Exposing iClass Key Diversification

Flavio D. Garcia Gerhard de Koning Gans Roel Verdult

Institute for Computing and Information Sciences
Radboud University Nijmegen, The Netherlands.
{f 1 avi og, gkoni ngg, rverdul t} @s. ru. nl

Abstract HID [CumO6] iClass is also deployed at the United States
iClass is one of the most widely used contactless smartcarblsivy base of Pearl Harbor. Other applications include se-
on the market. It is used extensively in access control anzire user authentication such as in the naviGO system in-
payment systems all over the world. This paper studies trduded in Dell’s Latitude and Precision laptops; e-payment
built-in key diversification algorithm of iClass. We revers such as in the FreedomPay and SmartCentric systems; and
engineered this key diversification algorithm by inspegtin billing of electric vehicle charging such as in the Liberty
the update card key messages sent by an iClass reader tofthegins system.
card. This algorithm uses a combination of single DES and HID Global is also the manufacturer of the popular Om-
a proprietary key fortification function called ‘hash0’. We nikey readers. The Omnikey 5321 reader family is a multi-
show that the function hashO is not one-way nor collisiomprotocol contactless reader which includes iClass compat-
resistant. Moreover, we give the inverse function hasho ibility. Starting from firmware version 5.00 these read-
that outputs a modest amount (on average 4) of candigrs have the so-called ‘Omnikey Secure Mode’ which is
ate pre-images. Finally, we show that recovering an iClagequired to update iClass card keys. This Secure Mode
master key is not harder than a chosen plaintext attack gmovides encryption of the USB traffic complying with
single DES. Considering that there is only one master kehfsO/IEC 24727 [ISO08] standard.
in all iClass readers, this enables an attacker to clon(:'scarf_1 Related Work

and gain access to potentially any system using iClass.
Experience has shown that, once obscurity has been cir-

1 Introduction cumvented, proprietary algorithms often do not provide a

Over the last few years, much attention has been paid &tisfactory level of security. One of the most remark-
the (in)security of the cryptographic mechanisms used iable examples of that is the infamous case of the Mifare
contactless smartcards [NESP08, GAKG08, GVRVS09, Classic [NESP08, GAKGNO8, GVRVS09] used widely in
COQO09, GVRVS10]. access control and transport ticketing systems. Other ex-
This paper does not focus on the security of the card@mples include KeeLoq [IKDO08] and Hitag2 [SNCO09],
themselves but on the security of the cryptographic protgvhich are widely used in wireless car keys and the
cols used in the embedding systems. Concretely, we studyp/1 [Gol97] and DECT [LST 09] ciphers used in cell and
the key diversification and the proprietary ‘key fortificati ~ cordless phones.
functions of the HID iClass contactless smartcards and theo our contribution
secure key loading mode of the Omnikey readers. o) , o)
iClass is an ISO/IEC 15693 [ISO09] compatible contactd N€ contribution of this paper is manyfold. Firstit desesb
less smartcard manufactured by HID Global. It was introt'€ "€Verse engineering of the built-in key diversificaabn
duced on the market back in 2002 as a secure replacem@@fithm of iClass. This key diversification algorithm con-
of the HID Prox card which had no cryptography at all. Ac-SISts of two parts: a cipher that is _use_d to encrypt the iden-
cording to the manufacturer more than 300 million iClasd® Of the card; and a key fortification function, called
cards have been sold. These cards are widely used in accBashO in HID documentation, which is intended to add ex-
control to secured buildings such as The Bank of AmericH@ Protection to the master key. Our approach for reverse

) L) L

Merrill Lynch, the International Airport of Mexico City and engineering IS In I|ne_ with that of [_GdKGWDS, LST709,

the City of Los Angeles among many othkraccording to GVRVS10] and consists of analyzing the update card key
messages sent by an iClass compatible reader while we pro-

Iht t p: // hi dgl obal . conf medi acent er . php?cat 2=2 duce small modifications on the diversified key, just before

fortification. For this it was first necessary to bypass thevith the reader. According to the Omnikey developers
encryption layer of the Omnikey Secure Mode. We reversguide [WDS'04] this key is only known by a limited group
engineered the Omnikey Secure Mode and wrote a libragf developers under a non-disclosure agreement with HID
that is capable of communicating in Omnikey Secure Mod&lobal.
to any Omnikey reader. To eavesdrop the contactless inter-The Omnikey Secure Mode must be active in order to
face we have built a custom firmware for the Proxmark Illperform security sensitive operations like changing the ke
in order to intercept ISO/IEC 15693 [ISO09] frames. Weof a card. In order to be able to eavesdrop and modify mes-
have released the library, firmware and an implementaticsages between the reader and a card during a key update,
of hashO under the GNU General Public License and thejie Omnikey Secure Mode must be circumvented.
are available at the Proxmark web$ite The two-factor authentication application naviGO from

