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Abstract

In this paper we discuss a relation between Learning Theory and Regularization of
linear ill-posed inverse problems. It is well known that Tikhonov regularization can
be profitably used in the context of supervised learning, where it usually goes under
the name of regularized least-squares algorithm. Moreover the gradient descent algo-
rithm was studied recently, which is an analog of Landweber regularization scheme.
In this paper we show that a notion of regularization defined according to what
is usually done for ill-posed inverse problems allows to derive learning algorithms
which are consistent and provide a fast convergence rate. It turns out that for priors
expressed in term of variable Hilbert scales in reproducing kernel Hilbert spaces our
results for Tikhonov regularization match those in Smale and Zhou (2005a) and
improve the results for Landweber iterations obtained in Yao et al. (2005). The
remarkable fact is that our analysis shows that the same properties are shared by a
large class of learning algorithms which are essentially all the linear regularization
schemes. The concept of operator monotone functions turns out to be an important
tool for the analysis.
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1 Introduction

In this paper we investigate the theoretical properties of a class of regular-
ization schemes to solve the following regression problem which is relevant to
Learning Theory (Vapnik, 1998; Cucker and Smale, 2002). Given a training
set zi = (xi, yi), i = 1, ..., n, drawn i.i.d. according to an unknown probability
measure ρ on X × Y , we wish to approximate the regression function

fρ(x) =
∫

Y
y dρ(y|x).

We consider approximation schemes in reproducing kernel Hilbert Spaces H
and the quality of the approximation is measured either in the norm in H or
in the norm ‖f‖ρ = (

∫

f 2dρ)1/2. In the context of Learning Theory the latter
is particularly meaningful since weight is put on the points which are most
likely to be sampled. Moreover we are interested in a worst case analysis that
is, since an estimator f

z
based on z = (z1, . . . , zn) is a random variable, we

look for exponential tail inequalities,

P
[

‖f
z
− fρ‖ρ > ε(n)τ

]

≤ e−τ

where ε(n) is a positive, decreasing function of the number of samples and
τ > 0. To obtain this kind of results, we have to assume some prior on the
problem, that is fρ ∈ Ω for some suitable compact set Ω (see the discus-
sion in DeVore et al. (2004)). This is usually done relating the problem
to the considered approximation scheme. Following Rosasco et al.
(2005) we consider a large class of approximation schemes in repro-
ducing kernel Hilbert spaces (RKHS). In this context the prior is
usually expressed in terms of some standard Hilbert scale (Cucker
and Smale, 2002).

In this paper we generalize to priors defined in term of variable
Hilbert scales and refine the analysis in Rosasco et al. (2005). In par-
ticular we can analyze a larger class of algorithms and especially ob-
tain improved probabilistic error estimates. In fact the regularized least-
squares algorithm (Tikhonov Regularization), see (Smale and Zhou, 2005a,b;
Caponnetto and De Vito, 2005b; Caponnetto et al., 2005; Caponnetto and
De Vito, 2005a) and reference therein for latest result, and the gradient de-
scent algorithm (Landweber Iteration) in Yao et al. (2005) can be treated as
special cases of our general analysis. In particular we show that, in the range
of prior considered here, our result for Tikhonov regularization match those
in Smale and Zhou (2005a) and improve the results for Landweber iteration
obtained in Yao et al. (2005) which now share the same rates as Tikhonov
regularization. The remarkable fact is that our analysis shows that the same
properties are shared by a large class of algorithms which are essentially all the
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linear regularization algorithms which can be profitably used to solve ill-posed
inverse problems (Engl et al., 1996).

At the same time, this paper is not just a reformulation of the results
from the theory of ill-posed problems in the context of Learning The-
ory. Indeed, standard ill-posed problems theory, as it is presented,
for example in Engl et al. (1996), is dealing with the situation, when
an ill-posed linear operator equation and its perturbed version are
considered in some common Hilbert space. The problem of Learning
from examples cannot be put in this framework directly, in spite of
the fact that under some conditions the regression function can be
really considered as a solution of linear ill-posed operator equation
(embedding equation). The point is that the sampling operator in-
volved in the discretized or ”perturbed” version of this equation acts
in Euclidean space, while the operator of the embedding equation
is feasible only in an infinite dimensional functional space. Indeed
this is different from the setting in Bissantz et al. (2006) where the
operator is always assumed to be the same.
The first attempt to resolve this discrepancy has been made in
De Vito et al. (2005b); Yao et al. (2005); Rosasco et al. (2005), where
the estimates of the Lipschitz constants of functions generating reg-
ularization methods have been used for obtaining error bounds. But
these functions should converge point-wise to the singular function
σ → 1/σ (see conditions (15), (16) below). Therefore their Lipschitz
properties are rather poor. As a result, general error bounds from
De Vito et al. (2005b); Yao et al. (2005); Rosasco et al. (2005) do
not coincide with the estimates (Caponnetto and De Vito, 2005b;
Smale and Zhou, 2005a) obtained on the base of meticulous anal-
ysis of Tikhonov regularization (particular case of general scheme
considered in Rosasco et al. (2005)). In this paper to achieve tight
regularization error bound the concept of operator monotone index
functions is introduced in the analysis of learning from examples.
At first glance it can be viewed as a restriction on the prior, but as
we argue in Remark 2 below, the concept of operator monotonicity
covers all types of priors considered so far in Regularization Theory.
In our opinion the approach to the estimation of the regularization
error presented in this paper (see Theorem 10) can be also used
for obtaining new results in Regularization Theory. In particular, it
could be applied to regularized collocation methods. We hope that
this idea will be realized in a near future.

Finally we note that though we mainly discuss a regression setting
we can also consider the implication in the context of classifica-
tion. This is pursued in this paper considering recently proposed
assumption (Tsybakov, 2004) on the classification noise. Indeed we
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can prove classification risk bounds as well as fast rates to Bayes
risk.

The plan of the paper is as follows. In Section 2 we present the setting and
state the main assumptions. Some background on RKHS is given and the
prior on the problem is discussed. In Section 3 we first present the class of
algorithms we are going to analyze and then state and prove the main results
of the paper.

2 Learning in Reproducing Kernel Hilbert Spaces

The content of this section is divided as follows. First we introduce the problem
of learning from examples as the problem of approximating a multivariate
function from random samples, fix the setting and the notation. Second we
give an account of RKHS since our approximation schemes will be built in
such spaces. Third we discuss the kind of prior assumption we consider on the
problem.

