
MKWI 2010 – Conceptual Analysis and Ontological Modelling in Information Systems

15

Ontology-based Product Catalogues:
An Example Implementation

Philipp Nowakowski, Heiner Stuckenschmidt

KR&KM Research Group,
University of Mannheim

Abstract. Electronic Product Catalogues are the basis for offering and selling products
in online market places. To be efficient, these catalogues have to provide a semantically
precise description of product features to allow for effective matchmaking of products and
customer requests. At the same time, the description has to follow a common terminology
that allows the integration with the catalogues of other providers on the same market place.
In this paper, we argue for the use of ontologies as a basis for defining product catalogues.
More precisely, we suggest using eClassOWL, an ontological model of the eClass Standard
as a basis for encoding product information as formal class descriptions in the web ontolo-
gy language OWL. We support our argument by presenting an ontology based implementa-
tion of a real product catalogue that uses eClass terminology and supports flexible mat-
chmaking based on approximate logical reasoning.

1 Introduction

As more and more business is performed online, the importance of electronic
marketplaces where products and services are traded in a semi-automatic way is
increasing steadily. One of the basic problems connected to an efficient use of
electronic marketplaces is the problem of matchmaking between offers for pro-
ducts or services and requests by potential customers (Veit 2003). Electronic pro-
duct catalogues provide the basis for offering products on such a market place.
Matchmaking algorithms try to find products in a catalogue that meet the
requirements of a requester as closely as possible. This task is non-trivial as in
many cases, it is not possible to find perfect matches. In this situation, the
matchmaking algorithm has to find ‟good enough‟ offers. Determining which
offers are ‟good enough‟ often does not only depend on offer and request itself,
but also on the preferences of the customer and the intended use of the product or
service. This means that matching has to understand the nature of a product to be
able to decide if it is similar to what the customer wants and it has to be
customizable towards the specific needs of a customer. Another challenge for
successful matchmaking in electronic marketplaces is the need to integrate

 Philipp Nowakowski, Heiner Stuckenschmidt

16

heterogeneous product and service descriptions from different product catalogues
to enable the customer to chose from different providers, as the representations
used by different participants for their internal purposes are often geared towards
the specific needs of the company and show little standardization across different
enterprises. In order to be able to use this information in matchmaking, open stan-
dards for classifying and describing products have been developed that provide a
common framework for describing products and services by assigning products to
product classes and by defining a number of properties for describing the concrete
offer in more details. Examples of such standards are eCl@ss, UNSPSC and Ro-
settaNet (Hepp et al. 2007).

In previous work, we have argued for the need of providing flexible match-
making services for finding complex products and services in product catalogues
and proposed ontology-based representation and matchmaking as a basis for intel-
ligent access to product information (Stuckenschmidt and Kolb 2008). In this pa-
per, we present a demonstration system implementing the idea of ontology-based
representation and matchmaking in product catalogues. In particular, we have
implemented the prototype of a web shop that uses the eClassOWL ontology
(Hepp 2006) as a basis for representing the product catalogue of Pepperl&Fuchs,
one of the worldwide leading providers of components for process automation.
The representation uses concept IDs and background knowledge from eClas-
sOWL and describes products in terms of class descriptions in the web ontology
language OWL. User requests for certain products are also represented as OWL
concepts and matched against the available product categories.

The paper is structured as follows: In Section 2 we briefly review the idea of
ontology-based matchmaking of product and service descriptions and explain pos-
sibilities for guiding the matching process based on user preferences. We then
discuss our approach for formalizing the Pepperl&Fuchs product catalogue based
on eClassOWL that supports the application of the matchmaking approach in
Section 3. Section 4 presents the actual demonstration system and its use. We close
with a discussion of lessons learned when applying the idea of ontology-based
product catalogues to the Pepperl&Fuchs case.