Last but not least, we show that the key fortification funcHID Global provides a login procedure for Windows com-
tion hashO is actually not one-way nor collision resistanputers using an iClass card and a PIN-code. A trial version
and therefore it adds little protection to the master keyof this software package is freely available onfinéav-
Concretely, we give the inverse function hash®@hat on iGO uses the Omnikey reader for the personalization phase
input a 64 bit bitstring it outputs a modest amount (on avetwhere it authenticates, updates the key and writes creden-
age 4) of candidate pre-images. We propose an attack thatls to an iClass card. To perform these actions naviGO
recovers a master key from an iClass reader of comparalieeds to know the cryptographic kg in order to use
complexity to that of breaking single DES, thus it can behe Secure Mode. HID Global stores the secret key in an
accomplished within a few days on a RIVYERAThis is unprotected binary file. After extractinguw from the file
extremely sensitive since there is only one master key farCLASSCar dLi b. dl | we gained full control over the
all iClass readers and from which all diversified card keysecured USB channel.
can be computed. We have released a library call&tiassifiedthat makes it

As an alternative, it is possible to emulate a predefinegossible to send arbitrary commands to an Omnikey reader
card identity and use a DES rainbow table [Hel80] based amsing the Omnikey reader in Secure Mode.
this identity to perform the attack. This allows an adveysar . .
to recover):he Fr)naster key within minutes. 3 iClass and PicoPass

During the course of this research, Meriac and PlotZThe iClass card is basically a re-branded version of the Pi-
presented a powerful procedure to read out the EEPRObbPass contactless smartcard which is manufactured by In-
of a PIC microcontroller, like the ones used in iClass readcside Securg The documentation of the PicoPass [Con04]
ers, at the 27th meeting of the Chaos Communication Cowtefines the configuration options, commands and memaory
gress [MP10, Mer10]. This attack is possible due to a misstructure of an iClass 2KS card. Before HID Global sells
configuration of the memory access control bits of the PI@e PicoPass as an iClass card, they configure the memory,
used in early reader models, for more details on this attackore their cryptographic keys and blow the fuse that allows
see the OpenPCD websitéTheir attack on the hardware is any future changes to the configuration.

aviable alternative to retrieve the master key. Block | Content Denoted by
2 Omnikey Secure Mode 0 Card.seria! number Identifierid
1 Configuration

The Omnikey contactless smartcard reader has a range of [5 - Card challengec
key slots where it stores cryptographic keys. These keys [3 Key for application 1 | Debit keykdg
are used to authenticate with an HID iClass card. Aftera [4 Key for application 2 | Credit keykcg
valid authentication the reader gains read and write access | 5 Application issuer areg
to the memory in the card. 6...18 | Application 1 HID applicationayp

All recent Omnikey 5321 and 6321 contactless smartcard | 19...n | Application 2 n=16x— 1 for xS
readers manufactured by HID Global support encrypted
communication with the host, which is call&&cure Mode Figure 1: Memory layout of an iClass card

Appl_ications compliant With_ISO/IEC 24727 [ISO08] must The iClass cards come in two versions 2KS and 16KS
provide end-to-end encryption and therefore the USB confyith respectively 256 and 4096 bytes of memory. The
munication between the application and reader needs to F}?emory is divided into blocks of eight bytes as shown in

encrypted. Figure 1. Memory blocks 0, 1, 2 and 5 are publicly access-

To activate the Secure Mode, the host application usggje, they contain the card serial numbéy configuration
a 3DES keyKcyw to perform mutual authentication

Shtt p://www. hi dgl obal . coml car dSer vi ces/
’http: // wwv. proxmark. org navi GoTri al Downl oadFor m php

Shtt p: // wwv. Sci engi nes. com Sht t p: // www. i nsi desecur e. conl eng/ Pr oduct s/
“htt p: / / www. openpcd. org/ HID_i Cl ass_denystified Secur e- Sol uti ons/ Pi coPass

bits, the card challenge: and issuer information. Block 3 id, cc

and 4 contain two diversified cryptographic keys which are E
derived from two different HID master keys. These master NR, @R 1
keys are referred to in the documentation as debitkay ac ;
and credit keykc. The card only stores the diversified keys — 3

kdg andkcyq. The remaining blocks are divided into two 7

areas so-called applications. The size of these applitatio

is defined by the configuration block.) o
The first application of an iClass card representgtz Figure 3: Authentication protocol

applicationwhich stores the identifier, PIN code, passwordsggests that the reader encrypts the card iderityus-
and other access control information. Read and write accegg single DES. Then it performs a fortification algorithm
to the HID application requires a valid mutual authenticatg obtain the diversified key. The following steps verifyttha
Eaﬂ using a proprietary algorithm that proves knowledge ofhe card identity is the only input to the DES algorithm:

d-

The second application is user defined and secured by a® Start with any 64 bit bitstring, e.g., all zeros
key kg derived fromkc. The defaultkc (but notkd) is e choose a random kdyand use DES to decrypt This
stored in the same binary file that contains the secret key ~results in a plaintexp
for the Omnikey Secure Mode. We use this key later on ® choose a different kel and use DES to decryjut
Section 4.1 during the reverse engineering process. This results in a plaintexy’

We use ouriClassified library to eavesdrop the USB ® run a card key update withwith a reader that receives
communication while the card key is updated. We ob- identity pfrom a card emulator. Repeat this using key
serve that a default iClass master key is loaded into key K and identityp’ and verify that the derived ke, is
slot 32 of the reader. This key is used to derive the card ~€dual toky,.
key which is used for authentication. Then, a new mas- ke fortification functions are non-injective functions
ter key is loaded into slot 32 and the card key is updateghany-to-one) which, in contrast with hash functions, in-
with the new derived key. Figure 2 shows the eavesdroppggntionally have many collisions [AL94]. The idea behind
messages between the reader and a card during & S€qUENEEhat even if an adversary has access to many diversi-
of card key update commands. The application first Upfjeq keys, these do not univocally determine a master key.

dates the default kelc of an genuine iClass card to ran- s comes, of course, at the cost of loosing entropy in the
dom k¢’ andkc”. Finally it sets the default key again. giyersified key.

