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Retrieving Leaf Area Index With a Neural Network
Method: Simulation and Validation

Hongliang Fang and Shunlin Lian§enior Member, IEEE

Abstract—Leaf area index (LA) is a crucial biophysical param-  [4]: 1) using the empirical relationship of LAl and vegetation
eter thatis indispensable for many biophysical and climatic models. indices (VI); 2) through the inversion of a radiative transfer
A neural network algorithm in conjunction with extensive canopy (RT) model; 3) lookup table (LUT) method; and 4) neural

and atmospheric radiative transfer simulations is presented in this . o
paper to estimate LAl from Landsat-7 Enhanced Thematic Mapper network (NN) algorithms. Although the VI approach is simple,

Plus data. Two schemes were explored; the first was based on sur-it is usually sensitive to soil and atmospheric conditions as
face reflectance, and the second on top-of-atmosphere (TOA) ra- well as measurement geometries and spatial resolutions and
diance. The implication of the second scheme is that atmospheric thus no unique relationship between LAl and VI is universally
corrections are not needed for estimating the surface LAI. A soil applicable [5]. The RT model inversion method, though more

reflectance index (SRI) was proposed to account for variable soil | d ibes the phvsical f radi ¢ f
background reflectances. Ground-measured LAl data acquired at compiex, describes the physical process or fadiance transier

Beltsville, MD were used to validate both schemes. The results in- IN the soil-vegetation system and is thus more general in
dicate that both methods can be used to estimate LAl accurately. application. The MODIS LAl product is being derived mainly
The experiments also showed that the use of SR is very critical.  with the LUT method and, for extreme conditions, the backup
Index Terms—Enhanced Thematic Mapper Plus (ETM+), leaf VI method [6]-[8]. A similar strategy is applied by MISR
area index (LAI), neural networks (NNs), radiative transfer, soil to derive LAl [9]. The POLarization and Directionality of
reflectance index (SRI). the Earth’s Reflectances (POLDER) data have been used to
estimate LAl by inverting a simple soil-vegetation reflectance
I. INTRODUCTION model over limited regions [10], [11]. Unfortunately, the

AND SURFACE properties and processes play an impq(gpnven'uonal RT model inversion with an iterative process is

tant role in the modeling of global climate change overoth time consuming and difficult to use on regional and global

time. Land surface properties are characterized by several esggﬁles. [12]. Both the LUT and NN methods can §peed up the
tial parameters such as the type of cover, leaf area index (LA' version process significantly although they are still dependent
' jon the accuracy of biophysically based RT models. They are

roughness length, and albedo. They are fundamental in de . fth licati lie | .
mining water and energy exchanges between the land surf§@gy 1o use, since most of the complications lie in generating

and the atmosphere in order to predict precipitation and sHi€ database [13] and the algorithms could be run separately.
face radiation. Important processes such as canopy interceptior], "€ 9eneral process of an NN inversion may be outlined as
evapotranspiration, and net photosynthesis are directly proptlows: 1) given a set of empirical environmental, leaf, canopy,
tional to LAI [1]. LAl also is an important input parameter tond soil parameters, determine the set of canopy reflectances
many climate and ecological models to quantify these processtié§h a forward RT model; 2) initiate the NN training (or
For example, the Global Climate Observation System (GCOSRIng) process with part of the lookup table obtained in the
and the Global Terrestrial Observation System (GTOS) requifést step, and establish the relationship between the input data
a LAl accuracy of+0.2 to 1.0 for terrestrial climate modeling@nd the output reflectances; 3) check the NN training with the
[2].1 other part of the LUT data or ground measurements; and 4)
Satellite remote sensing provides a unique way to obtain LAPPly the trained and checked NN model to a new scenario to
over large areas [3]. For example, the Moderate ResolutiBredict output parameters. The LUT must be general enough to
Imaging Spectroradiometer (MODIS) LAl is a 1-km globainclude all the possible variations.
data product updated once each eight-day period throughouln this study, we examined two LAl retrieval schemes with
the year. The Multi-angle Imaging Spectroradiometer (MISRN NN method and apply it to retrieve LAl from Landsat
LAl has a spatial resolution of 1.1 km and also is updated eveéRphanced Thematic Mapper Plus (ETM+) imagery. The first
eight days. Current methods for estimating LAI from 0ptic§Cheme retrieved LAl from atmospherically corrected surface
remotely sensed data are classified into several categofieectances; the second one from top-of-atmosphere (TOA)
raw radiances detected by the ETM+ sensor. The second
approach was suggested by the previous study [14], which used

Manuscript received July 10, 2002; revised January 14, 2003. This work Wafe TOA reflectance to estimate LAl with a neural network
supported in part by the U.S. National Aeronautics and Space Administration

(NASA) under Grant NAG5-6459 and Grant NCC5462. metht_)d. No atmospheric correction was applied, mstea_d, the
The authors are with the Department of Geography, University of Marylaneffective green-band reflectance at the TOA was used directly
College Park, MD 20742 USA (e-mail: fanghl@geog.umd.edu). in [14] to estimate LAI. Turneet al. [15] have also tested the
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applicability of using raw radiance values when they assessed
1Site visited in December 2001. LAI-VI relationships across vegetation types. In their study
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[15], the VIs were derived from raw digital numbers (DNs),

radiances, TOA reflectances, and atmospherically corrected

TABLE |

2053

PARAMETER VALUES USED TO ESTABLISH THE CANOPY

. . . . REFLECTANCE DATABASE
reflectances. It is meaningful, therefore, to test the relationship _
between TOA radiance and surface LAl with the neural network PARAMETERS VALUES SOURCES
method. The similar idea has been proposed [16] to estimal Solar zenith angle 10°, 20°, 30°, 40°, 50°, 60°,
land surface broadband albedo directly from MODIS imagery. P, g“;i 70° 22
gstrom turbidity factor .

