of L
6: if d(p, I) > 2 then
7: Cover R(p) by four unit disks c1, c2, c3, c4
8: C ← C ∪ {c1, c2, c3, c4}
9: I ← I ∪ {p}

10: L← L− {p}
11: return C

In each iteration, Algorithm 1, adds p to I if and only
if d(p, I) > 2. Thus, in UDIG(P), p is not connected
to any point in I. Therefore, I is an independent set
in UDIG(P). In addition, the while loop iterates over
all points. Thus, after Algorithm 1 terminates, I is a
maximal independent set in UDIG(P).

Theorem 1 Algorithm 1 is a 4-approximation for the
unit disk cover problem.

Proof. Consider the set I of points and the set C of
unit disks after the termination of Algorithm 1. Since I
is a maximal independent set in UDIG(P), by Inequal-
ity (1) we have |I| ≤ |Copt|. Each point q ∈ P is in a
half-disk R(p), for some p ∈ I (possibly q = p). Since
for each p ∈ I, we cover R(p) with four unit disks, C
covers P . Moreover, |C| ≤ 4|I| ≤ 4|Copt|. This proves
the statement of the theorem. �

The running time of Algorithm 1, can be expressed as
O(n log n+n·t(d)), where t(d) is the time for computing
d(p, I). Any nearest-neighbor data structure is sufficient
here, and only insertions and queries are needed. As
the nearest-neighbor problem is a decomposable search
problem, the general techniques of Bentley and Saxe [3]
gives an O(log2 n)-amortized time bound for both inser-
tions and queries, and uses only O(n)-space. Using this
data structure, d(p, I) can be computed in O(log2 n)-
amortized time, and hence Algorithm 1 can be imple-
mented to run in O(n log2 n)-time.

3 Improving the Time Complexity

Instead of computing d(p, I) dynamically, we can speed
up Algorithm 1 by taking advantage of the fact that we
only need to check if d(p, I) is greater than 2. Every
time we add a new point p to I in Algorithm 1, we are
essentially removing every point in P lying in R(p). We
can do this in O(n log n)-time with a simple sweep-line
algorithm.

We sweep a vertical line from left to right and main-
tain a binary search tree (BST) storing the centers of
all the half-disks intersecting the sweep line. The points
in BST are sorted in non-decreasing order of their y-
coordinates. In case of ties, we sort them in increasing
order of their x-coordinates. Since all half-disks have ra-
dius 2, they are uniquely defined by their centers which
are stored in BST. Initially BST is empty.

We also keep an event queue that stores two types
of events: site events and deletion events. A site event
is a point of P . Each deletion event is associated with
a site event; for each point p ∈ P its deletion event is
the rightmost point of R(p). Thus, for every point p =
(px, py) in P , we have a deletion event p′ = (px + 2, py).
The event queue is kept as a priority queue sorted by
the x-coordinates of the events. Initially we add to the
event queue each point p ∈ P as a site event and p′ as a
deletion event. At each step of the sweep algorithm, we
pop the event with the smallest x-coordinate from the
queue, and “move” the sweep-line to that point.

Deletion events are straight-forward to handle, as we
remove the center of the half-disk—which corresponds
to this event—from BST.

27th Canadian Conference on Computational Geometry, 2015

Now we describe how to handle site events. Let p
be the current site event which is encountered by the
sweep-line SL. If p is covered by a half-disk in BST,
then we proceed to the next event. If p is not covered
by any half-disk in BST, then we insert a new half-disk
(its center) into BST. Since the half-disks in BST have
radius 2, we have the following observation:

Observation 2 The distance between any two points
in BST is more than 2.

Note that the half-disks corresponding to the points
to the left of SL which are not in BST do not intersect
SL. Therefore, these points have distance bigger than
2 from SL, and p cannot be covered by their half-disks.