The trace shows that the key update message contains ag, practice, it means that even if you manage to invert

payload the exclusive-or (XOR) of the old and new keyne forgification function, you will get many candidate pre-
as mentioned in [MP10]. This can be verified computingmages which in turn you need to brute force to get to the

(kdy @® kaa) @ (ko @& Kgy) = KGg & kg master secret key.
3.1 Authentication and Key Fortification Serstiey | T foten

This section describes the authentication protocol batwee

aniClass card and reader. Furthermore, it gives an overview /

of the built-in key diversification algorithm.]
The authentication protocol between an iClass card and

a reader is depicted in Figure 3. First, the card sends it§igure 4: Extracted from the PicoPass datasheet [Con04]

identity id and a card challeng&:. This cc is called ‘e- . . e

purse’ [Con04] and it is special in the sense that it is in-4 Reverse Engineering Key Fortification

tended to provide freshness. Apparently, the card lacksThis section describes the reverse engineering of the key

pseudo-random generator and therefore, after a succesdfutification function. The design of this function, called

authentication, the reader should updaig@o a new value h0 [CumO03] or hashO [CumO06], is not publicly available.

in order to provide freshness in the next authenticatiorOur primary goal is to learn the card key derivation which

Note that this is not enforced by the card. Next, the readejives complete control over the card key. In order to reach

answers with a nonaeg of its choosing and an answag this goal it is necessary to reverse engineer the fortificati

to the challenge of the card. This answer is presumabfanction.

some sort of MAC depending otz andng. Finally, the As explained in Section 3.1 the input to the key diversi-

card answers with a similar messaageto achieve mutual fication is a master secret key (e.gc or kd) and a card

authentication. identity id. From this key, saykc, andid a ciphertext
iClass has a built-in key diversification algorithm. Fig-c = DES:n((id, kc) is computed. Finally, the actual diversi-

ure 4 is extracted from the PicoPass datasheet [Con04].fied keykgy is computed hash0) = kgg.

Diversified Key

Origin | Message Description

Reader| Oc 00 73 33 Read identifier

Tag 86 1d c1 00 f7 ff 12 e0 Card serial numbed

Reader| Oc 01 fa 22 Read configuration

Tag 12 ff ff ff 7f 1f ff 3c iClass 2KS configuration

Reader| 18 02 Authenticate withkgy

Tag fe ff ff ff ff ff ff ff Card challengec

Reader| 05 00 00 c1 d9 7e 99 bb f4 Reader challengedf, ng, agr)

Tag 46 3c 62 98 Responseac)

Reader| 87 04 fc b4 32 3e 6a 86 56 26 8a b5 18 cc | Updatekgq (87 04, kdy & kag, 8ab518cc)
Tag ff ff ff ff ff ff ff ff Update succesful

Reader| Oc 00 73 33 Readid

Reader| 87 04 76 98 db 5d 01 78 Oa 8f 67 25 cl1l 08 | UpdatekGq (87 04, kq) & kdfy, 67 25¢c108)
Reader| 87 04 8a 2c e9 63 6b fe 5¢c a9 e2 a5 bc 55 | Updatekgq (87 04, kag & kdf)j, e2 a5 bc 55)

Figure 2: Authenticate and update keys of an iClass card

4.1 Input-Output Relations e 7,...,z3 affectsky,. .. ky.

A good first step to recover hashO is to analyze its input- ® %247 affectsko, ..., ks. . .
output relations on bit level. This requires complete cointr ~ ® Z,....23 andz,....z7 gene_rate a similar strgcture n
over its inputc which can be achieved in a test setup by the the output t_Jutare mutua_lly mdep_endent. Th's_ suggests
emulation of a card identitigd knowing the master kekc. th.at there is a subfunctpn that is called twice, once

The following steps deliver XOR differences between ~ With Zo,...,2s and once witls, ..., z7. In the context
two hashO evaluations that differ only one bit in the input: of this paper we refer to this function as scramble.

e generate a large set of random bitstriegs {0,1}%%. ¢ g[ﬂ affectsi; for Ile {0....,7}. The OR-rrr:ask foy in- hil
« for eachq calculateid; — DESyed(a, ko) and id) — icates a complement operation on the output while
) i

. the AND-mask presumes an injective function that
DESied @ 21,kc) for j € {0,...,63}. P :

mapsyjj) to kjj7.
o for eachc; execute 64 key updates as follows: ° X creat[és a p[e]rmutation. The output is scrambled after
— authenticate witlid; flipping a single bit withinx. The AND-mask shows
— perform a key update, the reader requests the thatkq is exclusively affected by fori € {0,...,7}.
card identity again, now use/ instead ofd; e flipping bits inzo, ...,z does never affect the left- or

rightmost bits ofkg, ... k7. This is inferred from the
occurrences of théx 7e value in the OR-mask which
i501111110 in binary.

