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Abstract: Accurate segmentation of magnetic resonance (MR) images of the brain is of interest in the study of many
brain disorders. In this paper, we provide a review of some of the current approaches in the tissue segmentation of MR
brain images. We broadly divided current MR brain image segmentation algorithms into three categories: classification-
based, region-based, and contour-based, and discuss the advantages and disadvantages of these approaches. We also
briefly review our recent work in this area. We show that by incorporating two key ideas into the conventional fuzzy c-
means clustering algorithm, we are able to take into account the local spatial context and compensate for the intensity
nonuniformity (INU) artifact during the clustering process. We conclude this review by pointing to some possible future

directions in this area.
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1. INTRODUCTION

Magnetic resonance imaging (MRI) provides rich three-
dimensional (3D) information about the human soft tissue
anatomy [1]. It reveals fine details of anatomy, and yet is
noninvasive and does not require ionizing radiation such as
x-rays. It is a highly flexible technique where contrast
between one tissue and another in an image can be varied
simply by varying the way the image is made. For example,
by altering radio-frequency (RF) and gradient pulses, and by
carefully choosing relaxation timings, it is possible to
highlight different components in the object being imaged
and produce high contrast images. The rich anatomy
information provided by MRI has made it an indispensable
tool for medical diagnosis in recent years

Applications that use the morphologic contents of MRI
frequently require segmentation of the image volume into
tissue types. For example, accurate segmentation of MR
images of the brain is of interest in the study of many brain
disorders. In multiple sclerosis, quantification of white
matter lesions is necessary for drug treatment assessment [2].
In  schizophrenia, epilepsy or Alzheimer’s disease,
volumetric analysis of gray matter (GM), white matter (WM)
and cerebrospinal fluid (CSF) is important to characterize
morphological differences between subjects [3, 4, 5-8]. Such
studies typically involve vast amount of data. Currently, in
many clinical studies segmentation is still mainly manual or
strongly supervised by a human expert. The level of operator
supervision impacts the performance of the segmentation
method in terms of time consumption, leading to infeasible
procedures for large datasets. Manual segmentation also
shows large intra- and inter-observer variability, making the
segmentation irreproducible and deteriorating the precision

*Address correspondence to this author at the Department of Computer
Science and Engineering, The Chinese University of Hong Kong, Shatin,
Hong Kong; E-mail: wcliew@cse.cuhk.edu.hk; ityan@cityu.edu.hk

1573-4056/06 $50.00+.00

of the analysis of the segmentation. Hence, there is a real
need for automated MRI segmentation tools.

The automatic segmentation of MR images has been an
area of intense study [9, 10]. However, this task has proven
problematic, due to the many artifacts in the imaging
process. In this paper, we review some of the current
approaches in the tissue segmentation of MR brain images.
We provide a mathematical formulation of the MRI
segmentation problem, and an overview of various MRI
segmentation methods, which we have broadly divided into
three categories: classification-based, region-based, and
contour-based. Then, we provide a discussion of our own
work in this area, and provide some experimental results
indicating the superior performance of our approach. We
conclude this review by pointing out some possible future
directions.

2. MAGNETIC RESONANCE IMAGING

Magnetic resonance imaging is an imaging technique
used primarily in medical settings to produce high quality
images of the inside of the human body. In MRI, the image
is a map of the local transverse magnetization of the
hydrogen nuclei. This transverse magnetization in turn
depends on several intrinsic properties of the tissue. In this
section, we give a brief description of the principles of MR
imaging, the readers are referred to [11, 12] for further
details. MRI is based on the principles of nuclear magnetic
resonance (NMR). The NMR phenomenon relies on the
fundamental property that protons and neutrons that make up
a nucleus possess an intrinsic angular momentum called
spin. When protons and neutrons combine to form nucleus,
they combine with oppositely oriented spins. Thus, nuclei
with an even number of protons and neutrons have no net
spin, whereas nuclei with an odd number of protons or
neutrons possess a net spin. Hydrogen nuclei have an NMR
signal since its nucleus is made up of only a single proton
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and possess a net spin. The human body is primarily fat and
water, which have many hydrogen atoms. Medical MRI
primarily images the NMR signal from the hydrogen nuclei
in the body tissues.

The net spin of the nucleus around its axis gives it an
angular moment. Since the proton is a positive charge, a
current loop perpendicular to the rotation axis is also created,
and as a result the proton generates a magnetic field. The
joint effect of the angular moment and the self generated
magnetic field gives the proton a magnetic dipole moment
parallel to the rotation axis. Under normal condition, one
will not experience any net magnetic field from the volume
since the magnetic dipole moments are oriented randomly
and on average equalize one another.

When placed in a magnetic field, a proton with its
magnetic dipole moment precesses around the field axis. The
frequency of this precession, vy, is the resonant frequency of
NMR and is called the Larmor frequency. The precession
frequency is directly proportional to the strength of the
magnetic field, i.e.

Vo = @B 1)

where B, is the main magnetic field strength, and g is a
constant called gyromagnetic ratio which is different for
each nucleus (42.56 MHz/Tesla for protons).