2 Ontology-based Matchmaking

Li and Horrocks (Li and Horrocks 2004) propose to model offers/sales and re-
quests as description logic expressions such as the following example taken from
their paper:

We assume a request asking for a Sales service that offers PCs or laptops with
at least 512 MB main memory, at least 256 MB cache memory and a price of at
most 500 Dollars. The corresponding request can be formulated using the follow-
ing concept expression:

MKWI 2010 – Conceptual Analysis and Ontological Modelling in Information Systems

17

Request:
restriction(item allValuesFrom(
 intersectionOf(unionOf(PC Laptop)
 restriction(has-main-memory minCardinality(512))
 restriction(has-cache-memory minCardinality(256))
 restriction(price maxCardinality(500)))))

We further assume a sales service offering PCs with 256 MB main memory and
256 MB cache memory at a price of 450 Dollars and Laptops with 512 MB Main
memory and 256 MB cache memory at a price of 650 Dollar. This service can be
described using the following concept expression1:

Advert 1:

restriction(item allValuesFrom(
intersectionOf(PC

restriction(has-main-memory minCardinality(256))
restriction(has-cache-memory minCardinality(256))
restriction(price maxCardinality(450)))))

Advert 2:
restriction(item allValuesFrom(

intersectionOf(Laptop
restriction(has-main-memory minCardinality(512))
restriction(has-cache-memory minCardinality(256))
restriction(price maxCardinality(650)))))

The example describes a sales service and its properties. Here sales identifies the
type of service that can be based on an existing classification and the specifics of
the service are represented using constraints on the relevant properties. As an
important aspect of a sales service, the offered product is represented as well by
assigning it to a product class (in this case the class of personal computers) and
restrictions on the properties of the individual product such as the memory size
and properties of the whole offer such as the amount available and the unit price.
A major problem of existing matchmaking approaches that rely on standard des-
cription logic inference for computing matches as explained above is the lack of
differentiation provided by the four degrees of matching. If an offer only disagrees
with the request on a single property it drops out of the class of subsuming mat-
ches and ends up in the least attractive class of intersection matches that will
contain almost any offer with only the slightest relation to the request.

1 We use the OWL abstract syntax to describe concepts. Details of this syntax can be found in
http://www.w3.org/TR/owl-semantics/

 Philipp Nowakowski, Heiner Stuckenschmidt

18

Refer back to the example from above: It is easy to see that neither Advert 1 nor
Advert 2 satisfies the specified request because they both fail to satisfy one of the
requirements. While the PCs do not have enough main memory, the laptops are
too expensive. The goal of our work is to provide a more fine-grained approach to
matchmaking in the context of description logics that differentiates between diffe-
rent degrees of matching in a meaningful way and is also able to provide feedback
to the requester on the specific aspects of an offer that did not match the request.
Our approach to avoid these problems is based on the idea of a stepwise relaxation
the matching conditions by ignoring certain aspects of the descriptions to be
matched. The challenge of this approach is to define the relaxation in such a way
that the properties mentioned above are met and the relaxation has a meaning in
the context of the underlying logic. The approach we have developed is based on
the signature - the names of concepts and relations - of the expressions to be
matched. The idea is to determine a subset of this signature that can be ignored in
the process of computing subsumption relations. With regards to the previous
matching example we could perform a relaxation on the memory constraint by
rewriting the „has-memory‟ property appropriately. This would lead to a
reformulation of the matching problem where as a consequence Advert 1 would
now match the request. More details of this approach are described in
(Stuckenschmidt 2007) and (Stuckenschmidt and Kolb 2008).

The creation of the subset that can be ignored during matching has also been a
target of our research resulting in the development of several strategies which ex-
pand the subset of relaxed concepts and relations in a way that helps the iterative
partial matching algorithm find the most relevant matches as early as possible. For
example we have defined strategies that exploit the background ontology (MORE-,
LESS-Strategy). Moreover, the fact that the relaxation of the match is guided by
concept- and property names makes it easy for the customer to formulate prefe-
rences that are to be taken into account. In particular, the user can provide an or-
dering on the properties of a product, say „has-memory > price‟ that can be used to
decide that offers that do not meet the price criterion are preferred over offers that
do not meet the „has-memory‟ criterion.

3 Knowledge Modelling

The main challenge in building the demo system was to create an ontology-based
representation of the product catalogue that supports the application of the partial
matchmaking method described above and that can be easily combined with offers
from other catalogues to meet the needs of the electronic marketplace. The first
requirement is met by translating XML-based product descriptions from the cata-
logue into ontological classes represented in OWL. The second criterion is met by
using eClassOWL as a basis for describing the vocabulary and for providing back-
ground knowledge in terms of a global hierarchy of product classes. Fortunately,

MKWI 2010 – Conceptual Analysis and Ontological Modelling in Information Systems

19

the available catalogue already used eCl@ss IDs for most of the definitions, there-
fore the main task was to create OWL definitions and link them with the eClas-
sOWL model.