Keep the keykc constant during the key updates described
above. This delivers the XOR of two function evaluations
of the form hash(@;) @ hash@c @ 21). We performed
this procedure for 3000 valueswith j € {0,...,63}. The
results are grouped by the position of the flipped bit. Then,
the AND and OR is computed of all the results in a group.
These cumulative AND and OR-masks for 64 bitflips in
3000 random bitstringg are presented in Figure 6 and 9.

[= o | 22 [22 [23 [24 [25 [26 [27 |

Zq [%6 | 25 | 24 [23 [22 [24 | 20 |

kq k., k., ks ky ks kg ko

4.2 Function Input Partitioning

Figure 6 shows that the hashO function handles the 48 right-
most bits in smaller 6-bit pieces. These 6-bit data chunks
are defined agp,...,z;. The two bytes on the left are .
definedx andy. Herex defines a permutation on the output The above observations suggest that the problem of func-
and the individual bits of define whether or not a comple- tion recovery can be split into parts. Figure 5 summarizes
ment operation is applied on one of the 6-bit output valuediow different parts of the input affect specific parts of the

The eight output bytes are definedkas. .., k; and consti- output whenx is kept zero. Note that the last observation
tute the diversified kekgq. Similarly, the inputc to the ~Shows that the subfunction scramble operates on four 6-bit

Figure 5: Partitioned Function Input far= 0

hash0 function is constituted lay= (x,y, 2, .. ., z7). input values and computes four 6-bit output values. These
of variablex wherexq means the rightmost bit of see Figure 5. Furthermore, it is observed that the ordering

The structure of the masks in Figure 6 and 9 are confRf the 6-bit output values and the leftmost bit of the output
puted withx =y = 0 andz,...,z as random bitstrings. Pytes are determined by Each bit ofy is simply copied
The masks lead to the following observations: into the rightmost bit of each output byte.

Summarizing, the hashO function can be split into three In order to find a relation between input valuesand
different parts. The first part is the subfunction scrambleutput valuesk; a selection of all observed valu&g is
which is called twice, once with inpu,...,z3 and once made. Figure 7 shows a relation betwexgrandkg and
with input z,...,7;. The second part computes a bitwiseshows which bits of; are fixed for a certain output value
complement operation based on tenplemenbytey and k3. Bits that do not matter are marked with a dot and the
the last part applies a permutation that is defined byp#re bitflip is markedf . The two inputs are; wheref =0 and
mutebytex. The following sections discuss these differentZ, wheref = 1.

parts of the hashO function. Finally, Section 4.6 defines the /2 K 2/2 K
complete function. . ?Of 06 ~ .?fo 04
bit OR-mask AND-mask . 01f Oe .. 0f1 Oc
@ — Kok kokskaksksks Kok koK3kskskskz D 011f | 1e C01f1 | 1c
0 | 7e7e7e7€00000000 | 0400000000000000
1 7e7e7e7e00000000 0400000000000000 - 0111f 3e -011f1 3c
.,] 2 | 7a7e7e7e00000000 | 0800000000000000 11111f | 7c 0111f1 | 7c
3 727e7e7e00000000 1000000000000000 01111f Te 11111 Te
4 | 627e7e7€00000000 | 2000000000000000
5 427e7e7€00000000 | 4000000000000000 Figure 7: Input-output relations f(kﬁ
6 | 007e7e7e00000000 | 0000000000000000 o)
26{ The relation is represented for every two inpatsand Z,
11 | 007e7e7e00000000 | 0000000000000000 aSkéﬁ[ll_G] = (z7 mod 63 + 14 (Z, mod 63 + 1 which gives
12 00007e7e00000000 0000000000000000 confidence thako[lﬁ] — (27 mod 63 + 1. The next Step is
% to findky. g Which is dependent on two inputinput values,
17 | 00007e7€00000000 | 0000000000000000 . : .
18 | 0000007600000000 | 0000000000000000 nam_elyzs ar_1d Z7. Agf';un, an overview of aII_mput-output
2 relations (Figure 8) is constructed. The first part where
23 | 0000007€00000000 | 0000000000000000 ki € {02,0c,52,6¢c,...} is the result of flippingzsq, and
24 | 00000000027€7e7e | 0000000002000000 the second part wheilg” € {0c,1c,3c,...,4e,64,...} is
26 | 0000000008 7e7e7e | 0000000008000000 the result of flippinggy.
2\ 27 0000000010727272 0000000010000000 The observatlons for fllpplng;[o]. andzgy) show that in
28 | 00000000207e7e7e | 0000000020000000 97 % of the cases inpa$ andz; are independent. 3 % of the
29 | 00000000407e7e7e | 0000000040000000 bitflips in zs makezs + 1 equal taz; or destroy this equality
30 | 00000000007e7e7e | 0000000000000000 instead.
Vir)
{ 35 | 00000000007e7e7e | 0000000000000000 % %/7, z Ky
36 | 0000000000007e7e | 0000000000000000 097 T 02
21{ 00010f 000101 | Oc
41 0000000000007e7e 0000000000000000 .
42 | 000000000000007e | 0000000000000000 003 10011f 101000 | 52 bitflip Zgjg
% 11001f 110100 | 6¢
{ 47 | 000000000000007e | 0000000000000000 | | foo
Figure 6: OR and AND-mask for bitflip 0-47 s 0c
B 1c
4.3 Subfunction scramble 0.97¢ .o011f. ... 3c
. 1111F. L 78
This section describes the reverse engineering of the sub- 0111f 7¢
function scramble which operates on four 6-bit input val- 0010f6 001001 1a bitflip zg)y)
uesz,...,z3. In order to recover this part of the function 0110f0 011001 | 3a
we keepx=y=0whilezy, ...,z are randomly chosen. For
. o " 0.0 1001f0 100111 | 4e
the scramble subfunction only bitflips at positions 0 to 47
matter (see Figure 6). It makes sense to start with the recov- 11001 110100 | 64
ery of eitherkg or k4 as they both depend on a single input AR