Given a specimen, the application of a magnetic field By
would create a net equilibrium magnetization My per cubic
centimeter, which is aligned to the By field. The My is the net
result of summing up the magnetic fields due to each of the
H nuclei and is directly proportional to the local proton
density (or spin density). However, My is many orders of
magnitude weaker than By and is not directly observable. By
tipping My away from the By field axis with an appropriate
RF pulse having a frequency equals to the Larmor frequency,
a longitudinal magnetization component M, and a transverse
magnetization component My is produced. When the RF
pulseis turned off, the longitudinal magnetization component
M, recovers to M, with a relaxation time T;, and the
transverse magnetization component M; dephases and
decays to zero with a relaxation time T, . During relaxation,
the protons lose energy by emitting their own RF signal with
the amplitude proportional to M+. This signal is referred to as
the free-induction decay (FID) response signal. T, indicates
the time constant required for the FID response signal from a
given tissue type to decay. The FID response signal is
measured by an RF coil placed around the object being
imaged.

To obtain a 3D MR image, the positional information
about the tissues must be recorded. This involves isolating
the source of each component of the MR signal to a
particular voxel using the technique of spatial encoding. In
MR imaging, spatial encoding is achieved by performing
slice selection in one direction (e.g. the z-axis), frequency
encoding in another direction (e.g. the x-axis), and phase
encoding in the third direction (e.g. the y-axis). In slice

! The actual decay time constant, T,", is much shorter than T, due to the constant field
offset caused by the magnetic field inhomogeneity in By, in addition to just the random
spin-spin interaction in pure T, decay.
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selection, an RF excitation pulse with a narrow bandwidth is
applied in the presence of a z-axis linear gradient field. Since
the resonance frequency of a proton is proportional to the
applied magnetic field, the presence of a gradient field
means that only a narrow slice in the body will have a
resonant frequency within the bandwidth of the RF pulse.
Only the magnetization in this slice would be tipped by the
RF pulse and produce the MR signal.

In the imaging sequence a phase encoding gradient is
applied for a short interval after the slice selection gradient.
When this is applied along the y-axis, the local
magnetization is marked with a phase offset proportional to
its y-position. Once the phase encoding gradient pulse is
turned off, a frequency encoding gradient pulse is turned on.
The frequency encoding gradient causes the precession of
the local magnetization to vary linearly along the x-axis.
Data acquisition then completes one phase-encoding step.
The full two-dimensional (2D) image acquisition typically
requires 128 or 256 phase-encoding steps, where for each
step, the amplitude of the y gradient is increased in a regular
fashion. The phase encoding and frequency encoding
processes fill up the k-space with data. Each horizontal line
in the k-space is obtained by readout during frequency
encoding from one phase encoding step. The MR image is
finally obtained by applying 2D inverse Fourier transform to
the k-space data. In some cases, the k-space is sampled non-
uniformly or portion of the k-space data is missing. Then
more sophisticated techniques would be needed to
reconstruct the image from incomplete information [13-15].
A 3D image can be obtained from many consecutive 2D
slices.

A quantitative description of the MR signal produced by
a particular tissue depends on at least three intrinsic tissue
parameters: the proton density, which determines My, and the
relaxation times T; and T,. For example, at a magnetic field
of 1.5T, T, » 900ms for GM, T; » 700ms for WM, and T; »
4000ms for CSF. For the T, relaxation process (which is
generally unrelated to the field strength), the time constants
are approximately: 70ms, 90ms, and 400ms for WM, GM,
and CSF, respectively [1].

When MR images are acquired, the RF pulse is repeated
at a predetermined rate. The period of the RF pulse sequence
is the repetition time, TR. The FID response signals can be
measured at various times within the TR interval. The time
between which the RF pulse is applied and the response
signal is measured is the echo delay time, TE. The TE is the
time when the spin echo occurs due to the refocusing effects
of the 180 degree refocusing pulse applied after a delay of
TE/2 from the RF pulse. The TR and TE control how
strongly the local tissue relaxation times, T; and T,, affect
the signal. By adjusting TR and TE the acquired MR image
can be made to contrast different tissue types.

3. THE MRI TISSUE SEGMENTATION PROBLEM

The task of image segmentation can be stated as the
partition of an image into a number of non-overlapping
regions, each with distinct properties. Using this definition,
an image A can be modeled as the union of ¢ homogeneous
regions Ay,
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A= U;A 2

where each homogeneous region is specified by the
representative properties py, for example, signal intensity,
and an additive, zero mean random noise component ny,

A (X, Y) = pi + Nk (3)

Each homogeneous region can consist of a single
connected component or a group of possibly disjoint
connected components of pixels with similar property. In (3),
we assume that py is spatial invariant. When noise is not
present or not severe, the segmentation task is
straightforward, since we only need to estimate px and we
have A¢ (X, y) = Ac. Complication arises when pi is not
spatial invariant but instead is a function of location, since
we now need a description of Ay (X, y) that is dependent on
the location (X, y).