_ For e_ach scheme, a database was created through RT MO | eafarea index 0~100by0.1
simulation. The structures of these two databases are identiC Leaf linear dimension/canopy height ~ 0.15 [22]
except for the fact that the second database has incorporat ratio .
atmospheric effects. Previous researchers as well as our te: "143"‘"_" parameter describing 038 (23]

. g . clumping

have |denF|f|ed Soil background. reflectgnce as one of the Eccentricity of the leaf angle 0.0 22]
most sensitive parameters affecting LAl inversion. In most of gistribution

the current NN training experiments, randomly selected soi Mean leaf angle of the elliptical LAD 0.0 [22]
reflectance was used to construct the LUT. It is believed tha Chlorophyll AB concentration 46.9 (23]
th f listi il reflect dat Id tl Leaf equivalent water thickness 0.01 [45]
the use of more realistic soil reflectance data would greatl) ¢ proein content 0.001 [45]
improve LAl estimates. This paper makes use of the SOi Leaf cellulose and lignin content 0.002 [45]
reflectance derived from the satellite data in order to drive Leaf structure parameter 1.88 [22]

the RT model, construct the databases and train the neur
network. For comparison with other soil reflectance options,
three additional soil reflectance scenarios were tested.

The following section introduces the RT model and the prin-
ciples of the neural network method. The concept of the soil re

Weight of the 1 Price function

Weight of the 2™ Price function
Weight of the 3", and 4" Price
function

0.01,0.05,0.1,0.15,0.2,
0.25,0.3,0.4, 0.5, 0.6, 0.8,

1

0.02 [10]
0.0 [10]

flectance index (SRI), database construction and the neural net-

work training procedure are then discussed in the methodologyhe elliptical leaf angle distributiort,). The leaf biochem-
The predicted LAI with both reflectance and radiance derivggg| parameters include the leaf chlorophy#- b concentration

from ETM+ data will be described and validated with field mea,,), protein content,), cellulose+ lignin content ()

surements in the results and analysis section.

structure parametemN), the ratio of refractive indices of the

leaf surface wax and internal materiaf$,(), and the equivalent

Il. BACKGROUND

We intend to estimate LAI through the inversion of an R
model and apply this method to invert LAl from Landsat ETM+

reflectance and radiance data. In this section, we introduce {ﬁé

RT model, the data, and the NN method that were used.

water thickness(,,). Soil spectral and directional properties
re described by a spectral model [21] in which four parame-
ers give the proportion of each of the four spectral terms,

743, andrgy. In this study, a nadir viewing angle represents
view of Landsat ETM+. There are two extra parameters:
the first one is the solar zenith anghg ) that is acquired from

) _ the Landsat ETM+ header file on each date; the second is the

A. Creating the LUT With an RT Model Angstrom turbidity factor, which accounts for the atmospheric

Creating an appropriate LUT is the first step in the use ddirbidity and is set to 0.1 throughout this paper [22]. All of the
the NN algorithm to retrieve surface biophysical parameters. Riput parameters are listed in Table I.
models relate the fundamental surface parameters (e.g., LAl an&oil reflectance, especially for small LAl values, is one of the
leaf optical properties) to scene reflectance for a given sun-sorest sensitive parameters in canopy reflectance models [23].
face-sensor geometry. As mentioned before, the main deficiettgwever, when LAl increases>@3), the importance of the soil
of the radiative transfer equation is the complexity inherent lmackground decreases [10]. Different researchers have used var-
its parameter inversion, which becomes a major barrier whirus ways to deal with the soil reflectance in RT model simu-
large amounts of satellite data are used. This is one reason Mdtion. These methods can be grouped into four categories. The
simple radiative transfer models are often used [17], [18]. It fst group uses the field measured soil reflectance data. For ex-
not our intention to review and compare all of these modelample, the soil reflectance in one of the studies [14] was ob-
Instead, we focus on a common turbid medium model—thained from field measurements corresponding to medium-dark
Markov chain reflectance model (MCRM) developed by Kuus&and medium-bright soils. When Abuelgasatal.[24] inverted
[19]. The MCRM calculates the angular distribution of canopthe geometric optical model of Li and Strahler [25], sunlit back-
reflectance for different nadir angles for a given azimuth argtound reflectance in the red band was chosen to represent the
wavelength [19]. This model incorporates the Markov propetypical reflectance observed in this region (about 0.24 to 0.31).
ties of stand geometry into an analytical multispectral canof)i et al.[26] also used measured soil optical properties to invert
reflectance model [20]. the SAIL model. The second approach uses the soil reflectances

The canopy structure parameters include the green leaf aftean a soil spectral library. For example, Broge and Leblanc
index, the ratio of leaf linear dimension to canopy heigft), [27] used minimum and maximum soil reflectances from some
the Markov parameter describing clumping. ), and two pa- representative soils to create the LUT. The third approach uses
rameters describing the leaf orientation distribution: the eccaandomly generated soil reflectances. For example, Kehak
tricity of the leaf angle distributione] and the mean leaf angle[13] defined a soil parametef}, and soil reflectances in green,
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red, and near-infrared (NIR) bands were calculated ag).2, [ll. M ETHODOLOGY
S % 0.25, and S * 0.3, respectively. The final group uses re-

: o . Our data were acquired at an experimental site at the U.S.
flectances derived from the soil line. For example, the soil