z. Notice thak, is justzs shifted one bit to the left since we
keepx =y = 0. Howeverky seems less predictable. The
XOR between two outputk & ki of two function calls is When zgy) is flipped more output variations ik’ are
defined as”. Furthermore, be aware that the subfunctiombserved. Example fckff — 0x3c¢:

scramble only affects bits), ..., kg (See Fig 5). To put
it differently, the output isalwaysshifted one bit to the left
and therefore this shift can be omitted from the analysis.

Figure 8: Input-output relations fd’

% =001101, z+2 = .001111.
%=001111, Z+2 = .010001. @
00111100 = 0x3c

The resultk? = 78 comes from a modulo operation. Here
input z5 is taken modulo 62, which i$11110 in binary.
Example fork{’ = 0x78:

2 =111100,
7, =111110,

(zsmod62+2 =
(zZzmod 62+2 =

.111110.

.000010. @

01111000 = 0x78

Then, 3 % of the output variations invoked by bitflips in
Z)1 describe a relatioss + 1= z;. The correspondink;’

is obtained by takingy; g = 1 when the relation holds and
kij1.6) = (zZs mod 62 + 2 when it does not hold. Example
for ki’ = Ox4e:

75 = 100100, (zs mod 62 +2 =
7;=100110, ((Z mod 62 +1=n;) =

.100110.
.000001. @
01001110 =0x4e

Eventually, the function foky; g is:

bit
b —
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

OR-mask AND-mask
koki kokskskskskz KokikaKskskskskz
f c00000000000000 | 8000000000000000
00f c000000000000 | 0080000000000000
0000f c0000000000 | 0000800000000000
000000f 00000000 | 0000008000000000
00000000f e000000 | 00000000f e000000
0000000000f e0000 | 0000000000f e0000
000000000000f e00 | 000000000000f €00
00000000000000f e | 00000000000000f e
Tf 7 7f 7e7e7f 71 71 0101010000010101
00007f 7e7f 000000 | 0000010001000000
7f 7e7e7e7f 000000 | 0100000001000000
7f 7e7e7e7e7f 0000 | 0100000000010000
00007f 7e7e7e7f 00 | 0000010000000100
7f7e7f 7€ 7f 7f 7f00 | 0100010101010100
7f 7e7f 7e7e7f 7f 00 | 0100010000010100
7f 7e7f 7e7f 7e7f 00 | 0100010001000100

Figure 9: OR and AND-mask for bitflip 48-63

. { 1, (s mod 62 + 1= (z; mod 63; e
116 = i 01234567, 35670124, 01342567, 15670234, 12340567
(z mod 62 +2, otherwise. 34670125, 01352467, 14670235, 12350467, 23670145,
o ; ; 02451367, 12670345, 12450367, 02671345, 23450167,
The remalnln_g<2_[1,_6] ‘de_ k3[1'_6]_can be found in a sim- 34570126, 01362457, 14570236, 12360457, 23570146,
ilar way by flipping bits in the input and closely looking 02461357, 03571246, 03461257, 02571346, 23460157,
; . ; ; _ 23470156, 02561347, 03471256, 03561247, 02471356,
at the input-output rglatlons. Also, it helps_ to look for re 53560147, 12370456, 14560237 01372456, 34560127,
lated modulo operations o andz;. We giveky); g t0 45670123, 01243567, 25670134, 02341567, 05671234,
give some idea of the evolving structure of the function: 925308 . 200 0 8s, B T e oo Dlav2ser
01263457, 24570136, 02361457, 04571236, 01462357,
2, (zs mod 61) + 1= (zs mod 62; 13570246, 12460357, 12570346, 13460257, 01572346,
01562347, 13470256, 12560347, 12470356, 13560247,
A (zz mod 63 # 0; 01472356, 04561237, 02371456, 24560137, 01273456 |
K 1 (zs mod 61) + 1 = (zs mod 62
201.6] = i - i
1.6] A (z7 mod 63 = 0; Figure 10: Permutatiort
1, (s mod 63 +2=(z7 mod 63; y;, = 0. Example folkg = 0xfc:
(zs mod 61 +3, otherwise. 7/=101101, wherej <3
After the recovery of the first blocks, ..., z; it is relatively Yo=0. ko=yo-zt = oloilon
Vo=1, Ky=yp-z—1-t = 1010011t &

easy to find the subfunction fay,...,zz. The modulos
and additions differ but the structure of the function is eom
pletely the same. For this reasonitis possible to write& as4.5 Permute Byte
subfunction scramble that is called twice, once#gr. ., z3
and once foi,...,z7. The final subfunction scramble is
given by Definition 4.1.

