
A Distributed Retrieval System for NTCIR-5 WEB Task

Hiroki Tanioka Kenichi Yamamoto Takashi Nakagawa
Justsystem Corporation

Brains Park Tokushima-shi, Tokushima 771-0189, Japan
{hiroki tanioka, kenichiyamamoto, takashinakagawa}@justsystem.co.jp

Abstract

We developed a distributed search system with the
corresponding very large scale corpora from NTCIR-
5 WEB Task. And we arranged the scoring method
which is based on link-structure of the Web documents
to calculate lower cost. Our search system, which con-
sists of 6 PCs could make indices for full texts size of
about 1 TB. Additionally, we confirmed that our ar-
ranged scoring method made an improvement of mean
average precision.

Also we performed experiments with the pseudo-
document vectors at every pseudo-relevance feedback.
Meanwhile we made a pseudo-document vector at ev-
ery relevance feedback. Therefore the results had
slightly better precision than raw queries even though
it had not been tuned yet.
Keywords: distributed information retrieval, link-
structure analysis, vector space model, inverted file,
relevance feedback, pseudo-relevance feedback

1 Introduction

Our purposes to participate in NTCIR-5 WEB Task
is as follows.

• Research and development of search systems
which are corresponding a very large scale cor-
pora.

• Research and development of scoring methods
which are based on non-text information for the
Web documents.

The background of first purpose is that digital doc-
uments are increasing in recent years, while we need
search systems to access these documents effectively.
But traditional search systems cannot index the full
text of these documents. Therefore we propose a dis-
tributed search system which is built on a distributed
framework.

The background of second purpose is that we con-
firm the effectiveness of scoring methods which are
based on link-structure of the Web documents (e.g.

PageRank[3]). We arrange the scoring method to cal-
culate at lower cost.

The rest of this paper is divided into three sec-
tions. Section 2, we describe an architecture of our
distributed processing framework and search system.
Section 3, we describe results of formal runs. Section
4, we discuss about results and future works.

2 System Description

In this section we describe the architecture of our
distributed search system and information retrieval
models including some scoring methods.

2.1 Navigational Retrieval Subtask 2

First, we explain the system architecture and mod-
els for Navigational Retrieval Subtask 2.

2.1.1 Overview

We explain a distributed search system which is based
on Vector Space Model using term partitioning with an
inverted file-based system, while a single inverted file
is created for the document collection and the inverted
lists are spread across the processors.

During query evaluation, the query is decomposed
into indexing items and each indexing item is sent
to the processor that holds the corresponding inverted
list[2].

2.1.2 Distributed Processing Framework

Cocktail Framework1 is used to make the distributed
search system based on Vector Space Model. The
framework provides a service of agents between client
and server, as broker between query and each indexing
item.

Figure 1 shows an overview of this framework. To
process a job2 in our system, a client machine receive

1Cocktail Framework is developed for distributed processing
framework by Justsystem Corporation.

2Job is described as a pair of command and argument which are
processed in our system.

Proceedings of NTCIR-5 Workshop Meeting, December 6-9, 2005, Tokyo, Japan



Figure 1. System Description

a job, and keep in a FIFO queue. And then, to send
the job to a server machine, unconfined agents pull the
job from the FIFO queue. Last, the server machine
performs the job and send a result back to the client
machine via same agent.

2.1.3 Indexing Algorithm

This system has indexing structure using an inverted
file. And this inverted file-based system is based on
term partitioning for whole distributed inverted files
on some server machines as a single inverted file.

In general, there are two methods of how to dis-
tribute inverted files on server machines. First method
is that an inverted file is divided based on terms. Sec-
ond method is that an inverted file is divided based on
documents. And, the second method needs to search
the inverted file on all server machines for the doc-
uments, but it is hard to calculate the correctIDF
scores for each terms in a query. Thus we decide on to
apply the first method.

The problem is that it is too costly to make the in-
verted file. It needs a large amount of memory if we
execute on memory, and it needs a long time if we ex-
ecute on hard disk. Therefore we take an approach
using a kind of merging the partial indices increas-
ingly. In concrete, we show the conceptual figure as
figure 2. We make the inverted file on memory until
reach a limit. When the size of inverted file is over the
limit of memory, we store the inverted file on memory
to hard disk. If there are already a previous inverted
file on hard disk, the two files on hard disk and on
memory are gradually merged.

The total time to generate the partial indices is
O(n), where n is the number of characters, m is the
number of merging times. And thus the cost of this al-
gorithm is as follows, where n’ is the average number
of characters each partial indices.