. . Bepartment of Agriculture, Beltsville Agricultural Research
flectance in the red band is r'andomly generated (between O(gzter (BARC) located in Beltsville, MD (a detailed descrip-
and 0'40). [28] Whe_re_the soil refle(r:tance for the NIR was d?ibn of this site can be found in [23]). Four clear Landsat ETM+
duced using the soil lingfr = 1.253pk + 0.030). ltshould 0000 (May 11, 2000, October 2, 2000, April 28, 2001 and
be noted that th_e so!l line be obtamaqb_rlon [28]. . August 2, 2001) have been obtained. The ground resolution of
Generally, using field-measured soil reflectance is the mo[ﬁte ETM-+ data is 30 m. During the four Landsat-7 overpasses,

. . o 'S MM as clear and cloudless, and field campaigns were carried
a soil spectral library may not represent real conditions in the . .
. - out. Surface reflectance was measured with a FieldSpec Pro
field. Randomly generated or soil line reflectances are app

ro- . ;
priate when they are applied to particular soil background prgg?wce and processed with the ViewSpec Pro software from

erties, since they are derived from empirical observations Qtalytical Spectral Devices (ASD) [33]. LAl was measured
SRI that will be introduced and used in this paper is determinW hr:r}tevl;Al—ZIOO(()j [3Ii]i |Indtvn\:|llghtsr Or; orr:te tvc\)/t:wee ggystagar\t/ ,
from the soil line derived directly from satellite imagery. € as cloudy. Fie easurements were conducted ove
typical land cover types such as alfalfa, wheat, corn, grass,
B. NN Method soybean, and forest. To obtain green LAl for forests, the full

Neural networks provide a very efficient tool to establish thcﬁanopy LAl was subtracted by the leafless LAl measured on
arch 20, 2001.

relatlo_nsh|p_ betvve_en a sw_nulated r(_aflectance field and the COMe= . ETM+ DNs were converted to radiances by [35]
sponding biophysical variables of interest as demonstrated be-
fore [14], [28]-[30]. Smith [11] inverted a simple multiple scat- L, = (DN-Offset)/Gain 2
tering mode to estimate LAI from reflectanges at three WaVihereL, is the at-satellite spectral radiance for a given spectral
lengths that were subsequently used to train an NN that d (WnT2 srium=1). The offsets and gains were available

applied to satellite observations. Goegal. [31] employed an from the sensor metadata. The ETM+ data were atmospheri-

error back-propagation feed-forward neural network prograga”y corrected using a radiative transfer package—MODTRAN

to invert LAl and leaf area density from a canopy reflectancz?o_to obtain ground reflectance [36]. The MODTRAN input
model [32]. The test results showed that a relative error betwe ;‘Qrameters mainly water vapor cont-ent and aerosol optical
1% and 5% or better was achievable for retrieving one paraéﬁckness ;/vere acquired from sunphotometers [37]. The
eter at atime or two parameters simultaneously [31]. Most Ofth?ound Sljrface was assumed to be Lambertian Heterogéneous
previous work [14], [26], [31] made use of the simulated dat )aze and aerosols were processed with thé cluster match
base from an RT model for both the training and checking put 1o quced in [38] Our validation work with the field
poses, i.e., part of the simulated data were used for training a a h 4 th ETM+ flect ‘

the other part for testing. A significant disadvantage of checki 9? Fz‘fy Fgr?c\e/eL Atl ?iel d mez;sufecma;riiswvgtrae ovtiznzgcl:é? €

with simulated data is that the simulated data may not be r H 0] h tes. F h LAl point ¢
resentative of the real environmental conditions. It is more d&- crent largé Nomogeneous sites. For eac point, surface

sirable to apply the training results to reflectance data deriv&%ﬂeddances we(;e derived fromhthe a(;f"."spre“c"%”_y clorrected
from satellite observations, and calibrate the results with ti&" _sat ETM+ data. Because t € traditional empirica vegc_ata—
field-measured data. tion index approach, such as using NDVI, was not appropriate

The training process is usually computationally intensivEor this study area [23], the neural network approach to retrieve

Since some of the satellite bands are closely related, only thb€d Was investigated.
bands that have the largest information content are applied jn
L . A, SRI
the training iteration. The commonly used bands are green, red, _ _ _ _
and NIR. The normalized difference vegetation index (NDVI) The concept of soil reflectance index is evolved from the soll

has also been used in many studies. NDVI is calculated as line. The linear relationship between red and NIR bare soil re-
flectances describes the soil line, which is widely used for the in-

NDVI = (pnir = pr)/ (PN1R + PR) @) terpretation of remotely sensed data [40]. Some authors assume
wherepr andpnir are the reflectances of the red and the NIEhat all soil types might be represented by a unique “global” soil
bands (bands 3 and 4 for Landsat ETM+), respectively. Thine, while Huete [41] points out that specific soil lines better
benefit of using NDVI is that it amplifies the inherent informa-describe the optical properties of individual soil types. The for-
tion in both red and NIR bands through the division operatiomula for a soil line follows
Since NDVI integrates the information content of both red and o 43 3)

NIR, Smith [14] only used green band (0.55) reflectances PANIR = CPR
and NDVI in the input training process. Simulations were mad#herepr andpxir are the reflectances in the red and near-in-
using three POLDER spectral bands (green, red, and NIR) wftared bands, respectively, andand are the slope and inter-
the central wavelengths at 443, 670, and 865 nm, respectivept, respectively, of the soil line. The soil line slope and inter-
[13]. Some researchers used both red and NIR wavelengthsépt vary from one time to another. In this work, the soil line pa-
the training process [28], while others used red, NIR, and NDVameters for each date were determined from the red—NIR spec-
[26]. The effect of different band combinations—NDVI as dral space. Table 1l shows the soil line parameters for various
separate band—will be discussed later. dates. The intercepf3] is not a single point, instead, a buffer
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TABLE I © 8
SOIL LINE PARAMETERS EXTRACTED FROM VARIOUS DATES. L, AND ° \ |
L, ARE THE LOWER AND UPPERPERCENTILE OF THEREFLECTANCE S,
OF PIXELS IN BAND 3 TO CALCULATE THE MINIMUM AND MAXIMUM L