MR image segmentation involves the separation of image
voxels into regions comprising different tissue types. Let x =
(%, Y, z) be the 3D image coordinate of a voxel. We assume
that each tissue class k has a specific feature value vy. For
example, v could be the signal intensities that correspond to
the tissue class being measured in the Ty, T,, or PD weighted
MR images. Then, the ideal signal o(x) would consist of
piecewise constant regions?, each having one of the v
values. Although this treatment is somewhat over-simplified
since there is often biological variation even within the same
tissue type, we assume that this intra-tissue biological
variation is not overwhelming for the segmentation task.

MR images are often degraded by different artifacts for a
variety of reasons. The artifact that is of major concern to
many MRI segmentation algorithms is the so-called intensity
non-uniformity artifact [16]. The INU artifact arises due to
inhomogeneity in the magnetic field, and manifests itself as
an unwanted low frequency bias term modulating the signal.
The cause is usually due to either a non-uniform B; field or a
non-uniform  sensitivity in the receiver coil. The
inhomogeneity could also be caused by the interaction of the
acquisition system with the patient such as RF attenuation.
RF coil field strength inhomogeneity can yield intensity
variations on the order of 10-20% in image amplitudes over
the patient volume on a 1.5T magnet. The problem becomes
even more pronounced at higher field strength. While such
variations usually have no effect on diagnostic accuracies,
they do cause significant problems for segmentation and
statistical clustering tasks that are based on voxel intensity
distributions. When such intensity variation becomes
significant compared to the image contrast, it can easily
affect the interpretation of an MR image.

The bias field that gives rise to the INU artifact in an MR
image is usually modeled as a smooth slow-varying
multiplicative field (see [17-22]). The image formation
process in MRI can thus be modeled as,

s(x) = o(x)b(x) + n(x) 4)

2 In practice, the limited resolution of the imaging device leads to blurring along border
regions between tissue classes, i.e., the partial volume effect. However, this effect is
confined to the border regions, in contrast to the more global INU artifact.
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where s(x) is the measured MR signal, o(x) is the true
signal emitted by the tissue, b(x) is the unknown smoothly
varying bias field, and n(x) is an additive noise assumed to
be independent of b(x). Accurate segmentation of an MR
image thus requires an accurate estimation of the unknown
bias field b(x) and removing this bias field from the
measured MR signal prior to or during segmentation. Using
the estimated b(x), the log-transformed true signal can be
recovered as

logd(x) = logs(x)- logb(x)
» log(o(x) +n(x)/B(x)) 2
Another MR imaging artifact that affects tissue

delineation is the partial volume averaging (PVA) artifact
[23-25]. PVA artifact occurs when multiple tissues are
present in one voxel due to the limited resolution of the
imaging device. The PVA artifact is particularly noticeable
in the extreme slices of MRI volumes. The intensity of a
voxel affected by PVA is a weighted average of the
intensities of the different tissues in the voxel, and fine
anatomical structures are lost in the image. PVA affects the
accuracy of delineation and volume estimation of different
tissue types, which could be critical in the diagnosis and
analysis of pathology.

All MR images are affected by random noise. The noise
comes from the stray currents in the detector coil due to the
fluctuating magnetic fields arising from random ionic
currents in the body, or the thermal fluctuations in the
detector coil itself. When the level of noise is significant in
an MR image, tissues that are similar in contrast could not be
delineated effectively, causing errors in tissue segmentation.

4. 3D MR BRAIN IMAGE TISSUE SEGMENTATION
TECHNIQUES

Brain tissue segmentation is usually concerned with the
delineation of 3 types of brain matters, i.e., GM, WM and
CSF. Because most brain structures are anatomically defined
by boundaries of these tissue classes, accurate segmentation
of brain tissues into one of these categories is an important
step in quantitative morphological study of the brain. In this
section, we give a succinct review of several different
approaches for MR brain image segmentation under three
broad algorithmic frameworks, namely, classification-based,
region-based, and contour-based approaches. A more detail
review of our own approach is also given in this section.

4.1. Classification-Based Segmentation

In classification-based segmentation, voxels are
classified and labeled as belonging to a particular tissue class
according to a certain criterion. The simplest technique is
based on thresholding [26-29]. Thresholding algorithm
attempts to determine a threshold value which separates the
desired classes. In [26], Suzuki and Toriwaki use iterative
thresholding to distinguish brain tissues from others in axial
MR slices. Starting at set values, thresholds for the head and
the brain are then iteratively adjusted based on the geometry
of resulting masks. Although thresholding algorithm is
simple and computationally very fast, it is very sensitive to
INU artifact and noise in MR images. The automatic
determination of a suitable threshold could be problematic if
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there is severe overlap between the intensities of different
tissue types due to noise and intensity inhomogeneities.