O(n′ · m(m + 1)/2) ≃ O(n′ · m2) (1)

In addition, a text data extracted by MeCab[1] is in-
cluded by corpora of NTCIR-5 WEB Task. Therefore,
the feature of Vector Space Model contains terms of
noun, verb and unknown word as part of speech from
the text data.

2.1.4 Retrieval Model

Our retrieval model is based on Vector Space Model.
And calculating formula of search score is based on
simple calculation ofTF · IDF as follows.

SQ =
p1

Tq

(2)

ST = log(TFd,t) · log(
N

DFt

) + SQ (3)

WhereSQ is the score dependent on the number
of termsTq in given query,ST is the score of term
t, TFd,t is term frequency of term t in document d,
N is the number of documents, andDFt is document
frequency of term t. To put a cap onlog(TFd,t) to ap-
propriate measures against spam terms. Iflog(TFd,t)
is overp3, we cut the numeric value top2.

Here in the experimentations, the values of parame-
ters are set without making an adjustment at all. Where
each constant numbers are declared as follows.

p1 = 100, p2 = 1, p3 = 5 (4)

There are three differences from originalTF ·IDF
calculating formula.

• Using logarithm for term frequency :TF

• Addition of score :SQ

• Limitation of logarithmicTF : log(TF )

The first difference is based on our pilot study,
which shows an adverse effect a greater values ofTF

Proceedings of NTCIR-5 Workshop Meeting, December 6-9, 2005, Tokyo, Japan



Figure 2. Indexing Algorithm

on originalTF · IDF calculation. The second differ-
ence is that operationality method controls the score
based on the number of terms in a query. And a pur-
pose of the third difference is a solution of detecting
spam terms.

2.1.5 Scoring Web Documents by Link Structure

In general, it is said that the scoring method based
on link-structure of Web documents is useful for Web
search system. Therefore we also use the score using
link-structure of Web documents, as follows.

SL =
2

1

LC
+ 1

DC

(5)

WhereLC is a link count as the total number of
inlinks andDC is a domain count as the number of
inlinks’ domain. This calculating formula is based on
an assumption that the important document has more
multidomain inlinks.

Furthermore ifSL grater thanSQ then we useSQ

instead ofSL. Because of total mixed ration between
SL andST as the main reason for this experiment. To
detect spam links, we make a limitation of link count.

Finally, the scoreSd,q of documentd for queryq is
given by

Sd,q =
∑

t∈q

St + SL (6)

whereSt is ST of each term t in query q.

2.2 Query Term Expansion Subtask

Query expansion is often effective when queries are
not so appropriate for retrieving many relevant doc-
uments. Query expansion usually needs some data;
some relevant documents, a thesaurus, query logs, and
so on. If manual operations are required to make
these data, they should be minimized or naturally in-
tegrated in normal search operations. Thus we tried

to mix good points of both relevance feedback[2] and
pseudo-relevance feedback[4, 6]. On one hand, rele-
vance feedback has a good point to match users’ needs
and a bad point to need user’s manual selection of
some relevant documents every time. On the other
hand, pseudo-relevance feedback has a good point to
need no manual operation and a bad point to ignore
users’ preferences.

In order to mix both good points, we made a
pseudo-document vector every relevance feedback. In
this scheme, manual operations to select relevant doc-
uments are optional. When we select relevant docu-
ments, relevance feedback is performed and a vector
for the latter pseudo-relevance feedbacks are made.
In the case of the latter search with no user-selected
relevant documents, pseudo-relevance feedback using
these existing vectors is performed. This scheme can
reflect users’ preferences even in the case of pseudo-
relevance feedbacks.

We made pseudo-document vectors as follows.

1. Convert relevant documents and queries to binary
vectors (1 if exist, 0 if not exist ).

2. Normalize these vectors as their norms equal 1.

3. Make every pseudo-document vectorpdv by ap-
pending vectors of its queryq and relevant docu-
mentsri as follows.

pdv = q + 2

n∑

i=1

ri

n
(7)

We used pseudo-document vectors as follows.

1. Convert a query to a binary vector whose norm
equals 1 like making pseudo-document vectors.

2. Select pseudo-document vectors with positive
values of cosine between the query vector and
pseudo-document vectors.

Proceedings of NTCIR-5 Workshop Meeting, December 6-9, 2005, Tokyo, Japan



3. Make an expanded query vectoreqv with the
query vectorq and searched pseudo-document
vectorspdvi as follows.

eqv = q +

n∑

i=1

pdvi · cos (q, pdvi) (8)

4. Select 10 terms with highest scores from the ex-
panded query vector and use them as expanded
query terms.

3 Results

In this section we show the results of NTCIR-5
WEB Task.