SoIL REFLECTANCEWHICH IS USED FORSRI

0.4
s

DATES SLOPE INTERCEPT () L, L,
() o |
May 11,2000 1.0 0.02~0.08 0.01 0.02 e
Oct 2, 2000 1.03 0.008~0.08 0.02 0.02 -
Apr28,2001 1.1 0.008~0.08 0.01 0.02 .
Aug 2, 2001 1.05 0.008~0.08 0.01 0.02 ° ]

0.1

range is given. (A more descriptive name might be soil pix
“strip.”) All pixels located in this buffer zone are treated as so
pixels. Fig. 1 is an example of the soil pixel strip obtained fror . ,
the imagery of May 11, 2000. 0o ot . 03 04

To calculate the SRI, minimum and maximum reflectances ot
the soil line must be calculated first, which are derived from thg. 1. Reflectance of soil pixels in red and NIR ban$is(or S ) are bounded
mean values of the lower and upper cluster of soil pixels usir{gthe contour representing an area within(or L) from the global minimum

PG min (OF Maximump e .« ) reflectance.
p1 = Mear(Sl) p2 = Mear(Sg) (4)

on various application scenarios. In the following part, some
and of them will be elaborated on.
_ 1) Scenario 1 (SN1)MCRM has two spectral soil parame-
51 =Y (p = pemin)/ (PG max = PG min) < L1 ters (.1 andr,s) and two directional soil parameters,{ and
So =Y (pGmax — )/ (PGmax — PGmin) < L2 (5) 7s4). The soil reflectance reads

wherep; andp, are the minimum and maximum reflectance8s (As 01, 02, @) = (ra191(A) + ra101(N))

derived from the sqil I_ine{Sl} and {S,} are the lower and (14 7430105 cos ¢ + 1546262)  (8)
upper clusters of soil pixels used to calculateandps. p¢ min,

PG max are the global minimum and maximum reflectances froMfhereA, 61, 6, and¢ are the wavelength, sun and view zenith
the soil line.L,, L» are two boundary percentiles. The lower an@ngdles, and the relative azimuth between the sun and view an-
upper percentiles for calculating the minimum and maximu@es. respectivelyp; andyp, are the two first basis functions of
reflectances are listed in Table II. For this analysis, ftland  Price [21]. In Table |, the;, 73, andr4 values are fixed [10].

S, were identified manually in the R-NIR space (Fig. 1), bunly the view angle at nadif§ = 0; ¢ = 0) was considered.
they are not too difficult to be determined automatically. FopOil reflectance is primarily controlled by, (0to 1.0).
simplification, $; and S» were decided based on the red band 2) Scenario 2 (SN2)in this scenario, the soil reflectance

reflectance with (5). is based on the minimum and maximum soil reflectances
Having determined the soil line from the R-NIR space, th@easured in the field. It has been shown that the range of
SRl is defined as reflectance values for a given soil due to different soil moisture
conditions is often greater than that found between soils of

SRI= P —P1_ (6) different taxonomic classes [42]. For a particular soil type, soil
(P2 = p1) moisture content governs the magnitude of the soil spectral re-

flectance, whereas the overall shape of the spectral reflectance

where p; and ps are the minimum and maximum red re g - -
flectances, respectively, on the soil line determined in (4jurve seems to be unaffected by varying moisture conditions.

and p, is the red band soil reflectance. Consequently, the sgiP'l reflectance is calculated with
background reflectance for each pixel can be calculated by pis = pi1 + (pi2 — pi1) * RI 9)

pis = pi1 + (pi2 — pi1) * SRI (7) wherep;; andp;, are the minimum (wet soil) and maximum
o ] _ (dry soil) reflectances at baridRlI is the magnitude of the soil
where p;; and p;; are the minimum and maximum soil re-gpectral reflectance between the minimum and maximum re-
flectances, respectively, at band _ ~ flectances. The major soil types in the BARC area are repre-
The soil reflectance index is a new concept introduced in thignted by Codorus and Othello. The soil reflectance database
study. Our objective is to reprgsent soil reflectance in a simple codorus (Fig. 2) was created from topsoil samples as part
way by using the SRI. In so doing, the MCRM model only needs 5 study by Daughtry [43]. The wet and dry soil reflectances
minor modifications and its computations will be simplified. reported here were measured in the laboratory. The spectral
response of these soils when covered by canopy litter is not
known.
In addition to the SRI method introduced above, other 3) Scenario 3 (SN3):For simplification, soil reflectance is
methods can be used to calculate the soil reflectance dependiagumed to be constant over the spectrum, and the magnitude of

B. Companion Methods to Calculate Soil Reflectance
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For database 2, we simulated the TOA radiah¢@ising an
approximate expression [50]

0.6

05
~

pfpe (10)

Lt:Lp+

04
L

where L,, is the atmospheric path radiancg; is the atmo-
spheric transmittance of the atmosphere between the ground
surface and the sensaF, is the downwelling radiative flux
above the surface of zero reflectangas the fraction of surface
radiance reflected by the atmosphere back to the surface; and
pe IS the effective spectral reflectance of the surface expressed

by

Reflectance
03

0.2

0.1

L S pe =bpr(pa) + (1= b)7 (11)
500 1000 1500 2000 2500 3 .
Wavelength (nm) b= oxp {_ [1 _ (1 _ ST)(/LS _ O'O)] T/MS} . (12)
p