Instead of using simple thresholding in earlier
classification-based =~ segmentation  work,  statistical
classification based segmentation has been the method of
choice in more recent time. Statistical classification has the
advantage of being more robust, as well as having a rigorous
mathematical foundation in stochastic theory. In statistical
classification methods, the probability density function of
tissue intensity for different tissue classes are often modeled
parametrically as a mixture of Gaussians, usually one
Gaussian function per tissue class. In order to incorporate
local contextual information, Markov random field (MRF)
regularization is often employed as well. The MRF
regularization allows one to model the spatial interactions
between neighboring voxels. In [20], Wells et al. describe an
iterative method that interleaves classification with bias field
correction. The bias field estimation problem is cast in a
Bayesian framework and the expectation-maximization (EM)
algorithm is used to estimate the inhomogeneity and the
tissue classes. However, their method needs to be supplied
with the tissue class conditional intensity models, which are
typically constructed manually from training data. They also
did not consider neighborhood dependencies for the tissue
segmentation. In [30], Held et al. improved on Wells et al.’s
algorithm by using MRF to introduce context or dependency
among neighboring voxels. In [31, 32], Leemput et al.
propose to use a 3-step EM algorithm, which interleaves
voxel classification, class distribution parameter estimation,
and bias field estimation. Instead of using manually
constructed tissue class conditional intensity models, their
method employs digital brain atlas with a priori probability
maps for each tissue class to automatically construct
intensity models for each individual scan being processed.
The brain tissue classes are modeled as finite Gaussian
mixtures with MRF regularization to account for contextual
information and the bias field is modeled as a fourth order
least square polynomial fit. In [33], Rajapakse et al. also use
the Gaussian mixture to model the three brain tissue classes.
The biological variations of a particular tissue class are
accounted for in their statistical model by assuming that the
mean intensities of the tissue classes are slowly varying
spatial functions. The magnetic field inhomogeneities
modify both the mean tissue intensities and the noise
variances in a similar manner. To account for the smoothness
and piecewise contiguous nature of the tissue regions, they
use a 3D MRF as a prior. In [34], Desco et al. consider the
statistical segmentation of multispectral MR brain image. In
their work, the intensity distributions of the brain tissues are
again modeled as a mixture of Gaussians. They use a robust
version of the EM algorithm called logistic EM algorithm to
estimate the model parameters, and use MRF to incorporate
prior knowledge into the segmentation process.

Another major class of voxel classification techniques
uses clustering-based method. Clustering is a popular
unsupervised classification method and has found many
applications in pattern classification and image segmentation
[35-46]. Clustering algorithm attempts to classify a voxel to
a tissue class by using the notion of similarity to the class.
The fuzzy c-means clustering (FCM) algorithm has recently
been applied to MRI segmentation [9, 43-46]. Unlike the
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crisp k-means clustering algorithm [41, 42], the FCM
algorithm allows partial membership in different tissue class.
Thus, FCM can be used to model the PVA artifact, where a
voxel may contain multiple tissue classes [44]. A method of
simultaneously estimating the INU artifact and performing
voxel classification based on fuzzy clustering has been
reported in [45], where intermediate segmentation results are
utilized for the INU estimation. The method uses a modified
FCM cost functional to model the variation in intensity
values and the computation of the bias field is formulated as
a variational problem. However, in conventional FCM
clustering algorithm, there is no consideration of spatial
context between voxels since the clustering is done solely in
the feature space. We have recently proposed a novel
adaptive fuzzy clustering algorithm for MRI segmentation
that takes into account both the INU artifact and the spatial
correlation between neighboring pixels [46]. A more detail
description of the ideas in our clustering-based MRI
segmentation algorithm will be given in Section 4.5.

4.2. Region-Based Segmentation

The shape of an object can be described in terms of its
boundary or the region it occupies. Image region belonging
to an object generally have homogeneous characteristics, e.g.
similar in intensity or texture. Region-based segmentation
techniques attempt to segment an image by identifying the
various homogeneous regions that correspond to different
objects in an image. Unlike clustering methods, region-based
methods explicitly consider spatial interactions between
neighboring voxels. In its simplest form, region growing
methods usually start by locating some seeds representing
distinct regions in the image [47, 48]. The seeds are then
grown until they eventually cover the entire image. The
region growing process is therefore governed by a rule that
describe the growth mechanism and a rule that check the
homogeneity of the regions at each growth step.

Region growing technique has been applied to MRI
segmentation [49-51]. In [49], a semi-automatic, interactive
MRI segmentation algorithm was developed that employ
simple region growing technique for lesion segmentation. In
[50], an automatic statistical region growing algorithm based
on a robust estimation of local region mean and variance for
every voxel on the image was proposed for MRI
segmentation. The best region growing parameters are
automatically found via the minimization of a cost
functional. Furthermore, relaxation labeling, region splitting,
and constrained region merging were used to improve the
quality of the MRI segmentation. The determination of an
appropriate region homogeneity criterion is an important
factor in region growing segmentation methods. However,
such homogeneity criterion may be difficult to obtain a
priori. In [51], an adaptive region growing method is
proposed where the homogeneity criterion is learned
automatically from characteristics of the region to be
segmented while searching for the region.