2.1 Learning from Examples: Notation and Assumptions

We start giving a brief account of Learning Theory (see Vapnik (1998); Cucker
and Smale (2002); Evgeniou et al. (2000); Bousquet et al. (2004a) and reference
therein). We let Z = X × Y be the sample space, where the input space
X ⊂ IRd is closed and the output space is Y ⊂ IR. The space Z is endowed
with a fixed but unknown probability measure ρ which can be factorized as
ρ(x, y) = ρX(x)ρ(y|x) where ρX is the marginal probability on X and ρ(y|x) is
the conditional probability of y given x. A common assumption is Y = [−B,B]
for some B > 0, here we can assume the weaker conditions considered in
Caponnetto and De Vito (2005b), that is for almost all x ∈ X we assume

∫

Y

(

e
|y−f

†
H

(x)|

M − |y − f †
H(x)|

M
− 1

)

dρ(y|x) ≤ Σ2

2M2
, (1)

where f †
H is an approximation of the regression function (see (5)) and Σ,M ∈

IR+. Moreover we assume
∫

Y
y2dρ(x, y) ≤ ∞. (2)

In this setting, what is given is a training set z = (x,y) = {(x1, y1), · · · , (xn, yn)}
drawn i.i.d. according to ρ and, fixing a loss function ℓ : IR×IR → IR+,
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the goal is to find an estimator f = f
z

with a small expected error

E(f) =
∫

X×Y
ℓ(y, f(x))dρ(x, y).

A natural choice for the loss function is the squared loss function ℓ(y, f(x)) =
(y − f(x))2. In fact the minimizer of E(f) becomes the regression function

fρ(x) =
∫

Y
y dρ(y|x),

where the minimum is taken over the space L2(X, ρX) of square integrable
functions with respect to ρX . Moreover we recall that for f ∈ L2(X, ρX)

E(f) = ‖f − fρ‖2
ρ + E(fρ)

so that we can restate the problem as that of approximating the regression
function in the norm ‖·‖ρ = ‖·‖L2(X,ρX ). As we mention in the Introduction
we are interested in exponential tail inequalities such that with probability at
least 1 − η

‖f
z
− fρ‖ρ ≤ ε(n) log

1

η
(3)

for some positive decreasing function ε(n) and 0 < η ≤ 1. From these kind of
results, we can easily obtain bound in expectation

E
z

[

‖f
z
− fρ‖ρ

]

≤ ε(n)

by standard integration of tail inequalities, that is ε(n) =
∫∞
0 exp{− t

ε(n)
}dt.

Moreover if ε(n) decreases fast enough, the Borel-Cantelli Lemma allows to
derive almost sure convergence of ‖f

z
− fρ‖ρ → 0 as n goes to ∞, namely

strong consistency (Vapnik, 1998; Devroye et al., 1996).

In this paper we search for the estimator f
z

in a hypothesis space H ⊂
L2(X, ρX) which is a reproducing kernel Hilbert space (RKHS) (Schwartz,
1964; Aronszajn, 1950). Before recalling some basic facts on such spaces we
discuss some implication of considering approximation schemes in a fixed hy-
pothesis space and in particular in RKHSs. Once we choose H the best achiev-
able error is clearly

inf
f∈H

E(f). (4)

In general the above error can be bigger than E(fρ) and the existence of an
extremal function is not even ensured. Now let IK : H → L2(X, ρX) be the in-
clusion operator and P : L2(X, ρX) → L2(X, ρX) the projection on the closure
of the range of IK in L2(X, ρX), Then, as noted in De Vito et al. (2005b,a), the
theory of inverse problems ensures that Pfρ ∈ R(IK) is a sufficient condition
for existence and uniqueness of a minimal norm solution of problem (4) (see
Engl et al. (1996) Theorem 2.5.). In fact, such an extremal function, denoted
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here with f †
H is nothing but the Moore-Penrose (or generalized) solution 2 of

the linear embedding equation IKf = fρ since

inf
f∈H

E(f) − E(fρ) = inf
f∈H

‖IKf − fρ‖2
ρ , (5)

see (De Vito et al., 2005b,a). As a consequence, rather than studying (3), what
we can aim to, if Pfρ ∈ R(IK), are probabilistic bounds on

E(f
z
) − E(f †

H) =
∥

∥

∥f
z
− f †

H

∥

∥

∥

2

ρ
. (6)

As we discuss in the following (see Theorem 10) under some more assumption
this ensures also a good approximation for fρ. For example, if fρ ∈ H (that is

fρ ∈ R(IK)) clearly fρ = f †
H (that is fρ = IKf

†
H).

2.2 Reproducing Kernel Hilbert Spaces and Related Operators

A RKHS H is a Hilbert space of point-wise defined functions which can be com-
pletely characterized by a symmetric positive definite function K : X ×X →
IR, namely the kernel. If we let Kx = K(x, ·), the space H induced by the
kernel K can be built as the completion of the finite linear combinations
f =

∑N
i=1 ciKxi

with respect to the inner product 〈Ks, Kx〉H = K(s, x). The
following reproducing property easily follows 〈f,Kx〉H = f(x), and moreover

by Cauchy-Schwartz inequality ‖f‖∞ ≤ supx∈X
√

K(x, x) ‖f‖H . In this pa-

per we make the following assumptions 3 on H:

• the kernel is measurable;
• the kernel is bounded, that is

sup
x∈X

√

K(x, x) ≤ κ <∞. (7)

• the space H is separable.

We now define some operators which will be useful in the following (see
Carmeli et al. (2005) for details). We already introduced the inclusion op-
erator IK : H → L2(X, ρX), which is continuous by (7). Moreover we consider

2 In Learning Theory f
†
H is often called the best in model or the best in the class

Bousquet et al. (2004a).
3 We note that it is common to assume K to be a Mercer kernel that is a continuous
kernel. This assumption, together with compactness of the input space X ensures
compactness of the integral operator with kernel K. Under our assumptions it is still
possible to prove compactness of the integral operator even when X is not compact
(Carmeli et al., 2005).
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the adjoint operator I∗K : L2(X, ρX) → H, the covariance operator T : H → H
such that T = I∗KIK and the operator LK : L2(X, ρX) → L2(X, ρX) such that
LK = IKI

∗
K . It can be easily proved that

I∗K =
∫

X
KxdρX(x) T =

∫

X
〈·, Kx〉HKxdρX(x).

The operators T and LK can be proved to be positive trace class operators
(and hence compact). For a function f ∈ H we can relate the norm in H
and L2(X, ρX) using T . In fact if we regard f ∈ H as a function in L2(X, ρX)
we can write

‖f‖ρ =
∥

∥

∥

√
Tf
∥

∥

∥

H
. (8)

This fact can be easily proved recalling that the inclusion operator is continu-
ous and hence admits a polar decomposition IK = U

√
T , where U is a partial

isometry (Rudin, 1991).