3.1 Navigational Retrieval Subtask 2

We show the result of Navigational Retrieval Sub-
task 2. Table 1 shows the difference of 4 runs we sub-
mitted.

Table 1. Difference of each runs
TF limited link-structure

JSWEB1 No No
JSWEB2 No Yes
JSWEB3 Yes No
JSWEB4 Yes Yes

Table 2 shows average precisions from results of
each runs. But we experimented under the condition
of lacking several documents. Where others is aver-
age of the other participants’ average precisions. Ac-
cording to these results, the result of JSWEB2 was
better than JSWEB1, and JSWEB4 was better than
JSWEB3 throughout the results. Thus it can be said
that the scoring method based on link-structure of Web
documents works for this subtask, though this scoring
method is simple harmonic average.

Furthermore, the result of JSWEB3 was better than
JSWEB1, and JSWEB4 was better than JSWEB2
throughout the results. Thus it can be said that the
limited of TF works for this subtask. But the results
were worse than other teams’ result on average. This
problem requires our further works, and we will look
back in Section 4.

Then we show the performance of our search sys-
tem. We used 6 PCs for this subtask. Table 3 shows
that specification of all PCs. And expanded informa-
tion is that each network-linked PCs are connected on
gigabit Ethernet.

The performance of our system was without text
analyzing. Because we used the corpus analyzed by
MeCab. For this reason, the indexing time which was

Table 2. Result of each runs
A AB A mod AB mod

JSWEB1 0.0094 0.0107 0.0094 0.0107
JSWEB2 0.0182 0.0180 0.0144 0.0146
JSWEB3 0.0099 0.0111 0.0099 0.0111
JSWEB4 0.0194 0.0190 0.0157 0.0158

others 0.1117 0.1078 0.0936 0.0902

Table 3. Specification of PCs
CPU[GHz] Ram[GB] OS

A Celeron 2.4 1 WinXP Pro SP2
B Celeron 2.4 1 FedoraCore3
C Celeron 2.4 2 FedoraCore3
D Celeron 2.2 1 FedoraCore3
E Celeron 2.2 1 FedoraCore3
F Celeron 1.7 1 WinXP Pro SP2

without the morphological analysis time. On that ba-
sis, the time for indexing of about 1 TB full text cor-
pus was in 7.4 days. And the time to search was in
about 2.7 second by a query. As a result, we thought
that the distributed search system had a significant
impact on high-speed processing for information re-
trieval. Moreover we can expect to speed up by adding
on more PCs.

Table 4. Performance of search system
Indexing time 7.4 days
Search time 2.7 sec.

3.2 Query Term Expansion Subtask

Table 5 shows slightly improved precisions with ex-
panded query vectors. We used our original search
system as a baseline and a processor of expanded
queries. MAP shows a mean average precision.

Next, we explored factors relating to the MAP im-
provement. We couldn’t find any relations between
the MAP improvement and query terms. However, we
found some relation between the MAP improvement
and relevant documents. Figure 3 shows the slightly
negative correlation (correlation coefficient = 0.40) be-
tween the MAP improvement and the number of rele-
vant documents to make the pseudo-document vector
for the query.

Proceedings of NTCIR-5 Workshop Meeting, December 6-9, 2005, Tokyo, Japan



+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

++

+

+

+

++

+

+

+

+

+

+

+

−0.2 −0.1 0.0 0.1 0.2

10
20

50
10

0
50

0

MAP improvement

nu
m

be
r 

of
 r

el
ev

an
t d

oc
um

en
ts

Figure 3. Relation between MAP Improvement and Number of Relevant Documents

Table 5. Result of query expansion
Baseline Expanded queries

MAP 0.0962 0.0976

4 Discussions

4.1 Navigational Retrieval Subtask 2

We proposed the distributed search system and in-
dexing method using merging the partial indices. Also
we evaluated the distributed and indexing methods,
and showed that these methods have high-speed in the
subtask. Therefore we can say that restriction of cor-
pus size is solved in theoretical.

We also proposed to use a scoring method based on
link-structure of Web documents, and the limited of
TF . When these scoring methods were used, the re-
sults were improved slightly from originalTF · IDF .
Additionally the distributed processing framework and
search system, which were very flexible to adjust to
various experimental environments.

All our purposes are accomplished, but there are
still unsatisfactory results. We show the calculating
formula again.

ST = log(TF ) · log(
N

DF
) + SQ (9)

Here in the above formula, there are problem that
log(TF ) = 0 whenTF = 1. Thus we improved the
calculating formula as follows.