Other region-based segmentation techniques, such as
split-and-merge based segmentation [52] and watershed-
based segmentation [53, 54] have also been proposed for
MRI segmentation. In the split-and-merge technique, an
image is first split into many small regions during the
splitting stage according to a rule, and then the regions are
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merged if they are similar enough to produce the final
segmentation. In [53], Sijbers et al. used the watershed
algorithm to segment MR images. In the watershed-based
segmentation, the gradient magnitude image is considered as
a topographic relief where the brightness value of each voxel
corresponds to a physical elevation. An immersion based
approach is used to calculate the watersheds. The operation
can be described by imagine that holes are pierced in each
local minimum of the topographic relief. Then, the surface is
slowly immersed in water, which causes a flooding of all the
catchment basins, starting from the basin associated with the
global minimum. As soon as two catchment basins begin to
merge, a dam is built. The procedure results in a partitioning
of the image in many catchment basins of which the borders
define the watersheds. To reduce over-segmentation, the
image is smoothed by 3D adaptive anisotropic diffusion
prior to watershed operation. Semi-automatic merging of
volume primitives returned by the watershed operation is
then used to produce the final segmentation.

4.3. Contour-Based Segmentation

Contour-based segmentation approach assumes that the
different objects in an image can be segmented by detecting
their boundaries. Whereas region-based techniques attempt
to capitalize on homogeneity properties within regions in an
image, boundary-based techniques rely on the gradient
features near an object boundary as a guide. Hence, contour-
based segmentation methods that rely on detecting edges in
the image is inherently more prone to noise and image
artifacts. Sophisticated pre- and post-processing is often
needed to achieve a satisfactory segmentation result. The
simplest contour-based technique is edge detection. MR
image segmentation based on edge detection has been
proposed in [55], where a combination of Marr-Hildreth
operator for edge detection and morphological operations for
the refinement of the detected edges is used to segment 3D
MR images. In [56], a boundary tracing method is proposed,
where the operator clicks a pixel in a region to be outlined
and the method then finds the boundary starting from that
point. The method is, however, restricted to segmentation of
large, well defined structures, but not to distinguish fine
tissue types. Edge-based segmentation methods usually
suffer from over or under-segmentation, induced by
improper threshold selection [57]. In addition, the edges
found are usually not closed and complicated edge linking
techniques are further required.

Another approach for contour-based segmentation is
based on the deformable templates or active contours [58-
63]. Active contour deforms to fit the object’s shape by
minimizing (among others) a gradient dependent attraction
force while at the same time maintaining the smoothness of
the contour shape. Thus, unlike edge detection, active
contour methods are much more robust to noise as the
requirements for contour smoothness and contour continuity
act as a type of regularization. Another advantage of this
approach is that prior knowledge about the object’s shape
can be built into the contour parameterization process.
However, active contour based algorithms usually require
initialization of the contour close to the object boundary for
it to converge successfully to the true boundary. More
importantly, active contour methods have difficulty handling
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deeply convoluted boundary such as CSF, GM and WM
boundaries due to their contour smoothness requirement.
Hence, they are often not appropriate for the segmentation of
brain tissues. Nevertheless, it has been applied successfully
to the segmentation of intracranial boundary [60], brain outer
surface [61], and neuro-anatomic structures in MR brain
images [62].

4.4, Other Approaches

There are segmentation algorithms that attempt to
incorporate knowledge about brain anatomy into the
segmentation process. Such knowledge-based a priori
information, if applied appropriately, can significantly
improve the accuracy of the final segmentation results.
Atlas-guided segmentations are a powerful tool for MRI
segmentation when a standard atlas or template is available.
The atlas is generated by compiling information on the
anatomy that requires segmentation. This atlas is then used
as a reference frame for segmenting new images. Atlas-based
methods view the segmentation problem as a registration
problem. The basic tenet of these techniques is that a
transformation can be found that registers one image volume
(called the reference or the atlas) in which structures of
interest have been labeled to the volume to be segmented
[64]. If such a transformation can be computed, regions
labeled in the atlas can simply be projected onto the volume
of interest. A difficulty with the atlas approach is to
determine an accurate and robust registration, especially for
complex structures. This problem is non-trivial owing to the
anatomical variability. Thus, atlas-guided segmentations are
generally better suited for segmentation of structures that are
stable over the population of study.

Atlas guided approaches have been applied in MR brain
imaging for segmentation of various structures [65], as well
as for extracting the brain volume from head scans [66].
Avrata et al. [67] registered individual patient data sets to an
atlas to determine inter-patient variability. Dawant et al. [64]
used a global transformation of an atlas data set in
combination with free-form transformations to segment MR
images. In [68], a probabilistic atlas is used to model the
anatomical variability in MR brain images.

Machine learning approach such as artificial neural
networks (ANNSs) has also been used in MRI segmentation
[43, 69-72]. ANNs are parallel networks of processing
elements or nodes that simulate biological learning. Each
node in an ANN is capable of performing elementary
computations. Learning is achieved through the adaptation of
weights assigned to the connections between nodes. Because
of the many interconnections used in neural network, spatial
information can be easily incorporated into its classification
procedures. The availability of an efficient learning
algorithm and a representative learning set are the main
concern of machine learning-based approaches.