In order to check if p is covered by any half-disk inter-
secting the sweep-line we do the following. We search
for p in BST by its y-coordinate. Let p− and p+ be the
predecessor and the successor of p in BST, respectively.
In other words, p− is the point in BST with the largest
y-coordinate and p+ is the point in BST with the small-
est y-coordinate such that p−y < py < p+y . If |pp−| ≤ 2
(or |pp+| ≤ 2), then p is covered by R(p−) (or R(p+)).
However, this may not be the only case to decide if p is
covered by a half-disk in BST. As shown in Figure 3(a),
p is covered by a half-disk which is neither R(p−) nor
R(p+).

p

p+

p−

p++

SL

p

p+
p++

SL

q

`

D(p, 2)

D(q, 2)

p′

q′
q′′

c

(a) (b)

Figure 3: (a) p is covered by a half-disk other than
R(p−) and R(p+). (b) Proof of Lemma 2

Let p−− be the predecessor of p− and p++ be the
successor of p+ in BST.

Lemma 2 If p is covered by any half-disk intersecting
the sweep line, then p ∈ R(p−−) ∪ R(p−) ∪ R(p+) ∪
R(p++).

Proof. The proof is by contradiction. Assume p is cov-
ered by a half-disk R(q) which is centered at a point q
in BST while p /∈ R(p−−) ∪ R(p−) ∪ R(p+) ∪ R(p++).
Without loss of generality assume qy ≥ py. Since p+

is the successor of p and p++ is the successor of p+ in
BST, we have qy ≥ p++

y . Let l be the vertical line which
is at distance 2 from p and to the left of the sweep line
SL; see Figure 3(b). All points in BST (including p+,
p++, and q) lie between (or on) l and SL.

Let p′ be the intersection point of l and the horizon-
tal line passing through p. Let q′ (resp. q′′) be the
intersection point of l (resp. SL) and the horizontal
line passing through q. See Figure 3(b). Let R be the
rectangle having its corners on p, p′, q′ and q′′. Observe
that the maximum side length for R is 2.

Since py ≤ p+y ≤ p++
y ≤ qy, p+ and p++ lie in R.

Consider D(p, 2) and D(q, 2). Since p ∈ R(q), |pq| ≤ 2;
this implies that p, q ∈ D(p, 2) ∩ D(q, 2). By Observa-
tion 2, both p+ and p++ are outside D(q, 2). In ad-
dition, p is to the right of p+ and to the right of p++

and p /∈ R(p+) ∪ R(p++), which implies that both p+

and p++ are outside D(p, 2). Therefore p+ and p++ lie
in region Q = R − (D(p, 2) ∪ D(q, 2)); the blue region
in Figure 3(b). Let c be the intersection point of the
two diagonals of R. The triangle 4pq′q′′ is a subset of
D(q, 2) and the triangle 4pp′q′′ is a subset of D(p, 2).
Thus, Q is a subset of the triangle 4cp′q′. 4cp′q′ has
diameter at most 2. Thus, the distance between any
two points in Q is at most 2. Therefore, |p+p++| ≤ 2;
which contradicts Observation 2. �

Given a site event p, in O(log n)-time we can find p−−,
p−, p+, and p++ in BST. In order to check if p is in the
coverage of any point in BST, by Lemma 2, it is enough
to check if the distance of p to p−−, p−, p+, or p++ is
at most 2. Therefore, each site event can be handled
in O(log n)-time; each deletion event can be handled
in O(log n)-time as well. Since we have 2n events, we
conclude that Algorithm 1 can be implemented to run
in O(n log n)-time and O(n)-space.

4 Extensions to Other Metrics

In this section we consider the unit disk cover problem
for a point set P in the Lt-norm, for t ≥ 1. We show how
to extend Algorithm 1 to a constant-approximation al-
gorithm. In the Lt-norm, a unit circle which is centered
at the origin is expressed by the equation

|x|t + |y|t = 1.

Figure 4 shows the unit circles in different Lt-norms.
We refer to the union of a unit circle in the Lt-norm
and its interior as an Lt-unit disk.

Observation 3 For any t and t′, with 1 ≤ t < t′ ≤
∞, the Lt-unit disk which is centered at the origin is

CCCG 2015, Kingston, Ontario, August 10–12, 2015

1
t = 1

t = 2

t =∞
2 < t <∞

1 < t < 2

Figure 4: Illustration of unit circles in different Lt-
norms.

contained in the Lt′-unit disk which is centered at the
origin.