Finally replacing ρX by the empirical measure ρ
x

= n−1∑n
i=1 δxi

on a sample
x = (xi)

n
i=1 we can define the sampling operator S

x
: H → IRn by (S

x
f)i =

f(xi) = 〈f,Kxi
〉H; i = 1, . . . , n, where the norm ‖·‖n in IRn is 1/n times

the euclidean norm. Moreover we can define S∗
x

: IRn → H, the empirical
covariance operator T

x
: H → H such that T

x
= S∗

x
S

x
and the operator

S
x
S∗

x
: IRn → IRn. It follows that for ξ = (ξ1, . . . , ξn)

S∗
x
ξ =

1

n

n
∑

i=1

Kxi
ξi T

x
=

1

n

n
∑

i=1

〈·, Kxi
〉HKxi

.

Moreover S
x
S∗

x
= n−1K where K is the kernel matrix such that (K)ij =

K(xi, xj).

Throughout we indicate with ‖·‖ the norm in the Banach space L(H) of
bounded linear operators from H to H.

2.3 A Priori Assumption on the Problem: General Source Condition

It is well known that to obtain probabilistic bounds such as that in (3) (or
rather bounds on (6)) we have to restrict the class of possible probability
measures. In Learning Theory this is related to the so called ”no free lunch”
Theorem (Devroye et al., 1996) but similar kind of phenomenon occurs in
statistics (Györfi et al., 1996) and in regularization of ill-posed inverse prob-
lems (Engl et al., 1996). Essentially what happens is that we can always find a
solution with convergence guarantees to some prescribed target function but
the convergence rates can be arbitrary slow. In our setting this turns into the
impossibility to state finite sample bounds holding uniformly with respect to
any probability measure ρ.

7



A standard way to impose restrictions on the class of possible problems is to
consider a set of probability measures M(Ω) such that the associated regres-
sion functions satisfies fρ ∈ Ω. Such a condition is called the prior. The set Ω
is usually a compact set determined by smoothness conditions (DeVore et al.,
2004). In the context of RKHSs it is natural to describe the prior in term of
the compact operator LK , considering fρ ∈ Ωr,R with

Ωr,R = {f ∈ L2(X, ρX) : f = LrKu, ‖u‖ρ ≤ R}. (9)

The above condition is often written as
∥

∥

∥L−r
K fρ

∥

∥

∥

ρ
≤ R (Smale and Zhou,

2005a). Note that, when r = 1/2, such a condition is equivalent to assum-
ing fρ ∈ H and is independent of the measure ρ, but for arbitrary r it is
distribution dependent.

As noted in De Vito et al. (2005b,a) the condition fρ ∈ Ωr,R corresponds to
what is called a source condition in the inverse problems literature. In fact if
we consider Pfρ ∈ Ωr,R, r > 1/2, then Pfρ ∈ R(IK) and we can equivalently

consider the prior f †
H ∈ Ων,R with

Ων,R = {f ∈ H : f = T νv, ‖v‖H ≤ R} (10)

where ν = r − 1/2 (see for example De Vito et al. (2005a) Proposition 3.2).
Recalling that T = I∗KIK we see that the above condition is the standard source
condition for the linear problem IKf = fρ, namely Hölder source condition
(Engl et al., 1996).

Following what is done in inverse problems in this paper we wish to extend
the class of possible probability measures M(Ω) considering general source
condition (see Mathé and Pereverzev (2003) and references therein). We as-
sume throughout that Pfρ ∈ R(IK) which means that f †

H exists and solves
the normalized embedding equation Tf = I∗Kfρ. Using the singular value de-
compositions

T =
∞
∑

i=1

ti 〈·, ei〉H ei LK =
∞
∑

i=1

ti 〈·, ψi〉ρ ψi,

for orthonormal systems {ei} in H and {ψi} in L2(X, ρX) and sequence of
singular numbers κ2 ≥ t1 ≥ t2 ≥ · · · ≥ 0, one can represent f †

H in the form

f †
H =

∞
∑

i=1

1√
ti
〈fρ, ψi〉ρ ei.

Then f †
H ∈ H if and only if

∞
∑

i=1

〈fρ, ψi〉2ρ
ti

<∞
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where the above condition is known as Picard’s criterion. It provides a zero-
smoothness condition on f †

H (merely f †
H ∈ H) and tells us that the Fourier

coefficients 〈fρ, ψi〉ρ should decay much faster than ti. Therefore it seems nat-

ural to measure the smoothness of f †
H by enforcing some faster decay. More

precisely, not only Picard’s criterion but also the stronger condition

∞
∑

i=1

〈fρ, ψi〉2ρ
tiφ2(ti)

<∞

is satisfied, where φ is some continuous increasing function defined on the
interval [0, κ2] ⊃ {ti} and such that φ(0) = 0. Then

v :=
∞
∑

i=1

1√
tiφ(ti)

〈fρ, ψi〉ρ ei

and

f †
H =

∞
∑

i=1

φ(ti) 〈v, ei〉 ei = φ(T )v ∈ H.

Thus, additional smoothness of f †
H can be expressed as an inclusion

f †
H ∈ Ωφ,R := {f ∈ H : f = φ(T )v, ‖v‖H ≤ R}, (11)

that goes usually under the name of source condition. The function φ is called
index function. There is a good reason to further restrict the class of possible
index functions. In general the smoothness expressed through source condi-
tions is not stable with respect to perturbations in the involved operator T .
In Learning Theory only the empirical covariance operator T

x
is available and

it is desirable to control φ(T ) − φ(T
x
). This can be achieved by requiring φ

to be operator monotone. Recall that the function φ is operator monotone on
[0, b] if for any pair of self-adjoint operators U, V , with spectra in [0, b] such
that U ≤ V we have φ(U) ≤ φ(V ). The partial ordering B1 ≤ B2 for self-
adjoint operators B1, B2 on some Hilbert space H means that for any h ∈ H,
〈B1h, h〉 ≤ 〈B2h, h〉. It follows from the Löwner theorem (see for example
Hansen (2000)) that each operator monotone function on (0, b) admits an an-
alytic continuation in the corresponding strip of the upper half-plane with
positive imaginary part. Important implications of the concept of operator
monotonicity in the context of regularization can be seen from the following
result (see Mathé and Pereverzev (2002, 2005)).