4.5. A Novel FCM-based Adaptive Segmentation Method

We have recently proposed an FCM-based adaptive MRI
segmentation algorithm that addresses both the INU artifact
and the local spatial context [46]. Our approach contains two
key ideas: (1) we incorporate the local spatial context into
the FCM algorithm using a novel dissimilarity index in place
of the usual distance metric; and (2) we make the cluster
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prototype spatially varying by applying a 3D multiplicative
bias field to it.

At the core of our algorithm is the FCM clustering
algorithm. The FCM clustering algorithm assigns a class
membership to a data point, depending on the similarity of
the data point to a particular class relative to all other classes
[35]. In term of image segmentation, the FCM procedure is
able to perform soft segmentation, where pixels or voxels
can be classified into more than one classes with varying
degree of membership. This behavior is beneficial for MR
image segmentation, since noise and PV effect make the
exclusive assignment of voxels to distinct classes
undesirable.

The conventional FCM algorithm is formulated as the
minimization of the objective functional Jgcy With respect to
the membership values U and cluster centroids V,
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where the matrix U = {uy} is a fuzzy c-partition of S, V
={Vy, Va,..., Vo} is the set of fuzzy cluster centroids, mi (1,¥)
is the fuzzy index, c is the total number of clusters, and uy
gives the membership of pixel s(x) in the k-th cluster cy.. The
distance metric d% = [|s(x) - vi||* in (6) measures the vector
distance of a feature vector from a cluster centroid v in the
feature space.

In the conventional FCM formulation, each class is
assumed to have a constant value as given by its centroid.
Each data point is also assumed to be independent of every
other data point and independent of their spatial coordinates.
However, for MR images, there is strong correlation between
neighboring voxels. For example, neighboring voxels would
be similar in attributes if they belong to the same sub-volume
from one tissue type and are generally not independent of
each other. The incorporation of local spatial interaction
between adjacent voxels in the fuzzy clustering process can
produce more meaningful classification, as well as help to
resolve classification ambiguities due to overlap in intensity
value between clusters or due to noise corruption. In
addition, due to the INU artifact, the data in a class no longer
have a constant value but is dependent on its spatial position
in the image. Therefore, to produce meaningful
segmentation, the conventional FCM algorithm has to be
modified to take into account both the local spatial context
between neighboring voxels and the INU artifact.

Our idea of incorporating local spatial context into the
FCM algorithm is to replace the distance metric d? in (6) by
a novel dissimilarity index Dy, [38]. Let Ap denote a chosen
3D local neighborhood configuration with respect to a center
voxel r. Let dist(ab) = Jla- bl’ denote the L, distance between
vectors a and b. For every pixel s(x) in the 3D MR image,
we define the following L, distances,

Ty = dist(s(x).s(¥)), s A, ()
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die = dist(s(X), Vi), ®)

where A, is the neighborhood of s(x) and v, is the
centroid of the k-th cluster. The first distance metric T
measures the dissimilarity of the pixel s(x) and its neighbor
s(y). The second distance metric dy, measures the affinity of
the center pixel s(x) to the cluster prototype vi. Taking all
voxels in A into account, the dissimilarity index Dy, which
measures the dissimilarity between s(x) and the k-th cluster
centroid v, is defined as

1.
D, = Nk [, +dia 1) ©)
Ty

X

where YA ,Y is the cardinality of the neighborhood
configuration, and | (Yly) = | x, with ranges between zero and
one, is the weighting factor controlling the degree of
influence of the neighboring voxels s(y)l A, on the center
voxel s(x). The weighting factor provides a convex
combination of the two cluster affinity distances d, and dyy
in an adaptive manner, and is given by

L(M= ; (10)
1+e (1-m /s

where the parameters mand s specify the displacement of
| from zero, and the steepness of |, respectively. It is not
difficult to see that the new index Dy is adaptive to the local
image content, i.e., at genuine edges or object boundaries,
spatial interaction is turn off, while at homogenous regions,
interaction between neighboring voxels is very significant.
Several additional observations can also be made about our
FCM formulation using Dy, (1) It has a noise suppression
capability due to the adaptive smoothing operation; and (2) It
takes into account explicitly the spatial dimensionality of the
data due to the chosen local neighborhood configuration.
This is in contrast to the conventional FCM algorithm, where
each data point is viewed as an independent instance,
regardless of whether the data are from 2D, 3D, or from N-D
space.

As we mentioned before, the INU artifact manifests itself
as a slow varying multiplicative bias field. Hence, we
accommodate that into the clustering algorithm by making
the cluster prototype adaptive to the spatial position.
Specifically, we let the d%, in (9) be replaced by

&= [&00 - wi - 0 f e

where w(x) is the log bias field, s(x) = log s(x) and v
=log vi. This is equivalent to estimating the bias field in the
log domain. For computational efficiency, we model the 3D
bias field as a stack of 2D smoothing B-spline surfaces, with
continuity explicitly enforced between adjacent surfaces. The
2D log bias field w,(x,y) at index z is formed by the tensor
products of cubic B-spline bases, i.e.,

h

g 4 ,
w(x,y) = a aa;N, (M, , () (12)

i=-3j=-3
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Now, estimating the bias field becomes that of estimating
the cubic B-spline coefficients. Such a formulation has the
advantage that the number of spline coefficients to be
estimated is much less than the number of voxels in the bias
field. The estimated bias field would also be very smooth
due to the explicit spline modeling.