Let Dt(p, 2) be the Lt-unit disk which is centered
at point p and scaled by a factor of 2. Observe that
any Lt-unit disk which covers p, does not cover any
point outside Dt(p, 2). Let Rt(p) be the right half-disk
of Dt(p, 2). By Observation 3, Rt(p) is contained in
R∞(p).

4.1 Lt for t ≥ 2

Assume t ≥ 2. As shown in Figure 5(a), R∞(p) can be
covered by six L2-unit disks. Since Rt(p) ⊆ R∞(p),
Rt(p) can also be covered by six L2-unit disks. By
Observation 3, any L2-unit disk is contained in an Lt-
unit disk. Thus, Rt(p) also can be covered by six
Lt-unit disks. Therefore, a modified version of Algo-
rithm 1 gives an Lt-unit disk cover C for P such that
|C| ≤ 6|Copt|.

p 2 p

2

(a) (b)

Figure 5: (a) R∞(p) which is covered by six L2-unit
disks. (b) R2(p) which is covered by five L1-unit-disks.

Since an Lt-unit disk contains an L2-unit disk,
Lemma 2 can be extended to the Lt-norm:

Lemma 3 If p is covered by any Lt-half disk intersect-
ing the sweep line, then p ∈ Rt(p

−−)∪Rt(p
−)∪Rt(p

+)∪
Rt(p

++).

Therefore, an O(n log n)-time 6-approximation algo-
rithm for the UDC problem in the Lt-norm is obtained.

4.2 Lt for 1 ≤ t ≤ 2

Assume 1 ≤ t ≤ 2. As shown in Figure 5(b), R2(p)
can be covered by five L1-unit disks. By Observation 3,
Rt(p) is contained in R2(p). In addition, an L1-unit disk
is contained in an Lt-unit disk. Thus, Rt(p) can also
be covered by five Lt-unit disks. Therefore, a modified
version of Algorithm 1 gives an Lt-unit disk cover C for
P such that |C| ≤ 5|Copt|. Lemma 2 can be extended
to the L1-norm as follows.

Lemma 4 In L1-norm, if p is covered by any half-disk
intersecting the sweep line, then p ∈ R1(p−−)∪R1(p−)∪
R1(p+) ∪R1(p++).

Proof. The proof is by contradiction; and similar to
the proof of Lemma 2. We skip the details. Consider
D1(p, 2) and D1(q, 2). Note that both p+ and p++ are
outside D1(p, 2) ∪D1(q, 2). See Figure 6(a). Therefore
p+ and p++ lie in region Q = R− (D1(p, 2)∪D1(q, 2)),
where R is a unit square which has its bottom-right cor-
ner on p. As shown in Figure 6(a), Q (the blue region)
can be covered by the L1-unit disk S. Therefore, the
L1-distance between p+ and p++ is at most 2; which
contradicts Observation 2. �

Since an Lt-unit disk contains an L1-unit disk,
Lemma 4 can be extended to the Lt-norm. Therefore,
an O(n log n)-time 5-approximation algorithm for the
UDC problem in the Lt-norm is obtained.

p
p+

p++

SL

q

`

D1(p, 2)

D1(q, 2)

S

p

2

1

(a) (b)

Figure 6: (a) Illustration of Lemma 4. (b) R∞(p) which
is covered by two L∞-unit-disks.

27th Canadian Conference on Computational Geometry, 2015

4.3 L∞ and L1

Assume t = ∞. An L∞-unit disk is an axis-aligned
square of side length 2. As shown in Figure 6(b), R∞(p)
can be covered by two L∞-unit disks. Therefore, a mod-
ified version of Algorithm 1 gives an L∞-unit disk cover
C for points in P such that |C| ≤ 2|Copt|. In addition,
we have the following Lemma, which is stronger than
Lemma 2.

Lemma 5 If p is covered by any L∞-half disk inter-
secting the sweep line, then p ∈ R∞(p−) ∪R∞(p+).

Therefore, a simple O(n log n)-time 2-approximation
algorithm for the UDC problem in the L∞-norm is ob-
tained. Gonzalez [10] presented a faster O(n logS)-time
2-approximation algorithm for this problem, where S is
the size of an optimal solution.