ST = log(TF + 1) · log(
N

DF
) + SQ (10)

Table 6 shows the results improved calculating for-
mula. When all experimental conditions are same as
original conditions, new results were batter than all
original results.

Table 6. Improved result of each runs
AB mod

JSWEB1 0.0107
JSWEB2 0.0146
JSWEB3 0.0111
JSWEB4 0.0158

new JSWEB1 0.0112
new JSWEB2 0.0158
new JSWEB3 0.0115
new JSWEB4 0.0161

others 0.0832

However the calculating formula is written in a
component of search system. Then we can these ad-
ditional experiments without re-indexing the inverted
file.

Next, we discuss the result for each query. Fig-
ure 4 shows example of good or bad queries. Good
query shows batter average precisions than averages of
the other participants’ average precisions. Bad query
shows worse average precisions than averages of the

Proceedings of NTCIR-5 Workshop Meeting, December 6-9, 2005, Tokyo, Japan



Figure 4. Example of Good / Bad Queries

other participants’ average precisions. Where “diff” is
the difference of between our average precisions and
averages of the other participants’ average precisions.

We analyze some queries of bad results and catego-
rize these queries as follows.

a. Our system can search the relevant domain page,
but cannot search the top page. [ex. 1005, 1017]

b. Our system cannot search the relevant page be-
cause of segmenting complex term. [ex. 1059]

c. Our system cannot search the relevant page be
caused by low term frequency. [ex. 1202, 1345]

We think that countermeasures against each type is
as follows.

a. We arrange the scoring method which is based on
link-structure or the page weighting method for
the domain top page.

b. We deal properly with a complex term.

c. We adopt the algorithm of normalized term fre-
quency.

We think a reason of good query is that our search
system is the full text search system. If query term
appear only in body text, our system is more advanta-
geous than the other system which indexes only anchor
text or title text.

Finally our future work is the improvement of
search result. We must experiment various calculating
formula and parameters. Although we will optimize
quickly, we can simply change some components.

4.2 Query Term Expansion Subtask

Our scheme to expand query vectors made slightly
higher average precisions than the baseline search sys-
tem. However, these differences are not so clear. Also,

figure 3 implies problems to make pseudo-document
vectors with many relevant documents. We didn’t
use TF or IDF to make or use pseudo-document
vectors. So, expanded query terms with many rel-
evant documents are apt to contain only frequent
terms with little information. We didn’t useIDF or
other corpus-dependent parameters because we want
to share pseudo-document vectors among different
corpora. However, this result might suggest that we
should adopt a new method withIDF -like parameter
for our corpus-independent scheme.

We had not tuned the parameters and detailed meth-
ods to expand them yet. Thus we will explore better
parameters and detailed methods and test how better it
is. We suppose the merits of this scheme as follows.

• Reduction of every time users’ operations from
relevance feedback.

• Adapting users’ preferences in the case of a query
without user selected relevant documents.

• Good performance and scalability to apply it to
large corpus such as Web documents.

Acknowledgement

We appreciate our colleagues Kayoko Tonoi and
Daisuke Motohashi for their encouragement.

References

[1] http://chasen.org/ taku/software/mecab/.
[2] R. Baeza-Yates and B. Ribeiro-Neto.Modern Informa-

tion Retrieval, chapter 5,,9. Addison-Wesley, 1999.
[3] S. Brin and L. Page. The anatomy of a large-scale hy-

pertextual web search engine.In Proc. of the 7th Int.
WWW Conference, Brisbane, Australia, April 1998.

[4] D.Evans and R.Lefferts. Design and evaluation of the
clarit-trec-2 system.In D.K.Harman editor, Proceed-
ings of the Second Text REtrieval Conference (TREC-2).
NIST Special Publication, pages 500–548, 1994.

[5] M. R. Henzinger. Hyperlink analysis for the web.
IEEE INTERNET COMPUTING JANUARY FEBRU-
ARY, 2001.

[6] A. M.Mitra and C.Buckley. Improving automatic query
expansion.In SIGIR ’98, pages 206–214, 1998.

[7] B. C. Salton G. Term-weighting in information retrieval
using the term precision model.Journal of the Associa-
tion for Computing Machinery, 152-170(29), 1982.

[8] Y. C. S. Salton G., Wong A. A vector space model for
automatic indexing.Communications of the ACM, 613-
620(18), 1975.

[9] J. Wu, H. Tanioka, S. Wang, D. Pan, K. Yamamoto, and
Z. Wang. An improved vsm based information retrieval
system and fuzzy query expansion. InFSKD (1), pages
537–546, 2005.

Proceedings of NTCIR-5 Workshop Meeting, December 6-9, 2005, Tokyo, Japan