Theorem 1 Suppose ψ is an operator monotone index function on [0, b], with
b > a. Then there is a constant cψ <∞ depending on b− a, such that for any
pair B1, B2, ‖B1‖ , ‖B2‖ ≤ a, of non-negative self-adjoint operators on some
Hilbert space it holds

‖ψ(B1) − ψ(B2)‖ ≤ cψψ(‖B1 − B2‖).
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Moreover, there is c > 0 such that

c
λ

ψ(λ)
≤ σ

ψ(σ)

whenever 0 < λ < σ ≤ a < b.

Thus operator monotone index functions allow a desired norm estimate for
φ(T )−φ(T

x
). Therefore in the following we consider index functions from the

class

FC = {ψ : [0, b] → IR+, operator monotone, ψ(0) = 0, ψ(b) ≤ C, b > κ2}

Note that from the above theorem it follows that an index function ψ ∈ FC

cannot converge faster than linearly to 0. To overcome this limitation of the
class FC we also introduce the class F of index functions φ : [0, κ2] → IR+

which can be split into a part ψ ∈ FC and a monotone Lipschitz part ϑ :
[0, κ2] → IR+, ϑ(0) = 0, i.e. φ(σ) = ϑ(σ)ψ(σ). This splitting is not unique
such that we implicitly assume that the Lipschitz constant for ϑ is equal to 1
which means

‖ϑ(T ) − ϑ(T
x
)‖ ≤ ‖T − T

x
‖ .

The fact that an operator valued function ϑ is Lipschitz continuous if a real
function ϑ is Lipschitz continuous follows from Theorem 8.1 in Birman and
Solomyak (2003).

Remark 2 Observe that for ν ∈ [0, 1] a Hölder-type source condition (10)
can be seen as (11) with φ(σ) = σν ∈ FC, C = bν, b > κ2 while for ν > 1 we
can write φ(σ) = ϑ(σ)ψ(σ) where ϑ(σ) = σp/C1 and ψ(σ) = C1σ

ν−p ∈ FC,
C = C1b

ν−p, b > κ2, C1 = pκ2(p−1) and p = [ν] is an integer part of ν. It is
clear that the Lipschitz constant for such a ϑ(σ) is equal to 1. At the same time,
source conditions (11) with φ ∈ F cover all types of smoothness studied so far
in Regularization Theory. For example ψ(σ) = σp log−ν 1/σ with p = 0, 1, . . . ,
ν ∈ [0, 1] can be split in a Lipschitz part ϑ(σ) = σp and an operator monotone
part ψ(σ) = log−ν 1/σ

3 Regularization in Learning Theory

In this section we first present the class of regularization algorithms we are
going to study. Regularization is defined according to what is usual done for ill-
posed inverse problems. Second we give the main results of the paper. It turns
out that such a notion of regularization allows to derive learning algorithms
which are consistent possibly with fast convergence rate. Several corollaries
illustrate this fact.
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3.1 Regularization Algorithms

It is well known that Tikhonov regularization can be profitably used in the con-
text of supervised learning and many theoretical properties have been shown.
The question whether other regularization techniques from the theory of ill-
posed inverse problems can be valuable in the context of Learning Theory
has been considered in Rosasco et al. (2005) motivated by some connections
between learning and inverse problems (De Vito et al., 2005b,a). In this paper
we follow the same approach and provide a refined analysis for algorithms
defined by

fλ
z

= gλ(Tx
)S∗

x
y (12)

where the final estimator is defined providing the above scheme with a parame-
ter choice λn = λ(n, z) so that f

z
= fλn

z
. We show that the following definition

characterizes which regularization provide sensible learning algorithms. In-
terestingly such a definition is the standard definition characterizing
regularization for ill-posed problems (Engl et al., 1996).

Definition 1 (Regularization) We say that a family gλ : [0, κ2] → IR, 0 <
λ ≤ κ2, is regularization if the following conditions hold

• There exists a constant D such that

sup
0<σ≤κ2

|σgλ(σ)| ≤ D (13)

• There exists a constant B such that

sup
0<σ≤κ2

|gλ(σ)| ≤ B

λ
(14)

• There exists a constant γ such that

sup
0<σ≤κ2

|1 − gλ(σ)σ| ≤ γ (15)

• The qualification of the regularization gλ is the maximal ν such that

sup
0<σ≤κ2

|1 − gλ(σ)σ|σν ≤ γνλ
ν , (16)

where γν does not depend on λ

The above condition are standard in the theory of inverse problems and, as
shown in Theorem 10, are also sufficient to obtain consistent learning schemes.
In Rosasco et al. (2005) an extra condition was required on gλ, namely a Lip-
schitz condition. Here we show that at least in the considered range of prior
such a condition can be dropped and the conditions considered for inverse
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problems are sufficient to learning. We give some examples which will be dis-
cussed in the following (see Engl et al. (1996) for details and Rosasco et al.
(2005) for more discussion in the context of learning).

Example 3 (Tikhonov) The choice gλ(σ) = 1
σ+λ

corresponds to Tikhonov
regularization or the regularized least squares algorithm. In this case we have
B = D = γ = 1. The qualification of the method is 1 and γν = 1.

Example 4 (Landweber Iteration) We assume for simplicity that κ = 1.
Then Landweber iteration is defined by gt(σ) =

∑t−1
i=0(1−σ)i where we identify

λ = t−1, t ∈ N. This corresponds to the gradient descent algorithm in Yao
et al. (2005) with constant step-size. In this case we have B = D = γ = 1.
Any ν ∈ [0,∞) can be considered as qualification of the method and γν = 1 if
0 < ν ≤ 1 and γν = νν otherwise

Example 5 (Spectral Cut-off) A classical regularization algorithms for ill-
posed inverse problems is spectral cut-off or truncated singular value decompo-
sition (TSVD) defined by

gλ =











1
σ
, σ ≥ λ

0, σ < λ
.

Up-to our knowledge this method is not used in Learning Theory and could
not be treated in the analysis of Rosasco et al. (2005). In this case we have
B = D = γ = 1 . The qualification of the method is arbitrary and γν = 1.

Example 6 (Accelerated Landweber Iteration) Finally we consider a class
of methods called Accelerated Landweber or Semiiterative regularization. Here
again assume for simplicity that κ = 1 and identify λ = t−2, t ∈ N. Such
methods are defined by gt(σ) = pt−1(σ) where pt−1 is a polynomial of degree
t − 1. In this case D = γ = 1, B = 2. The so called ν-method falls into this
class of schemes. Though they usually have finite qualification the advantage
of this iterative algorithms is that they require a number of iteration which is
considerably smaller than Landweber iteration (see Engl et al. (1996), Chapter
6).

We end this section discussing the important interplay between qualification
and a source condition. To this aim we need the following definition from
Mathé and Pereverzev (2003).