11111100 =0xfc

Finally, bytex applies a permutation. Iterating owewhile
keepingy andzy, .. . ,z; constant shows thatis taken mod-

ulo 70 since the same output is repeated again for every 70
consecutive inputs. The cumulative bitmasks of the output
differences, shown in Figure 9, do not give direct inform-
The complement bytg performs a complement operationation about this permutation but do make clear gt is

on the output of the function. Figure 9 shows that flippingaffected. Experiments show thais an injective mapping

a bity; means that bik; 7 is flipped fori € {0,...,7}. No- onkjg fori =0,...,7. This means that it is possible to
tice that no other input bit influences akyy;. Furthermore, learnx from k. Furthermore, the permutation is inde-
Kiy), - - -, kijg) are flipped but be aware that these bits mighpendent ofy andz. This means that a table of mappings
come from any othez; due to the permute byte Finally, can be constructed which takess index and has particu-
everykg is not affected. It is important to observe that forlar mappings as its entries. The mappings are presented in
Ks,...,k7 the OR and AND-mask agree that the left 7 bitsFigure 10. To illustratefp = 01234567 means that there is
are always flipped while fdky, . .., ks this is not true. To be no mixing at all and® = 01342567 means thig stays at
precise, the bit&gy), kij1), oz andksyy areneverflipped. position 0 whilek, is moved to position 2. To isolate one
This is because the 6-bit output valzjghat constitutes out- particular mapping we writeg (i) which returns the target
put bytek; is decremented by one if < 3 except when position of 6-bit output value

4.4 Complement Byte

4.6 Diversification and Fortification 5 Weaknesses

This section describes the recovered key diversificatioh arThis section describes weaknesses in the design of the Om-
fortification procedure. Definition 4.2 gives the definitionnikey Secure Mode and on the iClass built-in key diversi-
of the function hashO. It uses a subfunction scramble whicfication and fortification algorithms. These weaknessels wil
is defined by Definition 4.1. First, the key diversificationbe later exploited in Section 6.
procedure where a diversified kkggy is computed from a
card identityid and master kekcis as follows:

kGg = hash@DESendid, kc)) _Even th_ough encrypting_the commun_ic_ati_on over USB_is
in principle a good practice, the way it is implemented in
the Omnikey Secure Mode adds very little security. The
C= (XV.Z0.....27) € Fg « Fg y (Fg)g and used as input to shared keykcyw is the same for all Omnikey readers and

the hasho function. Finally, the output of the hash0 furlrctioit is included in software that is publicly available online
is kag = (ko k7)'e (Fg)g’ This only gives a false feeling of added security.
= (ko, ..., 5)°.

5.1 Omnikey Secure Mode

Here the DES encryption afl with master keykc out-
puts a cryptogram of 64 bits. These 64 bits are divided as

The function hashO first comput&s= x mod 70 which 5.2 Weak key diversification algorithm
results in 70 possible permutations (See Fig. 10). Then fo

. . |{3Iass uses single DES encryption for key diversification.
all z the modulus and additions are computed before Ca”'nghis provides vegry weak protggion of the r);aster key. This
the subfunction scramble. :

Then. th bfunct ble | lled twice. first is a critical weakness, especially considering that there i
. en, the sublunction scramble 1S cailed twice, Tirst o nly one master key for the HID application for all iClass
inputz,,...,7; and then on input, ..., Z,. The definition

. . cards.
of the function scramble is as follows. .
The manufacturer seems to be aware of this weakness

Definition 4.1. Let the function scramble(F$)* — (F$)* and tries to tackle the problem by adding the key fortifica-

be defined as tion function.
scramblézy...z3) =s¢(0,1,7y...23) This comes at the price of loosing entropy on the diver-
where sc N x N x (F8)* — (F8)* is defined as sified card keys. After the DES computation the diversified

64-bit card key have at most 56 bit of entropy. Then, this

sq2,4,20...23) =2...23 key is put through the fortification function where it looses

sdi,4,20...23) =sdi+1,i+2,2...2) another 2.2 bits of entropy. In the next section, we explain
sdi, j,zp...23) = where these 2.2 bits come from and discuss the security
.) properties of the fortification function.
sdi,j+L2.z+ (3—]).z3), z=7; o
sdi,j+1,2...23), otherwise. 5.3 Weak key fortification

This section clarifies why the key fortification is not

After this a permutation is applied to the output bytes. Thétrengthening the diversified kegq. First, note that
definition of hasho is as follows. only the modulo operations kI)r|1 ?asfrzo on”(w) ayndh