The UDC problem in the L1-norm can easily be re-
duced to a UDC problem in the L∞-norm by simply
rotating the x and y axes by 45◦ around the origin,
followed by scaling with

√
2/2. Therefore, a simple

O(n log n)-time 2-approximation algorithm for the UDC
problem in L1 is obtained.

5 Conclusion

We considered the NP-hard problem of covering n
given points in the plane with the minimum number
of unit disks. We presented an easily implementable 4-
approximation algorithm which runs in O(n log n)-time
and O(n)-space. The presented algorithm is faster than
previous algorithms having a similar approximation ra-
tio. It is interesting that the most time consuming step
of the algorithm is sorting and maintaining a BST.

We extended the algorithm to other Lt-norms. As
a result we obtained O(n log n)-time algorithms; a 2-
approximation for t ∈ {1,∞}, a 6-approximation for
t > 2, and a 5-approximation for 1 < t < 2.

The natural problem is to reduce the approximation
ratio, while not increasing the running time.

Another open problem is to extend this algorithm to
higher dimensions. In three dimensions, a ball of radius
2 can be covered by 21 unit-balls [1]. Therefore, Algo-
rithm 1 is a 21-approximation for the UDC problem in
R3. In order to check if d(p, I) > 2, it is sufficient to
check if the ball of radius 2 which is centered at p does
not contain any point of I. A ball emptiness query in
R3 can be transformed to a half-space emptiness query
in R4 by projecting the points of P to the paraboloid
x4 = x21 + x22 + x23. Chan [5] presented a linear-size
data structure which can be constructed in O(n log n)-
time that answers half-space emptiness queries in R4 in
O(
√
n)-time. Based on the techniques of Bentley and

Saxe [3], this gives an insertion-only dynamic data struc-
ture which supports insertions and half-space emptiness

queries in R4 in O(
√
n log n)-amortized time. Therefore,

an O(n
√
n log n)-time 21-approximation algorithm for

the UDC problem in R3 is obtained.
However, we believe that a half-ball of radius 2 can

be covered by 14 unit-balls; which would imply an ap-
proximation ratio of 14.

References

[1] Covering a unit ball with balls half the radius.
http://www.mathoverflow.net/questions/98007/
covering-a-unit-ball-with-balls-half-the-radius.

[2] R. Acharyya, M. Basappa, and G. K. Das. Unit
disk cover problem in 2D. In Proceedings of 13th
Int. Conf. in Comput. Sci. and its App.-ICCSA,
pages 73–85, 2013.

[3] J. L. Bentley and J. B. Saxe. Decomposable search-
ing problems. I. Static-to-dynamic transformation.
J. Algorithms, 1(4):301–358, 1980.

[4] H. Brönnimann and M. T. Goodrich. Almost opti-
mal set covers in finite VC-dimension. Discrete &
Computational Geometry, 14(4):463–479, 1995.

[5] T. M. Chan. Optimal partition trees. Discrete &
Computational Geometry, 47(4):661–690, 2012.

[6] M. De, G. K. Das, and S. C. Nandy. Approximation
algorithms for the discrete piercing set problem for
unit disks. In Proceedings of the 23rd Annual Cana-
dian Conf. on Comput. Geom., 2011.

[7] R. J. Fowler, M. Paterson, and S. L. Tanimoto.
Optimal packing and covering in the plane are NP-
complete. Inf. Process. Lett., 12(3), 1981.

[8] M. Franceschetti, M. Cook, and J. Bruck. A ge-
ometric theorem for approximate disk covering al-
gorithms. Technical report, 2001.

[9] B. Fu, Z. Chen, and M. Abdelguerfi. An almost
linear time 2.8334-approximation algorithm for the
disc covering problem. In Proceedings of 3rd Inter-
national Conference of Algorithmic Aspects in In-
formation and Management, pages 317–326, 2007.

[10] T. F. Gonzalez. Covering a set of points in multidi-
mensional space. Inf. Process. Lett., 40(4):181–188,
1991.

[11] D. S. Hochbaum and W. Maass. Approximation
schemes for covering and packing problems in im-
age processing and VLSI. J. ACM, 32(1):130–136,
1985.

[12] P. Liu and D. Lu. A fast 25/6-approximation for
the minimum unit disk cover problem. CoRR,
abs/1406.3838, 2014.