With the above two modifications, our fuzzy clustering
algorithm for MRI segmentation can be formulated as the
solution {U*,v*,w*} that minimizes

Jagan = @ & UL,D  +bh(W,(x,Y) +d (W,(x,Y))

A1 k=1

(13)

du, =1 "xI|

k=1

subject to

where the first regularizing term is given by

h(w,(x, y)zrzﬁqg

and the second regularizing term is given by

i Vi ot
ﬂzw(xy) 2 eﬂ wW,(%Y) g +eﬂw(xy)uydxdy
o 0 Ty 0*e v Gp

KD ( y)u ey

The first regularizing term minimizes the thin plate
energy of each of the spline surfaces w,(x,y). The second
regularizing term forces smoothness between slices of spline
surfaces. It couples the slices together to form a smooth 3D
field. Iterative minimization of (13) will give us the solution
to our MRI segmentation problem.

J (w(xy)) = (15)

We implemented our algorithm in C language and tested
it on both simulated 3D MR brain images obtained from the
BrainWeb Simulated Brain Database at the McConnell Brain
Imaging Centre of the Montreal Neurological Institute

(b)
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(MNI), McGill University [73-76], and on real MRI data.
Our algorithm is computationally very efficient. For the
simulated 3D MRI brain image of dimension 217x181x181
(row (y) © column (x) ~ depth (z)), the total computation
time is around 1.5 to 2 minutes on a Pentium-4 2GHz PC.
We presented some segmentation results on the simulated
3D MR brain images below to show the efficacy of our
approach.

Fig. (1) shows a slice of the simulated 3D MR brain
image. Fig. (2a) shows the segmented image. The
segmentation can be observed to correspond well to the true
model. Fig. (2b) shows the recovered bias field, which
resembles very closely the actual bias field in Fig. (1c). In
comparison, we also show in Fig. (2c) the segmentation by
the conventional FCM algorithm, whose accuracy is severely
affected by noise and INU. Note the poor segmentation of
WM and GM around the lower left part of the brain where
the INU artifact is most severe. The results clearly indicate
that the proposed algorithm is able to compensate for noise
and INU artifact in the input image. Fig. (3a) shows an
across-slice view of the actual bias field, taken at y = 110, for
the same data set. Fig. (3b) shows the estimated bias field
taken at the same location. As can be seen, the estimated bias
field has captured accurately the intensity inhomogeneity
across slices without exhibiting between-slice discontinuity
in spite of the modeling of the 3D bias field by a stack of 2D
spline surfaces. Fig. (4) shows the 3D renderings of the WM
segmented using our algorithm (middle image) and using the
conventional FCM algorithm (bottom image). The ground
truth is shown in the top image. Comparing the segmented
results with the ground truth (see Fig. (4)), it is obvious that
our algorithm gives a much more accurate segmentation
result - the degradation when INU artifact is not
compensated for is especially noticeable around the base of
the brain, at the top of the brain, and at the top end region of
the transverse view.

For quantitative evaluation, our method has significantly
better performance than several existing state-of-the art
methods and is more robust to increased inhomogeneities.
For the simulated MRI data (T; weighted, 1 mm? voxels, 3%
noise) with varying level of INU inhomogeneity (i.e., 0%

©

Fig. (1). A slice of the simulated 3D brain image from MNI (z = 60). (a) True model. (b) Image corrupted with noise and INU artifact. (c)

The corresponding bias field.
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(b)
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Fig. (2). Segmentation result for the MRI image of Fig.1(b). (a) The segmentation using the proposed algorithm. (b) The recovered bias field.
(c) The segmentation using the conventional FCM algorithm without taking into account spatial context and INU compensation.

(b)

Fig. (3). (a) Actual, and (b) computed bias field for y = 110. The x coordinate increases from left to right and the z coordinate increases from

bottom to top.

INU, 20% INU, 40% INU), our algorithm consistently
achieves a misclassification rate (MCR) of less than 4%. The
MCR is defined to be the number of pixels misclassified by
the algorithm divided by the total number of pixels in the
three tissue classes in the image. The interested reader is
referred to our work in [46] for the detail quantitative
comparison.