Definition 2 We say that the qualification ν0 covers φ, if there is c > 0 such
that

c
λν0

φ(λ)
≤ inf

λ≤σ≤κ2

σν0

φ(σ)
(17)

where 0 < λ ≤ κ2.

12



The following important result is a restatement of Proposition 3 in Mathé and
Pereverzev (2003).

Proposition 7 Let φ be a non decreasing index function and let gλ be a reg-
ularization with qualification which covers φ. Then the following inequality
holds true

sup
0<σ≤κ2

|1 − gλ(σ)σ|φ(σ) ≤ cgφ(λ), cg =
γν
c
,

where c is a constant from (17).

Remark 8 The index functions φ ∈ F are covered by regularization with
infinite qualification such as spectral cut-off or Landweber iteration. Moreover,
from Theorem 1 above it follows that the index functions φ ∈ FC are covered
by the qualification of Tikhonov regularization. Note also that if the function
σ → σν/φ(σ) is increasing then (17) is certainly satisfied with c = 1.

3.2 Main Result

The following result provides us with error estimates for a fixed value of the
regularization parameter λ. In order to give the proof we need the
following Lemma whose proof is postponed to Section 3.4.

Lemma 9 Let Assumption (1) hold and κ as in (7). For 0 < η ≤ 1
and n ∈ N let

Gη = {z ∈ Zn :
∥

∥

∥T
x
f †
H − S∗

x
y
∥

∥

∥

H
≤ δ1, ‖T − T

x
‖ ≤ δ2},

with

δ1 := δ1(n, η)= 2(
κM

n
+
κΣ√
n

) log
4

η

δ2 := δ2(n, η)=
1√
n

2
√

2κ2 log
4

η
.

Then
P [Gη] ≥ 1 − η.

The above result provides us with the probabilistic perturbation
measures which quantify the effect of random sampling. We are
now ready to state the following theorem.

Theorem 10 Let λ ∈ (0, 1]. Assume that (1) and (2) hold. Moreover assume
that Pfρ ∈ R(IK) and f †

H ∈ Ωφ,R. We let fλ
z

as in (12), satisfying Definition

13



1 and assume that the regularization has a qualification which covers φ(σ)
√
σ.

If

λ ≥ 1√
n

2
√

2κ2 log
4

η
(18)

for 0 < η < 1 then with probability at least 1 − η

∥

∥

∥fλ
z
− f †

H

∥

∥

∥

ρ
≤ (C1φ(λ)

√
λ+ C2

1√
λn

) log
4

η
, (19)

where C1 = 2(1 + cψ)cgR and C2 = ((1 + cg)γCR2
√

2κ2 + (
√
DB + B)(κΣ +

M√
2κ

)).

Moreover with probability at least 1 − η

∥

∥

∥fλ
z
− f †

H

∥

∥

∥

H
≤ (C3φ(λ) + C4

1

λ
√
n

) log
4

η
, (20)

where C3 = (1 + cψ)cgR and C4 = (γCR2
√

2κ2 +B(κΣ + M√
2κ

)).

PROOF. Let δ1, δ2 and Gη as in Lemma 9. Then from this lemma we know
that

P [Gη] ≥ 1 − η. (21)

Moreover we let
rλ(σ) = 1 − σgλ(σ). (22)

We consider the following decomposition into two terms

f †
H − fλ

z
= f †

H − gλ(Tx
)S∗

x
y (23)

= (f †
H − gλ(Tx

)T
x
f †
H) + (gλ(Tx

)T
x
f †
H − gλ(Tx

)S∗
x
y).

The idea is then to separately bound each term both in the norm in H and in
L2(X, ρX).

We start dealing with the first term. Using (11) and (22) we can write

f †
H − gλ(Tx

)T
x
f †
H =(I − gλ(Tx

)T
x
)φ(T )v (24)

= rλ(Tx
)φ(T

x
)v + rλ(Tx

)(φ(T ) − φ(T
x
))v

= rλ(Tx
)φ(T

x
)v + rλ(Tx

)ϑ(T
x
)(ψ(T ) − ψ(T

x
))v

+rλ(Tx
)(ϑ(T ) − ϑ(T

x
))ψ(T )v.

When considering the norm in H we know that Prop. 7 applies since φ (as
well as ϑ) is covered by the qualification of gλ. The fact that ϑ is covered
by the qualification of gλ can be seen from the following chain of
inequalities:

14



inf
λ≤σ≤κ2

σν0

ϑ(σ)
= inf

λ≤σ≤κ2

σν0ψ(σ)

ϑ(σ)ψ(σ)
≥ ψ(λ) inf

λ≤σ≤κ2

σν0

φ(σ)

≥ cψ(λ)
λν0

φ(λ)
= c

λν0

ϑ(λ)
,

where we rely on the fact that φ(λ) = ψ(λ)ϑ(λ) is covered by the
qualification of gλ, and an operator monotone index function ψ(λ) is
non-decreasing. Then we can use (16), (15), (11) and Theorem 1 to get the
bound
∥

∥

∥f †
H − gλ(Tx

)T
x
f †
H

∥

∥

∥

H
≤ cgRφ(λ) + cgcψRϑ(λ)ψ(‖T − T

x
‖) + γCR ‖T − T

x
‖

and for z ∈ Gη we have

∥

∥

∥f †
H − gλ(Tx

)T
x
f †
H

∥

∥

∥

H
≤ (1 + cψ)cgRφ(λ) + γCRδ2 (25)

where we used (18) to have ϑ(λ)ψ(‖T − T
x
‖) ≤ ϑ(λ)ψ(δ2) ≤ ϑ(λ)ψ(λ) = φ(λ).

Some more reasoning is needed to get the bound in L2(X, ρX). To this aim in
place of (24) we consider

√
T (f †

H − gλ(Tx
)T

x
f †
H) = (

√
T −

√

T
x
)(I − gλ(Tx

)T
x
)f †

H +
√

T
x
(I − gλ(Tx

)T
x
)f †

H.
(26)

The first addend is easy to bound since from Condition (18) and operator
monotonicity of ψ(σ) =

√
σ we get

∥

∥

∥

∥

√
T −

√

T
x

∥

∥

∥

∥

≤
√

‖T − T
x
‖ ≤

√

δ2 ≤
√
λ. (27)

for z ∈ Gη. Then from the above inequality and from (25) we get

∥

∥

∥

∥

(
√
T −

√

T
x
)(I − gλ(Tx

)T
x
)f †

H

∥

∥

∥

∥

H
≤ (1 + cψ)cgRφ(λ)

√
λ+ γCR

√
λδ2. (28)

On the other hand the second addend can be further decomposed using (11)

√

T
x
(I − gλ(Tx

)T
x
)φ(T )v=

√

T
x
rλ(Tx

)φ(T
x
)v

+
√

T
x
rλ(Tx

)ϑ(T
x
)(ψ(T ) − ψ(T

x
))v

+
√

T
x
rλ(Tx

)(ϑ(T ) − ϑ(T
x
))ψ(T )v.