Fig. 2. Spectral reflectance of Codorus at a range of relative water contents
(RWC) from oven dry (RWC= 0.0) to water saturated (RWE 1.0). p1 is regarded as the equivalent Lambertian albedo [50]7and
. ) ) i is approximated by the hemispherical albedo of the surface as

the reflectance changes with soil moisture. Among the five rep; 51].
resentative mineral soil reflectance spectra [44], the iron-dom-Theare are two types of coefficients in (10)—atmosphere re-
inated soill (high iqn_content, fine texture) is th_e only one that;eq C,. S, T, andF) and surface relategh{ and). Atmo-
has very little variation over the spectrum. It is not our congpherically related coefficients were calculated using an atmo-
tention that this scenario represents all soil types. Its PUrPQgSheric RT model (MODTRAN 4.0) based on a Lambertian as-
is to test the vigbility of the NN method. In this simulation, SOiEumption. Five atmospheric visibility values (2, 5, 10, 50, and
reflectance varies from 0 to 1.0. 200 km) were used to reflect different aerosol loadings. The
midlatitude rural atmospheric profile was applied. The atmo-
) spheric water vapor content varied from 0.0-3.0 cm (0.0, 0.5,

Together with SRI, Kuusk's forward model MCRM was rum o 2.0, and 3.0 cm). A range of solar zenith angles (SZAs)
with variable#; and LAI for the three comparison scenariogas simulated from 10to 7C° at a 16 increment. Surface co-
that required modifications to the MCRM soil reflectance calsfiicients were determined from the BRDF simulation—regard-
culation. SN1 makes use of the defauf in Kuusk’s model. |55 of atmospheric conditions—because surface BRDF is an
For SN2, SN3, and SRI, the canopy model code needed tojhginsic property of the surface [52]. The parameterands
revised. SN2 uses the measured minimum and maximum {&sre gerived from the MCRM model with minor modifications.

flectance data. SN3 just assumes a common soil reerCta'lﬁ?erdeterminingL S 7T andF. the TOA radiance was cal-
(varies within 0 to 1.0) for all bands. SR, derived from the, 10 by (10). pre e ’

soil line of the red—NIR spectral space, reflects the instanta-
neous soil reflectance acquired from satellite data. Besides §9il Estimating LAl With the NN Method
reflectance, all other parameters were the same for SRI, SN1

SN2, and SN3. The parameters were fixed with the following Different ETM+ band combinations could be used to invert
values:S;, = 0.15, C,, = 0.95, C,, = 0.01 cm,C, = 0.001 LAl from an RT model with the NN method. We used all data

glen?, C.. = 0.002 glen? [45], 7. = 0.02, and the leaf orien- PINts in the two databases to train the NN. ETM+ reflectance,
tation was assumed to be sphérioalu( 0; 6,, = 0) (Table ). radiance, and field-measured LAl were used in the verifica-

The output is nadir reflectance in the 400-2500-nm range witfign Process. The training and checking data sets included re-
spectral resolution of 5 nm. The reflectance was integrated ifftgctances in the green, red, NIR, and middle-infrared (MIR)
Landsat ETM+ bands with the sensor spectral response fufiBectral region as well as computed NDVI (Table |1l for data-
tion. Four LUTs were constructed from the reflectance simul@ase 1). The green, red, NIR, and MIR band radiances were
tions for neural network training and prediction. also used for the training and checking of database 2. [NDVI
The second database was based on the TOA radiance. In of@leflatabase 2 was calculated using red and NIR radiances fol-
to explicitly model the physical state of the land surface, the su@wing (1).] The R-square value and rms error (RMSE) were
face bidirectional reflectance distribution function (BRDF) wasalculated for different scenarios and SRI for each band combi-
used in this paper. Earlier studies [46], [47] found significaritation. We did not exhaust all possible band combinations, but
differences between radiances at TOA over natural surfaces gitlevaluate the most commonly used bands.
their Lambertian model equivalent, even though their albedosThe computations were performed using the Splus neural
were equal. Other studies [48], [49] that investigated the intaretwork tool [53]. After identifying the best band combination,
actions between the atmosphere and an underlying non-Lamiibe- training process was conducted with the corresponding
tian surface also found that the use of the Lambertian assurbp}T and field measurements were used for verification. The
tion could result in a considerable amount of error in an upwahgst band combination was used to map LAl from the ETM+
radiance calculation from satellite. imagery.

C. Creating the Databases



FANG AND LIANG: RETRIEVING LEAF AREA INDEX WITH A NEURAL NETWORK METHOD: SIMULATION AND VALIDATION 2057

TABLE Il
COMPARISON OF R-SQUARE AND RMSE FOR DIFFERENT NEURAL NETWORK SCENARIOS AND THE APPLICATION OF THE SRI.
BAND COMBINATIONS USING SURFACE REFLECTANCESSIMULATED FROM MCRM