Due to the limited resolution of the imaging device, it is
possible that multiple tissues are present in one voxel, giving
rise to the PVA artifact. FCM-based methods are able to
perform a soft segmentation of the MR images, where the
tissue membership value indicates the contribution of each
tissue to a voxel. We use the tissue membership values to
perform PV estimation. Since in 3D volume, the interface
between two tissues forms a surface, whereas the interface
between three tissues forms a line, PVA is therefore much
more frequent between two tissue types. We modify the

membership values returned by our algorithm to reflect this
observation. Fig. (5) shows the results of PV estimation. The
second to the fifth row of Fig. (5) shows the results of soft
segmentation for GM, WM, and CSF for our algorithm, the
FCM algorithm, and the EM-MRF algorithms of Leemput et
al. [31, 32] without and with MRF regularization,
respectively. By comparing to the ground truth at the first
row, it is clear that our algorithm can estimate the PV much
more accurately than the other three algorithms. The PV
estimations given by the FCM algorithm suffer from INU
artifact and noise, whereas the PV estimations given by the
EM-MRF algorithms either do not model the PVA accurate
enough or suffer from perimeter shading. The perimeter
shading is particularly noticeable in the GM PV estimation
given by the EM-MRF algorithm with MRF regularization,
and the CSF PV estimation given by the EM-MRF algorithm
with and without MRF regularization. The detail quantitative
results will be presented elsewhere.
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@)

(b)

Fig. (4). Three dimensional renderings of the WM: (top) the ground truth; (middle) segmented using our algorithm; (bottom) segmented
using the conventional FCM algorithm. The simulated brain image is corrupted with 3% noise and 40% INU.

DISCUSSIONS AND CONCLUSIONS

The segmentation of MR brain images is an important
problem in medical imaging. Although much effort has been
spent on finding a good solution to the MRI segmentation
problem, it is far from been solved [77]. This paper attempts
to give an overview of the MR brain image segmentation
problem and discusses various computational techniques for
solving the problem. We reviewed segmentation algorithms
that can be broadly categorized into classification-based,

region-based, or contour-based approaches, and discussed
the advantages and disadvantages of each category.

We also provided a succinct discussion of our recent
adaptive spatial fuzzy c-means segmentation algorithm that
takes into account the local spatial context, as well as the
suppression of the INU artifact in 3D MR brain images. Our
algorithm employs a novel dissimilarity index that considers
the local influence of neighboring pixels in an adaptive
manner. To suppress the INU artifact, a 3D multiplicative
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Fig. (5). Soft segmentation as an estimation of PV for GM, WM, and CSF. The top row is the true PV. The second to fifth rows are the PV
estimation for our algorithm, FCM algorithm, EM-MRF without MRF regularization, and EM-MRF with MRF regularization, respectively.

bias field modeled using B-splines is estimated from the MR
brain images during the clustering process. Due to the use of
soft segmentation, our algorithm is also able to give a good
estimation of tissue volume in the presence of PVA artifact.

Future research in MRI segmentation should strive
toward improving the accuracy, precision, and computation
speed of the segmentation algorithms, while reducing the
amount of manual interactions needed. This is particularly

important as MR imaging is becoming a routine diagnostic
procedure in clinical practice. It is also important that any
practical segmentation algorithm should deal with 3D
volume segmentation instead of 2D slice by slice
segmentation, since MRI data is 3D in nature. Volume
segmentation ensures continuity of the 3D boundaries of the
segmented images whereas slice by slice segmentation does
not guarantee continuation of the boundaries of the tissue
regions between slices.
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In view of the vast amount of anatomical knowledge
gained from past clinical studies, it would be advantageous
for segmentation algorithms to efficiently utilize this prior
knowledge. Although our approach and the MRF
regularization are able to consider local spatial context, the
prior knowledge that is utilized here is considered to be very
low level knowledge. Higher level anatomical knowledge, if
used appropriately, should boost the accuracy and robustness
of the segmentation algorithm. A possible research direction
is to find way to effectively exploit the anatomical
knowledge about the brain into existing segmentation
algorithms.

For segmentation methods to gain acceptance in routine
clinical applications, extensive validation is required on the
algorithms concerned. The setting up of an experiment
protocol and a platform for algorithm validation would be
invaluable in this case. This would require the availability of
common databases where algorithms can be compared and
contrasted to each other. Modest progress has been made in
this area, for example, the simulated 3D MR brain images
that we use for validation in our work are obtained from the
BrainWeb Simulated Brain Database at the McConnell Brain
Imaging Centre of the Montreal Neurological Institute,
McGill University (http://www.bic.mni.mcgill.ca/brainweb)
[74-76]. These simulated images have enabled us to perform
quantitative evaluation of our algorithm against a ground
truth. Nevertheless, there is still a lack of actual clinical
databases for validation purposes. Much work is urgently
needed in this avenue to systematically collect, annotate, and
maintain a set of real test images that enables detail and fair
evaluation and comparison between different algorithms.

ABBREVIATIONS

ANN = Artificial neural network
CSF = Cerebrospinal fluid

EM = Expectation-maximization
FCM = Fuzzy c-means clustering
GM = Gray matter

INU = Intensity nonuniformity

MR = Magnetic resonance

MRI = Magnetic resonance imaging
MRF = Markov random field

MCR = Misclassification rate

MNI = Montreal Neurological Institute
NMR = Nuclear magnetic resonance
PV = Partial volume

PVA = Partial volume averaging

RF = Radio-frequency

3D = Three-dimensional

2D = Two-dimensional

WM = White matter
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