Using (16), (15), (11) and Theorem 1 we get for z ∈ Gη

∥

∥

∥

∥

√

T
x
(I − gλ(Tx

)T
x
)f †

H

∥

∥

∥

∥

H
≤ (1 + cψ)cgRφ(λ)

√
λ+ cgγCR

√
λδ2.

where again we used (18) to have ψ(‖T − T
x
‖) ≤ ψ(δ2) ≤ ψ(λ). Now we can

put the above inequality and (28) together to obtain the following bound in
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the ρ-norm
∥

∥

∥

√
T (f †

H − gλ(Tx
)T

x
f †
H)
∥

∥

∥

H
≤ 2(1 + cψ)cgRφ(λ)

√
λ + (1 + cg)γCR

√
λδ2.

(29)

We are now ready to consider the second term in (23). If we consider the norm
in H we can write

gλ(Tx
)T

x
f †
H − gλ(Tx

)S∗
x
y = gλ(Tx

)(T
x
f †
H − S∗

x
y)

and for z ∈ Gη then condition (14) immediately yields

∥

∥

∥gλ(Tx
)T

x
f †
H − gλ(Tx

)S∗
x
y
∥

∥

∥

H
≤ B

λ
δ1. (30)

Moreover when considering the norm in L2(X, ρX) we simply have

√
T (gλ(Tx

)T
x
f †
H − gλ(Tx

)S∗
x
y)=

√

T
x
gλ(Tx

)(T
x
f †
H − S∗

x
y) (31)

+ (
√
T −

√

T
x
)gλ(Tx

)(T
x
f †
H − S∗

x
y).

It is easy to show that
∥

∥

∥

∥

√

T
x
gλ(Tx

)
∥

∥

∥

∥

≤
√
DB√
λ

in fact ∀h ∈ H from Cauchy-Schwartz inequality we have

|
〈

√

T
x
gλ(Tx

)h,
√

T
x
gλ(Tx

)h
〉

H
|= | 〈gλ(Tx

)h, T
x
gλ(Tx

)h〉 |
≤ ‖gλ(Tx

)h‖H ‖T
x
gλ(Tx

)h‖H
≤D

B

λ
‖h‖2

H ,

where we used (13) and (14). We can use the definition of δ1 with the above
inequality to bound the first addend in (31) and the definition of δ1 with
inequalities (27), (14) to bound the second addend in (31). Then, using (18),
we have

√
δ2 ≤

√
λ so that

∥

∥

∥

√
T (gλ(Tx

)T
x
f †
H − gλ(Tx

)S∗
x
y)
∥

∥

∥

H
≤

√
DB√
λ
δ1 +

√

δ2
B

λ
δ1 ≤

(
√
DB +B)√

λ
δ1.

(32)
for z ∈ Gη. We now are in the position to derive the desired bounds.

Recalling (21) and (23), we can put (25) and (30) together to get with prob-
ability at least 1 − η,

∥

∥

∥fλ
z
− f †

H

∥

∥

∥

H
≤ (1 + cψ)cgRφ(λ) + γCRδ2 +

B

λ
δ1.

16



We can then simplify the above bound. In fact δ2 ≤ δ2/λ since λ ≤ 1 so that

γCRδ2 ≤ log
4

η
γCR2

√
2κ2 1

λ
√
n
.

Moreover from the explicit expression of δ1, using (18) and λ ≤ 1 it is easy to
prove that

B

λ
δ1 ≤ log

4

η
B(κΣ +

M√
2κ

)
1

λ
√
n

Putting everything together we have (20) in fact

∥

∥

∥fλ
z
− f †

H

∥

∥

∥

H
≤ (C3φ(λ) + C4

1

λ
√
n

) log
4

η

where C3 = (1 + cψ)cgR) and C4 = (γCR2
√

2κ2 +B(κΣ + M√
2κ

)).

Similarly we can use Eq. (8) to write

∥

∥

∥fλ
z
− f †

H

∥

∥

∥

ρ
=
∥

∥

∥

√
T (fλ

z
− f †

H)
∥

∥

∥

H

and from (29) and (32) we get with probability at least 1 − η

∥

∥

∥

√
T (fλ

z
− f †

H)
∥

∥

∥

H
≤ 2(1+cψ)cgRφ(λ)

√
λ+(1+cg)γCR

√
λδ2 +

(
√
DB +B)√

λ
δ1.

which can be further simplified as above to get (19).

Remark 11 (Assumptions on the regularization parameter) A con-
dition similar to (18) has been considered in Smale and Zhou (2005a)
and Caponnetto and De Vito (2005b,a). It simply indicates the
range of regularization parameters, for which the error estimates (19)
and (20) are non-trivial. For example, if λ does not satisfy (18)
then right-hand side of (20) becomes larger than a fixed constant
C4/(2

√
2κ2), which is not reasonable. Thus, condition (18) is not re-

strictive at all. In fact it is automatically satisfied for the best a
priori choice of the regularization parameter (see Theorem 14 be-
low) balancing the values of the terms in the estimates (19) and (20).
Finally the condition λ < 1 is considered only to simplify the results
and can be replaced by λ < a for some positive constant a (and in
particular for a = κ) that would eventually appear in the bound.

Remark 12 (Assumption on the best in the model) If H is dense in
L2(X, ρX) or fρ ∈ H clearly we can replace f †

H with fρ since E(f †
H) = inff∈H E(f) =

E(fρ).

A drawback in our approach is that we have to assume the existence of f †
H.

Though this assumption is necessary to study result in the H-norm it can be
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relaxed when looking for bounds in L2(X, ρX). In fact, as discussed in De Vito
et al. (2005b,a); Yao et al. (2005) if f †

H does not exist we can still consider

E(f
z
) − inf

H
E(f) = ‖f

z
− Pfρ‖2

ρ

in place of (6). For this kind of prior (but Hölder source condition) the best
results were obtained in Smale and Zhou (2005a) for Tikhonov regularization.
The result on Landweber iteration in Yao et al. (2005) also cover this case
though the dependence on the number of examples is worse than for Tikhonov.
For general regularization schemes were obtained in Rosasco et al. (2005) re-
quiring the regularization gλ to be Lipschitz, but the dependence on the number
of examples was again spoiled.