SN1 SN2 SN3 SRI
BAND COMBINATION R RMSE R RMSE R RMSE R’ RMSE
2,3 0.4023 1.6349  0.2101 2.7 0.6075 1.6784  0.5522 1.6389
2,4 0.7722 1.032 0.6236 1.7824  0.8361 0.725 0.7536 1.6655
2,5 0.1054 23065  0.0161 42217 0.0447 21306  0.0139  2.0362
2, NDVI 0.7459 11813 0.7264 1.087 0.7196 12436  0.7378  0.9916
3,4 0.8081 1.1332  0.6816 13071  0.8137 09254 08015  0.8095
3,5 03062  2.6583  0.0245  3.1032  0.0716 20174  0.1333 1.9811
3, NDVI 0.8013 1.1285  0.7383 11772 0.8101 0.9192  0.7952  0.8508
4,5 0.6078 19.161 0.7158 18.095  0.7803 37898  0.8196  4.9209
4, NDVI 0.8115 1.1009  0.7967  0.9494 0.816 0.8942  0.8021 0.8048
5, NDVI 0.5332 2.145 0.0261 32974 0.5214 17316 0.5452 1.5214
2,3,4 0.4571 12638  0.7709  0.9387  0.7925  0.9132  0.7742  0.9551
2,3,5 0.3488  20.071 0.0401 9.285 0.2154 3.651 0.0581 5.3729
2,3, NDVI 0.561 14124 0.7399 1.0352  0.7319 13805 0.7597  0.9063
2,4,5 0.0552 14559  0.0725 13.155  0.0151 11.36 0.2765 17.423
2,4, NDVI 0.2106 27003  0.0901 26999  0.8247  0.8444 0.745 1.066
2,5, NDVI 0.6934 1.6588 03775 20413  0.4265 17554  0.4953 1.5194
3,4,5 0.0038 40357 03078  32.144  0.0689 12.806  0.5972 19.22
3,4, NDVI 0.8071 1.106 0.7996  0.9806  0.8141  0.9019  0.805]  0.8022
3,5, NDVI 0.051 87336 03346  2.1553 02037  2.0226 03095  2.6856
4,5,NDVI 0.6387  31.337  0.0377 2.28 0.0705  7.1147  0.2002 27.52
2,3,4,5 0.029 26226  0.2964 10917  0.1435 52947 03338  7.2955
2,3,4,NDVI 0.3378 14478 0.2846 2.7 0.0042  2.7001 0.6949 1.2642
2,3,5, NDVI 02933 64625 03254 22912 0.0002 20724  0.7848 1.2787
2,4,5,NDVI 0.5788 1.6387 05299 20077  0.6317 84994  0.0872  27.467
3,4,5, NDVI 0.7551 18.533  0.4793 25.14 0.0916 1.8153  0.7141 3.2424

2,3,4,5, NDVI 0.2053 18.157 0.0818 12.027 0.145 6.5945 0.159 2.6857

IV. RESULTS AND ANALYSIS Table Ill results, there is no combination for SN1 whose RMSE
is less than 1.5. This implies that SN1 may not be appropriate
o for TOA radiance calculation. In addition, only one RMSE

In Table lll, all RMSE< 1.0 are italicized. ForSNl,aIIoftheWas less than 1.5 for the TOA radiance with SN2. This is

RMSEs are greater than 1.0. For SN2, three combinations h?l\()? . . :
) : J surprising, since the laboratory-measured soil reflectance
an RMSE< 1.0, while for SN3, six band combinations had tha&id not fully represent actual field conditions. Errors were

value. The best results were observed for the SRI that had sean

RMSE < 1.0. Including NDVI improved the retrieval accuracya SO introduced because database 2 was calculated from an

to some extent. For example, ti#/RMSE for the band com- empirica_l (10). For SN3, there is only one combination .(4’

binations of (2, 3), (2, 4), and (2, 5) are 0.55/1.64, 0_75/1'651,DVI) W|th an RMSE < 1.5. The best results were seen with

and 0.01/2.04, whil&?/RMSE for (2, 3, NDVI), (2, 4, NDvI), the combination of band 4 (NIR) and NDVIR¢ = 0.74,

and (2, 5, NDVI) are 0.76/0.91, 0.75/1.07, and 0.50/1.52. BRMSE = 1.17) for SRI, which suggests this band combination

cause NDVI incorporates the information content of bandssiould be used for estimating LAI from TOA radiance. These

and 4, theR2/RMSE of (3, 4) and (3, 4, NDVI) were almostesults may be explained by the fact that visible bands are

the same. In addition, the introduction of green band (i.e., bagignificantly affected by atmospheric conditions, while infrared

2) did not improve the results. TH&?/RMSE for (3, NDVI) and bands are not. Moreover, NDVI is not significantly affected by

(4, NDVI) decreased from 0.80/0.85 and 0.80/0.80 to 0.76/0.@dmospheric effects because these factors are normalized out

and 0.75/1.07 when band 2 was used. Moreover, poor resittshe process of its calculation [54].

(RMSE > 1.0) were obtained when band 5 was used, and unacSimilar to database 1, the results were very poor when the

ceptable results occurred when more than four bands (NDVI@smbination used more than four bands. The effect of adding

a separate band) were used. NDVI varies with different band combinations. For most cases,

. . using NDVI did not improve the results. The introduction of

B. LAl Retrieval From ETM+ Raw Radiance green band radiance deteriorated the results to some extent and
The results of LAl retrieval from the ETM+ raw radiance ar¢he effect of band 5 was also negative—all RMSHEL..5 when

displayed in Table IV (RMSK 1.5 are italicized). Similar to band 5 was used.