_— . 8. w8 6.8 2,...,2,Z,...,Z7 are responsible for the collisions in the
%%f'g'gg%g];.zr{ebe;;he function hashli3 x I3 x (F3)" — output. The expected number of pre-images for an output
(F3) i of hashO is given by:

hash@x,y,z...z7) = ko...ky 256 64 62 /64\2
where S % I—! <_) ~ 472
e 470 70 60 IL\n

=x mo .)) These modulo operations make inverting the function
Z=(z mod6l+i)+3—i i=0..3 straightforward. For every pre-image one needs to determ-

Z=(z mod56+i)+7—i i=4...7 ine if there exists another value within the input domairi tha
%...23 = scrambléZ...Z,) leads to the same output when the modulus is_taken. Note

%...2 = scrambléz, ... 7)) that each input valug may have a second pre-image that
A7 . e maps to the same output value. Furthermore, every permute
4 =2+ Y, (7-i) 1=4...7 bytex has at least two other values that map to the same out-
put value and in some cases there is even a third one. This
means that the minimal number of pre-images is three. The

o= d Yimel) 27-i-(1>3), Ymi =0 probability p that for a given random inpuatthere are only
Ty (i) Yire, () .77--(i>3), otherwise. two other pre-images is:

: 24 60 8 /n
1=0...7 — = _
P 70x64xn|_(!1(64

)2x0.27

This means that hashO does not add that much of addiey kc. In fact, the attack explained in this section requires
tional protection. For example, imagine an attacker whone brute force run on DES. For this key recovery attack
can learn the outputcyq of hashQDES:n((id,kc)) for ar- an attacker needs to control a reader and be able to issue
bitrary valuesid. Then, the probabilityp’ for an attacker key update commands. This is the case, for example, in the
to obtain an outpukgyq which has only three pre-images Omnikey Secure Mode. The attack consists of two phases:
is p=1-—(1-p)", wheren is the number of function Phase 1

calls using random identitiesl. Forn = 15 this probab-
ility p’ > 0.99. e emulate a random identify to the reader

e issue an update key command that updates from a
known user defined kekc to the unknown master

It is relatively easy to compute the inverse of the function keykc. Now, idye = hash@DESun(id, kc)) can be ob-

hashO. Let us first compute the inverse of the function tained from the XOR difference.

scramble. Observe that the function scramblis defined e compute the pre-imagesof idc.

just as scramble except for one case where the conditione repeat Phase 1 until an outddi. is obtained which

and assignment are swapped. Concretely, has three pre-images.

Definition 5.1. Let the function scrambié: (F$)* —

5.4 Inverting hashO

(F$)* be defined just as scramifte. .. z3) except for the Phase 2
following case where e for every candidate keykt € {0,1}% check if
sc(i,j,z...23) = DESend(id, kt) = ¢; fori € {0,1,2}
Scl(i,j+1,20.7% « 7.23), Z=3—]; e when the check above succeeds the corresponding key
{ . R Jel o kt needs to be verified against another setdo&nd
sct(i,j+1,2...23), otherwise. KGg.

Next, we define the function hash®) the inverse of We verified this attack on the two master ké&gsandkd that
hashO. This function outputs a s#t of candidate pre- are stored in the Omnikey reader for the iClass application.
images. These pre-images output the samekkelien ap- The first keykc was also stored in the naviGO software

plying hash0. The definition of hashbis as follows. and we could check the key against pre-images that were
Definition 5.2. Let the function hash@: (F§)® — {F§ x selected as described above. Although we did notKihd
F§ x (F$)8} be defined as stored in software we were still able to verify it since we
hash0l(ko...k7) =€ could dump the EEPROM of a reader whi&tewas stored.
The attack above comes down to a brute force attack on
where .) . o
single DES. A slightly different variant is to keep the card
@ ={xx=x" mod70 x {y}x identityid fixed and use a DES rainbow table [Hel80] that
{nlzo=2% mod6l x {z1|lz1=2 mod 62 x is constructed for a specific plaintext and runs through all
{nlzz=% mod63 x {z|zz=273 mod 64 x possible encryptions of this plaintext. Note that the raimb

table needs to be pre-computed and thus a fixed plaintext is

=7z d6 =7 dé
{za24 =2 mod 6G x {z|z5 =2 mod 61} chosen on forehand. This means that one fixed predefined

. {26|26.E Zs mod 62 x {z|z = Z mod 63 id is to be used in the attack. The number of pre-images
X is the unique element if8 s.t. (15, (i) > 3) & (ki7=1), can no longer be controlled. In the worst case the number
fori=0...7. of pre-images is 512.

Vi = Kny)10 '=0--T 7 Conclusions

2=%—-(3-(mod4) 1=0...7 In this paper we have shown that obscurity does not provide

%...Zy= scramblél(io...ig) extra security and it can be circumvented. In fact, exper-

ience shows that instead of adding extra security it often

. , covers for negligent designs.

i) = 4i) ~ Yime (7)) =4..7 It is hard to imagine why HID decided, back in 2002, to
A K (71116 Vi (7 = 0; use single DES for key diversification considering that DES
7 = { o (T8> 7 ('_)] , was already broken in practice in 1997 [Fou98]. Especially

Krg, (7-i)11..6) otherwise. =0...7 \when most (if not all) HID readers are capable of comput-
ing 3DES. Another unfortunate choice was to design their

6 Key recovery attack proprietary hashO function instead of using an openly de-

From the weaknesses that were explained in the previosgyined and community reviewed hash function like SHA-1.

section it can be concluded that hashO does not signifierom a cryptographic perspective, their proprietary func-

antly increase the complexity of an attack on the mastdion hashO fails to achieve any desirable security goal.