3.1 The eClassOWL Ontology

eClassOWL is an OWL DLP ontology for products and services and is based on
the comprehensive categorization standard eCl@ss 5.1 that includes the following
main building blocks:

1. products and services concepts (e.g. „TV Set‟)
2. properties for these products and services (e.g. „screen size‟)
3. values for enumerated data types (e.g. 15‟‟, 17‟‟, 19‟‟, …)
4. a hierarchy of the product concepts reflecting the perspective of a buying

organization (!)
5. recommendations which properties should be used for which type of

product
6. recommendations which values are allowed for which (object) property.

The eClassOWL ontology is a transformation of the eCl@ss 5.1 standard to the
OWL (Antoniou and van Harmelen 2003) format. The transformation process,
structure of the ontology and naming conventions are described in full detail in
(Hepp 2005).

3.2 Modelling Catalogues in eClassOWL

Our system implementation uses the eClassOWL ontology as the common vo-
cabulary which is used to represent the catalogue data internally. Each catalogue
item is basically a complex OWL class description composed of concepts and
properties defined in the eClassOWL ontology.

restriction(item someValuesFrom

 intersectionOf(C_AGZ377003-tax
 restriction(P_BAA469001 allValuesFrom(V_BAB325001))
 restriction(P_BAD840001 allValuesFrom(V_BAB331001))
 restriction(P_BAD866001 allValuesFrom(V_BAB344001))
 restriction(P_BAD947001 allValuesFrom(V_WAA113001))
 restriction(P_BAA038001 value(-25))
 restriction(P_BAA039001 value(70))
 restriction(P_BAD856001 value(40))
 restriction(P_BAD900001 value(10))))

The displayed item describes a special type of switch used in factory automation. It
is modeled as a complex OWL description that basically is a conjunction of one

 Philipp Nowakowski, Heiner Stuckenschmidt

20

taxonomic category (e.g. C_AGZ377003-tax = “Capacitive proximity switch”), and
a number of restrictions on properties (e.g. P_BAA469001 = “Voltage type”)
defined using value ranges (e.g. V_BAB325001 = “DC, direct current”) or con-
crete values from the eClassOWL ontology.

Expressing our catalogue items using OWL descriptions allows us to leverage
partial matching in order to recommend similar products in the catalogue to the
user. By using eClassOWL as background ontology, we take advantage of having a
product taxonomy present, which we can use for fine tuning our matching tasks.
Our system is aware of the taxonomic position of product items, and uses this
knowledge during the selection for suitable matching candidates (e.g. first match
against all items at the same taxonomic level, then extend the search to all direct
children, finally extend to all descendants).

Beyond being able to use our partial matching algorithms, an OWL based data
model offers further advantages, especially if compared to a more traditional rela-
tional database backend:

- Easy validation – Using an OWL Reasoner we can search for inconsisten-
cies in the product catalogue. We can state OWL based assertions about
the instances of certain product categories, this would the allow us to easi-
ly detect a wrongly classified product using a standard OWL Reasoner (e.g.
Pellet2).

- Data integration – Merging our catalogue with external data is straightfor-
ward because of the inherent graph structure of our ontology based data
model. External data can be added into the graph and associated with ex-
isting concepts without the expensive schema adaptations that would have
been necessary in a relational database backed data model.

4 Implementation of a WebShop based on eClassOWL

The Pepperl+Fuchs web-shop is an example catalogue designed to showcase the
possibilities of description logic based data representation (Section 3) and partial
matching algorithms (Section 2) in the domain of e-commerce. The web-shop
serves as a user accessible test bed for the Partial Matcher Framework (Section
4.2). The web-shop has been implemented using the Grails web-framework which
enables rapid development of database backed websites.