Remark 13 (Bounds uniform w.r.t. λ) Inspecting the proof of the above
Theorem we see that the family of good training sets such that the bounds
hold with high probability do not depend on the value of the regularization
parameter. This turns out to be useful to define a data driven strategy for the
choice of λ.

From the above results we can immediately derive a data independent (a
priori) parameter choice λn = λ(n). Next Theorems shows the error bounds
obtained providing the one parameter family of algorithms in (12) with such
a regularization parameter choice.

Theorem 14 We let Θ(λ) = φ(λ)λ. Under the same assumptions of Theorem
10 we choose

λn = Θ−1(n− 1
2 ) (33)

and let f
z

= fλn
z

. Then for 0 < η < 1 and n ∈ N such that

Θ−1(n− 1
2 )n

1
2 ≥ 2

√
2κ2 log

4

η
(34)

the following bound holds with probability at least 1 − η

∥

∥

∥f
z
− f †

H

∥

∥

∥

ρ
≤ (C1 + C2)φ(Θ−1(n− 1

2 ))
√

Θ−1(n− 1
2 ) log

4

η
,

with C1 and C2 as in Theorem 10. Moreover with probability at least 1 − η

∥

∥

∥f
z
− f †

H

∥

∥

∥

H
≤ (C3 + C4)φ(Θ−1(n− 1

2 )) log
4

η
,

with C3 and C4 as in Theorem 10.

PROOF. If we choose λn as in (33) then for n such that (34) holds we have
that condition (18) is verified and we can apply the bounds of Theorem 10 to
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λn. The results easily follow noting that the proposed parameter choice is the
one balancing the two terms in (19) in fact the following equation is verified
for λ = λn

φ(λ)
√
λ =

1√
λn

(φ(λ) = λ−1n1/2 for the H-norm).

Several corollaries easily follow. The following result considers the stochastic
order (van de Geer, 2000) of convergence with respect to the ρ-norm.

Corollary 15 Under the same assumptions of Theorem 14 if λn is chosen
according to (33) and f

z
= fλn

z
then

lim
A→∞

lim sup
n→∞

sup
ρ∈M(Ωφ,R)

P
[

∥

∥

∥f
z
− f †

H

∥

∥

∥

ρ
> Aan

]

= 0

for an = φ(Θ−1(n− 1
2 ))
√

Θ−1(n− 1
2 ).

PROOF. We let A = (C3 + C4) log 4
η

and solve with respect to η to get

ηA = 4e
− A

C3+C4 .

Then we know from Theorem 14 that for n such that (34) holds

P
[

∥

∥

∥f
z
− f †

H

∥

∥

∥

ρ
> Aφ(Θ−1(n− 1

2 )
√

Θ−1(n− 1
2 )
]

≤ ηA

and clearly

lim sup
n→∞

sup
ρ∈M(Ωφ,R)

P
[

∥

∥

∥f
z
− f †

H

∥

∥

∥

ρ
> Aφ(Θ−1(n− 1

2 )
√

Θ−1(n− 1
2 )
]

≤ ηA.

The theorem is proved since ηA → 0 as A→ ∞.

Remark 16 (Kernel independent lower bounds) Up-to our knowledge no
minimax lower bounds exist for the class of priors considered here. In fact
in Caponnetto and De Vito (2005b,a) lower bounds are presented for ρ ∈
M(Ωr,R), that is Hölder source condition, and considering the case when the
eigenvalues of T have a polynomial decay ti ∝ i−b, b > 1. In this case lower

rate an = n
rb

2rb+1 , 1/2 < r ≤ 1 are shown to be optimal. Here we do not
make any assumption on the kernel and, in this sense, our results
are kernel independent. This situation can be thought of as the limit
case when b = 1. As it can be seen from next corollary we share the same
dependence on the smoothness index r.
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The following result considers the case of Hölder source conditions, that is
the case when Condition (11) reduces to (10). Recalling the equivalence be-
tween (9) an (10) we state the following result considering ν = r−1/2 to have
an easier comparison with previous results.

Corollary 17 Under the same assumption of Theorem 14 let φ(σ) = σν,
ν = r − 1/2. Now choose λn as in (33) and let f

z
= fλn

z
. Then for 0 < η < 1

and

n >

(

2
√

2κ2 log
4

η

)
4r+2
2r+3

(35)

the following bounds hold with probability at least 1 − η

∥

∥

∥f
z
− f †

H

∥

∥

∥

ρ
≤ (C1 + C2)n

− r
2r+1 log

4

η
,

with C1 and C2 as in Theorem10 and

∥

∥

∥f
z
− f †

H

∥

∥

∥

H
≤ (C3 + C4)n

− r−1/2
2r+1 log

4

η
,

with C3 and C4 as in Theorem10.

PROOF. By a simple computation we have λn = Θ−1(n1/2) = n− 1
2r+1 . More-

over Condition (34) can now be written explicitly as in (35). The proof follows
plugging the explicit form of φ and λn in the bounds of Theorem 14.

Remark 18 Clearly if in place of Pfρ ∈ Ωr,R we take fρ ∈ Ωr,R with r > 1/2

then fρ ∈ H and we can replace f †
H with fρ since inff∈H E(f) = E(fρ).

In particular we discuss the bounds corresponding to the examples of regu-
larization algorithms discussed in Section 3.1 and for the sake of clarity we
restrict ourselves to polynomial source condition and H dense.
Tikhonov regularization In the considered range of prior (r > 1/2) the
above results match those obtained in Smale and Zhou (2005a) for Tikhonov
regularization. We observe that this kind of regularization suffers from a satu-
ration effect and the results no longer improve after a certain regularity level,
r = 1 (or r = 3/2 for the H-norm) is reached. This is a well known fact in the
theory of inverse problems.
Landweber iteration In the considered range of prior (r > 1/2) the above
results improve on those obtained in Yao et al. (2005) for gradient descent
learning. Moreover as pointed out in Yao et al. (2005) such an algorithm does
not suffer from saturation and the rate can be extremely good if the regression
function is regular enough (that is if r is big enough) though the constant gets
worse.
Spectral cut-off regularization The spectral cut-off regularization does not
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suffer from the saturation phenomenon and moreover the constant does not
change with the regularity of the solution, allowing extremely good theoretical
properties. Note that such an algorithm is computationally feasible if one can
compute the SVD of the kernel matrix K.
Accelerated Landweber iteration The semiiterative methods though suf-
fering from a saturation effect may have some advantage on Landweber it-
eration from the computational point of view. In fact recalling that we can
identify λ = t−2 it is easy to see that they require the square root of the num-
ber of iterations required by Landweber iteration to get the same convergence
rate.