A. LAl Retrieval From ETM+ Surface Reflectance
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TABLE IV
SAME TO TABLE lll, BUT USING TOA RADIANCE IN BAND COMBINATIONS

SNI SN2 SN3 SRI
BAND COMBINATION R’ RMSE R’ RMSE R’ RMSE R? RMSE
2,3 0.1700  5.2625 0.0223  40.4603 0.0822  67.5674  0.0438  29.2868
2,4 0.0391 2.0105 0.0002 23056  0.0648  2.1652 0.1048 2.2036
2,5 0.0702  4.3581 0.0712  3.0718  0.0690 2.3562 0.0816  2.2777
2, NDVI 0.5557 21632 0.5397 243915 02150  22.6303 0.4674 3.4295
3,4 0.4003 2.1518  0.6235 1.3118  0.6955 1.6551 0.4408 1.7748
3,5 0.0052  2.2525 0.0312 2.8464  0.0826 2.6193 0.0159 2.3495
3, NDVI 0.6699 1.9020  0.5193 2.4603 0.5755 1.8780  0.3285 1.9902
4,5 0.0090  6.0347 0.0027 56974  0.0174  7.4843 0.0004  55.4644
4, NDVI 0.2131 23706  0.6385 1.5869  0.7372 1.2019  0.7442 1.1701
5, NDVI 0.0010  2.1486  0.0307 2.6477 0.0303 2.5607 0.0603 2.6699
2,3,4 0.0156 1.7759  0.0121 2.0391 0.0568 1.7057 0.0012 1.9701
2,3,5 0.0307  4.0950  0.0040  5.3889  0.0833  84.7633 0.0932 3.0354
2,3, NDVI 0.0891 29434  0.6875 11.2830 04711  75.9847 0.0447  68.7834
2,4,5 0.0479  5.3905 0.0694 44210  0.0885 45779  0.0079 49147
2,4, NDVI 0.5549 22269 04978 26760  0.6466  3.9618 0.6875 2.8680
2,5,NDVI 0.0219 174510 04069  9.7468 0.0049 8.7707 0.5951  10.6470
3,4,5 0.0462  6.0392  0.0094 49709  0.0098 112123 0.0013 5.5459
3,4,NDVI 0.6377 1.8139  0.5693 1.7601 0.3793 1.7854  0.5496 1.7832
3,5, NDVI 0.0180  5.5558  0.1570 1.9513 0.6091 1.6705 0.5330 1.4873
4,5,NDVI 0.0000 43379  0.0021  27.1991 0.5849 1.9930  0.5401 3.0628
2,3,4,5 0.0659  5.1442  0.1017 37472 0.0097 6.4394  0.1030  3.4869
2,3,4, NDVI 0.1840 25507  0.1762  2.0701 0.3513  15.2807 0.0490  2.4762
2,3,5,NDVI 0.1361 5.8437  0.0120 162.7613 0.0383 159.8680  0.0343 108.8274
2,4,5, NDVI 0.0148  6.0143  0.1189  44.0487 0.0681  55.9402 0.5703  59.6755
3,4,5 NDVI 0.0615 54126 0.4532  80.8209  0.0944  45.6471 0.2572  37.4586
2,3,4,5, NDVI 0.0001 4.6033 0.0014 457972 0.0001 129.6289 0.0086  28.8632

For SN2, SN3, and SRI, database 1 performed much betstimating LAIl. The constant soil reflectance approach in SN3
than database 2. It is not surprising that LAI could be better eslso performs well £ = 0.814, RMSE = 0.925). The NN
timated from atmospherically corrected surface reflectance datathod tends to underestimate LAl for both SN1 and SN2.
than from raw TOA radiances. Similar results were reported lysing SN1 seems unrealistic, and SN2 is not representative for
[15], which used both reflectance and radiance to calculated \fiés study area. Although Kuusk [55] mentioned that MCRM
and found that the LAI-VI relationships based on reflectaneceay not work well for forests, most of the retrieved forest
data were stronger than those based on radiance data. In ltits agreed well with the field-measured green LAls (Fig. 4).
analysis, a perfect atmospheric correction has been assuretbng the four options, the largest deviation is seen in SN2
for database 1. Yet, if it is believed that atmospheric correfFig. 4).
tion introduced large uncertainties to the surface reflectance, thé&rrors caused by model simulation, sensor calibration, or
second scheme might be a better solution. measurement should be taken into account. To test the sensi-

The best results were obtained from (3, 4) in database 1 wiihity of the neural network approach to uncertainty in the input
the SRI method. Therefore, Landsat ETM+ reflectances in theflectance, three bias level&15%, £10%, and+5%) were
red and NIR were picked to map LAI with the trained NN. Thgenerated for evaluation. The relative errors were added to
strategy behind this selection was based on choosing the libstETM+ surface reflectance and TOA radiance dataset. The
R? and RMSE as well as considering computation efficiencyelative R2 and RMSE differences were calculated between the
This result was also obtained by [28]. All simulated points in thieiased and the original datasets
LUT were used to train the NN that was then applied to Landsat
ETM+ red and NIR reflectances to predict LAL. (R'—R)/R

C. Validation whereR, andR’ are theR? or RMSE obtained using the orig-
inal and biased datasets, respectively. Table V lists the relative
To validate the proposed approach, the NN-derived LAIB? and RMSE differences using SRI. This table includes those
were compared with field measurements. Fig. 3 shows that thend combinations that performed well—bands 3 and 4 for sur-
SRI method performs wellR?> = 0.801, RMSE = 0.811) in face reflectance and 4, NDVI for TOA radiance.
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Fig. 3. Comparison of LAI-NN with field LAI. LAI-NN is estimated from the Landsat ETM+ images with the neural network methods for four different soil
backgrounds (options). (a) SN1, (b) SN2, (c) SN3, and (d) 8RI.R square. Symbols: May 111), October 2 (O) 2000, April 28 ), and August 24) 2001.
The solid line is the 1:1 line, and the dashed one the regression line.
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Fig. 4. Comparison of retrieved forest LAI-NN values from SN1),(SN2

intercepts of the dashed lines atd.

R? are much lower than the original values for different bias
levels. The RMSE is lower at low noise levels but increases
quickly when the noise increases. This is an indication that
using TOA radiance maybe unrealistic for LAl estimation if

there are too many uncertainties.