Z,...Z, = scramble}(z...7)

References

[AL94]

[Con04]

[COQO9]

[CumO03]

[CumoO6]

[Fou9s8]

[GAKGM*08]

[Gol97]

[GVRVS09]

[GVRVS10]

[Hel80]

RJ Anderson and TMA Lomas. Fortify-
ing key negotiation schemes with poorly
chosen passwords. Electronics letters KD +08]
30(13):1040-1041, 1994.

Inside Contactless. Datasheet PicoPass

2KS. Technical report, November 2004.

Nicolas T. Courtois, Sean O’Neil, and Jean-
Jacques Quisquater. Practical AlgebraidlSO08]
Attacks on the Hitag2 Stream Cipher. In
Information Securityvolume 5735 of_ec-
ture Notes in Computer Scienceages
167-176. Springer, 2009. [1SO09]
Nathan Cummings. iCLASS Levels of Se-
curity. Technical report, April 2003. [LST+09]
Nathan Cummings. Sales Training.
Presentation Slides from HID Technolo-

gies, 2006.

Electronic Frontier Foundation. Crack-
ing DES: Secrets of Encryption Research,
Wiretap Politics and Chip DesigiO’Reilly

& Associates, Inc., Sebastopol, CA, USA,
1998.

[Mer10]

Flavio D. Garcia, Gerhard de Koning Gans,[MP10]
Ruben Muijrers, Peter van Rossum, Roel
Verdult, Ronny Wichers Schreur, and Bart
Jacobs. Dismantling Mifare Classic.
In Computer Security - ESORICS 2008
volume 5283 of_ecture Notes in Computer
Sciencepages 97-114. Springer, 2008. [NESPO8]
Jovan Dj. Golic. Cryptanalysis of Alleged
A5 Stream Cipher. fEUROCRYPT 1997
volume 1233 of_ecture Notes in Computer
Sciencepages 239-255, 1997. [SNCO9]
Flavio D. Garcia, Peter van Rossum, Roel
Verdult, and Ronny Wichers Schreur. Wire-
lessly pickpocketing a Mifare Classic card.
In Proceedings of the 2009 IEEE Sym-
posium on Security and Privacpages 3—
15. IEEE, 2009.

)) ‘WDS+O4]
Flavio D. Garcia, Peter van Rossum, Roe
Verdult, and Ronny Wichers Schreur. Dis-
mantling SecureMemory, CryptoMemory
and CryptoRF. Ir17th ACM Conference on
Computer and Communications Security
(CCS 2010)pages 250-259. ACM, 2010.

M. Hellman. A cryptanalytic time-memory
trade-off.Information Theory, IEEE Trans-
actions on26(4):401-406, 1980.

Sebastiaan Indesteege, Nathan Keller, Orr
Dunkelmann, Eli Biham, and Bart Pren-
eel. A Practical Attack on KeelLoq. lAd-
vances in Cryptology - EUROCRYPT 2008
volume 4965 of_ecture Notes in Computer
Sciencepages 1-8. Springer, 2008.

ISO/IEC. 24727 - |dentification Cards —
Integrated Circuit Card Programming Inter-
faces. Technical report, 2008.

ISO/IEC. 15693 - Identification cards —
Contactless integrated circuit cards — Vicin-
ity cards. Technical report, 2009.

S. Lucks, A. Schuler, E. Tews, R.P. Wein-
mann, and M. Wenzel. Attacks on the
DECT authentication mechanism3opics

in Cryptology—CT-RSA 2009ages 48-65,
20009.

Heart of darkness
- exploring the uncharted backwa-
ters of hid iclass security. http:

/I ww. openpcd. or g/ i nages/

HI D- i CLASS- security. pdf,2010.

Milosch Meriac.

Milosch Meriac and Henryk Plotz. Analyz-
ing a modern cryptographic RFID system
HID iClass demystified. Presentation at the
27th Chaos Computer Congress, December
2010.

Karsten Nohl, David Evans, Starbug, and
Henryk Plotz. Reverse Engineering a Cryp-
tographic RFID Tag. IUSENIX Security
'08, pages 185-193, 2008.

Mate Soos, Karsten Nohl, and Claude Cas-
telluccia. Extending SAT Solvers to Cryp-
tographic Problems. In Oliver Kullmann,
editor, Theory and Applications of Satis-
fiability Testing - SAT 20Q9olume 5584

of Lecture Notes in Computer Science
pages 244-257. Springer Berlin / Heidel-
berg, 2009.

Werner Waitz, L Dixon, S Schwab,
L Hanna, T Muth, Marc Jacquinot, and Abu
Ismail. OMNIKEY Contactless Smart Card
Readers Developers Guide. Technical re-
port, November 2004.