Remark 19 Note that, though assuming that f †
H exists, we improve on the re-

sult in Rosasco et al. (2005) and show that in the considered range of prior we
can drop the Lipschitz assumption on gλ and obtain the same dependence on
the number of examples n and on the confidence level η for all regularization
gλ satisfying Definition 1. This class of algorithms includes all the methods
considered in Rosasco et al. (2005) and in general all the linear regulariza-
tion algorithms to solve ill-posed inverse problems. The key to avoid the
Lipschitz assumption on gλ is exploiting the stability of the source
condition w.r.t. to operator perturbation.

3.3 Regularization for Binary Classification: Risk Bounds and Bayes Con-
sistency

We briefly discuss the performance of the proposed class of algorithms in
the context of binary classification (Bousquet et al., 2004b), that is when
Y = {−1, 1}. The problem is that of discriminating the elements of two classes
and as usual we can take signfλ

z
as our decision rule. In this case some natural

error measures can be considered. The risk or misclassification error is defined
as

R(f) = ρZ({(x, y) ∈ Z | signf(x) 6= y}),
whose minimizer is the Bayes rule signfρ. The quantity we aim to control is
the excess risk

R(f
z
) −R(fρ).

Moreover as proposed in Smale and Zhou (2005a) it is interesting to consider

‖signf
z
− signfρ‖ρ .

To obtain bounds on the above quantities the idea is to relate them to ‖f
z
− fρ‖ρ.

A straightforward result can be obtained recalling that

R(f
z
) −R(fρ) ≤ ‖f

z
− fρ‖ρ
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see Bartlett et al. (2003); Yao et al. (2005). Anyway it is interesting to consider
the case when some extra information is available on the noise affecting the
problem. This can be done considering Tsybakov noise condition

ρX({x ∈ X : |fρ(x)| ≤ L}) ≤ BqL
q, ∀L ∈ [0, 1], (36)

where q ∈ [0,∞] (Tsybakov, 2004). As shown in Proposition 6.2 in Yao et al.
(2005) (see also Bartlett et al. (2003)) the following inequalities hold for α =
q
q+1

R(f
z
) −R(fρ)≤ 4cα ‖fz − fρ‖

2
2−α
ρ

‖signf
z
− signfρ‖ρ≤ 4cα ‖fz − fρ‖

α
2−α
ρ .

with cα = Bq + 1.

A direct application of Theorem 14 immediately leads to the following result

Corollary 20 Assume that H is dense in L2(X, ρX) and that the same as-
sumptions of Theorem 14 hold. Choose λn according to (33) and let f

z
= fλn

z
.

Then for 0 < η < 1 and n satisfying (34) the following bounds hold with
probability at least 1 − η

R(f
z
) − R(fρ)≤ 4cα

(

(C1 + C2)φ(Θ−1(n− 1
2 )
√

Θ−1(n− 1
2 ) log

4

η

)
2

2−α

,

‖signf
z
− signfρ‖ρ≤ 4cα

(

(C1 + C2)φ(Θ−1(n− 1
2 )
√

Θ−1(n− 1
2 ) log

4

η

)
α

2−α

,

with C1,C2,C3 and C4 given in Theorem 10.

Corollary 17 shows that for polynomial source conditions this means all the

proposed algorithms achieve risk bounds on R(f
z
)−R(fρ) of order n

2r
(2r+1)(2−α)

if n is big enough (satisfying (35)). In other words the algorithms we propose
are Bayes consistent with fast rates of convergence.

3.4 Probabilistic Estimates

In our setting the perturbation measure due to random sampling are expressed
by the quantities

∥

∥

∥T
x
f †
H − S∗

x
y
∥

∥

∥

H
and ‖T − T

x
‖L(H) which are clearly random

variables. Lemma 9 gives suitable probabilistic estimates. Its proof is trivially
obtained by the following propositions.
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Proposition 21 If Assumption (1) holds then for all n ∈ N and 0 < η < 1

P

[

∥

∥

∥T
x
f †
H − S∗

x
y
∥

∥

∥

H
≤ 2(

κM

n
+
κΣ√
n

) log
2

η

]

≥ 1 − η.

Proposition 22 Recalling κ = supx∈X ‖Kx‖H, we have for for all n ∈ N and
0 < η < 1,

P

[

‖T − T
x
‖ ≤ 1√

n
2
√

2κ2

√

log
2

η

]

≥ 1 − η.

The latter proposition was proved in De Vito et al. (2005b). The proof of the
first estimate is a simple application of the following concentration result for
Hilbert space valued random variable used in Caponnetto and De Vito (2005a)
and based on the results in Pinelis and Sakhanenko (1985).

Proposition 23 Let (Ω,B, P ) be a probability space and ξ a random variable
on Ω with values in a real separable Hilbert space K. Assume there are two
constants H, σ such that

E [‖ξ − E [ξ]‖mK ] ≤ 1

2
m!σ2Hm−2, ∀m ≥ 2 (37)

then, for all n ∈ N and 0 < η < 1,

P

[

‖ξ − E [ξ]‖K ≤ 2(
H

n
+

σ√
n

) log
2

η

]

≥ 1 − η.

We can now give the proof of Proposition 21.

PROOF. We consider the random variable ξ : Z → H defined by

ξ = Kx(y − f †
H(x))

with values in the reproducing kernel Hilbert space H. It easy to prove that ξ
is a zero mean random variable, in fact

E [ξ] =
∫

X×Y
Kxy −Kx

〈

f †
H, Kx

〉

H
dρ(x, y)

=
∫

X
dρX(x)Kx(

∫

Y
ydρ(y|x))−

∫

X

〈

f †
H, Kx

〉

H
KxdρX(x)

= I∗Kfρ − Tf †
H.

Recalling (5) we see a standard results in the theory of inverse problems
ensures that Tf †

H = I∗Kfρ (see Engl et al. (1996) Theorem 2.6) so that the
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above mean is zero. Moreover Assumption (1) ensures (see for example van de
Vaart and Wellner (1996))

∫

Y
(y − f †

H(x))mdρ(y|x)) ≤ 1

2
m!Σ2Mm−2, ∀m ≥ 2

so that

E [‖ξ‖mH] =
∫

X×Y

(〈

Kx(y − f †
H(x)), Kx(y − f †

H(x))
〉

H

)
m
2 dρ(x, y)

=
∫

X
dρX(x)K(x, x)

∫

Y
(y − f †

H(x))2dρ(y|x))

≤κm
1

2
m!Σ2Mm−2 ≤ 1

2
m!(κΣ)2(κM)m−2.

The proof follows applying Proposition 23 with H = κM and σ = κΣ.
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