D. LAI Mapping

NN training results from the SRI (Fig. 3) were used to es-
timate LAI for four Landsat ETM+ images (Fig. 5). The May
11 and October 2, 2000 images are 54512 and 600x 600
pixels, respectively. The April 28 and August 2, 2001 images are
both 300x 300 pixels. In Fig. 5, white areas were either bare
land or roads, and the gray-white areas were construction sites.
The LAI of most crops and forests were between 2 to 6. The LA
maps correspond well with local landscape characteristics. Sta-
tistics from the LAl maps are shown in Table VI. May 11, 2000
and August 2, 2001 have the highest mean LAl values. The LAI
standard deviation of May 11, 2000 is greater than that of Au-
(€), SN3 (), and the SRI (), respectively, with field-meausred LAI. The gst2 2001, which may be due to variability caused by differing
planting and emergence dates. Most areas have LAI values less
than 4.0 (Table VI). However, some dark pixels on the April 28,

For the surface reflectance, tie? nearly keeps constant2001 LAI-NN map were dense grasses with a LAI-NN greater
across different noise levels. The RMSE values are lowerthin 6.0. Because this method was seen to provide accurate es-
low noise levels and are a little biased when the absolute biasiesates of vegetation amount throughout the growing season, it
are greater than 10%. This indicates that our approach is v&believed that this approach could be applied to a large area
robust to different reflectance noise levels and thus it lenftsr regional LAI mapping. Fig. 6 provides an example of this
itself to practical applications. On the other hand, the noise hagplication and is valuable for comparison with LAl products
significant effects on LAI estimated from TOA radiance. Alfrom other sensors such as MODIS or MISR.
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Fig. 5. LAI maps generated with the neural network method. (a) May 11, 2000. (b) October 2, 2000. (c) April 28, 2001. (d) August 2, 2001.

databases to test estimating LAl from atmospherically correctidl reflectance.

TABLE V
RELATIVE R? AND RMSE DFFERENCES FORDIFFERENT BIAS LEVELS. BAND (3, 4) WAS USED FOR SURFACE
REFLECTANCE AND (4, NDVI) FOR TOA RADIANCE

Bias levels -15% -10% -5% +5% +10% +15%
3.4) R* | 0.0034 0.0035 0.0021 -0.0026 -0.0045 -0.0053
RMSE | 0.1282 -0.0051 -0.0521 0.1711 0.4091 0.6973
(4,NDVI) R* | -0.9219 -0.8547 -0.7469 -0.6293 -0.7174 -0.7729
RMSE | 0.8336 0.7151 0.6228 1.3337 3.2187 6.1858
V. SUMMARY

models. A soil reflectance index was proposed to account for
This paper has demonstrated how the neural network mettsmdl background reflectance. To define the SRI, the shape of the
can be used to retrieve LAI from the Landsat-7 ETM+ surfacmil-line in the red—NIR spectral space is needed. SRI minimizes
reflectance and TOA radiance. The NN was trained with twihe number of parameters involved in computing the soil spec-

surface reflectance (database 1) and raw TOA radiance (data©ur results show that LAl can be obtained through the NN
base 2). Database 1 was constructed with a canopy RT moalgproach from both surface reflectance and TOA radiance. The
and database 2 with the combined atmospheric and canopy®ifputs were compared with field-measured LAI datasets from



FANG AND LIANG: RETRIEVING LEAF AREA INDEX WITH A NEURAL NETWORK METHOD: SIMULATION AND VALIDATION

TABLE VI

2061

STATISTICS OF THELAI-NN ESTIMATED FROM THE FOUR ETM+ REFLECTANCES

DATES MINIMUM MAXIMUM

MEAN LAI

LAI<4 PIXELS
(%)

STANDARD
DEVIATION

May 11, 2000
Oct 2, 2000
Apr 28, 2001
Aug 2, 2001

0.0
0.0
0.0
0.0

6.39
6.44
6.22
8.81

2.28

1.54

1.57
2.26

1.31
0.76
0.68
0.97

91.43
99.5

99.45
98.15

10
1500

1000

(1]

, o [2]

500

Lia [3]

sl @

(5]

1500

Fig.6. LAldistribution estimated using the proposed approach with ETM+ for [6]
April 28, 2001 over the Washington, DC area. White box shows the Fig. 5(c)
area. Size: 150& 1500 pixels.

(7]

four different dates. The surface reflectance approach resulted
in an R? = 0.801 and RMSE= 0.811 using input bands 3 and
4. When the TOA radiance of band 4 and NDVI were used,
the results were not as goo#? = 0.74, RMSE = 1.17. Es-
timating LAI from TOA radiance does, however, have the ad- 8]
vantage of avoiding performing a complicated atmospheric cor-
rection process. In general, bands 3 and 4 are recommended for
estimating LAI from ETM+ surface reflectance, while band 4 [g]
and NDVI are recommended if TOA radiance is used. The sen-
sitivity experiment showed that our approach is very robust, es-
pecially when surface reflectance is used. [10]
Extension of this method to other satellite data sources of
different spatial resolutions is currently underway. LAI resultsi 1
derived from the high-resolution ETM+ image could be used
to validate LAl products from low-resolution sensors (e.g.,;;,
MODIS, MISR, and POLDER). There are several areas tha&
need improvement in the future. The soil line was determined
from the whole image in this study, but it may be advantageouglsl
to construct different soil lines from different parts of the image,
especially when very complicated landscape exists. In multiplél‘”
viewing angles simulations, soil reflectance is a very crucial
parameter [13], and the significance of SRI needs furthell5]
evaluation. Finally, more tests are needed to determine the best
band combinations for application to new sensor systems.
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