4.1 Data Import and Conversion

In order to implement the ontology-based catalogue, the knowledge structures
described in Section 3 had to be created from existing data. In particular, large
parts of the product catalogue of the Pepperl&Fuchs GmbH catalogue have been
extracted from an XML file and stored in a relational database (MySQL) as well as
integrated with the original eClassOWL ontology (Hepp 2005). In addition all of

MKWI 2010 – Conceptual Analysis and Ontological Modelling in Information Systems

21

the eCl@ss product descriptions have been converted from CSV files and also
stored into the relational database.

4.2 Ontology-Based Matching Conmponent

The Partial Matcher Framework is the software implementation of the partial
matcher algorithm as described in Section 2. It is based on previous work done by
Stuckenschmidt and Kolb (2008) who created an early prototype software imple-
mentation of the partial matching algorithm. In order to meet the requirements of
actual product catalogues, the matching algorithm had to be extended with the
ability to match concrete values, in particular numbers describing certain aspects of
a product.

Figure 1: UML Diagram of the main system components

The framework incorporates several external projects, most prominently the Pel-
let2 reasoner (Sirin et al 2007), controlled through the OWLAPI library (Bechofer
et al 2003). For an in depth system description and accompanied downloads refer
to the project website2.

4.3 Using the System

The main interface of the system is a linear listing of Pepper+Fuchs GmbH con-
tent. Selection of a product link leads to a detail screen providing an overview of

2 http://ki.informatik.uni-mannheim.de/projects/partialmatcher.html

http://ki.informatik.uni-mannheim.de/projects/partialmatcher.html

 Philipp Nowakowski, Heiner Stuckenschmidt

22

the selected products properties, as well as the ability to start a search for related
products. The user starts the search for related products by clicking on one of the
buttons denoting the strategy which should be used for matchmaking. The
matchmaking process can be influenced by modifying three sets of properties
namely the white-, gray- and blacklist. The meaning of those sets is defined as
follows:

1. greylist - properties that should stepwise get included into the subset of re-
laxed properties. The order of inclusion will be determined by the selected ap-
proximation strategy.

2. blacklist - properties that should never be included into the approximation.
These properties are important for the user and therefore must not get relaxed.

3. whitelist - elements that are unimportant to the user and should get relaxed
upfront.

Let‟s take a closer look at the actual matching steps involved by considering an
example matching scenario. Assume the user has selected a product as depicted in
Screenshot 1.

Screenshot 1: Initial product view

The item describes a special type of sensor used in factory automation and the
properties that are defined for this item. In our example the user is now interested
in similar items from the catalogue. The user moves the properties “Länge des

MKWI 2010 – Conceptual Analysis and Ontological Modelling in Information Systems

23

Sensors (Length of sensor)” and “Höhe des Sensors (Height of Sensor)” into the
blacklist, because he wants those two properties to serve as hard constraints that
should not be relaxed. As a matching strategy he selects the LESS-Strategy (relax
the least occurring properties first). The matching process starts and matched
items from the catalogue are listed in descending order of their match quality. Re-
laxed properties are colored green; properties that have not yet been relaxed are
colored black.

Screenshot 2: Matching products with relaxed properties

Screenshot 2 shows the results after the second iteration of the matching process,
which so far has relaxed properties “Design of control output” and “Design of
electrical connection”. We can easily spot that they differ from the original product
on the property “Ausführung des elektrischen Anschlusses (Design of electrical
connection)” only (“Steckverbinder M8” vs. “Steckverbinder M12”). The matching
process continues to relax properties until all properties that were not in the
blacklist have been processed. In our example this leads to no additional matches.
After all properties have been considered by the matching strategy, the search for
matches is restarted but this time the taxonomic position of the current item is
included into the approximation. The strategy now extends the set of items that
should be matched against. Instead of matching only against all items with the
same taxonomic class in the eClassOWL ontology, the strategy includes all items
that are at the same taxonomic level (= taxonomic class is a sibling in the
taxonomy tree of the background ontology). For our concrete example this means
that we no longer search for items in the category “AKP252002 – Lichttaster ener-

 Philipp Nowakowski, Heiner Stuckenschmidt

24

getisch (Light scanner, energetic)” exclusively, but extend the search over all
subcategories of the parent category “AKP249002 – Optoelektronischer Sensor
(Optoelectronic Sensor)”. Screenshot 3 shows some of the results after the search
scope has been widened leading to the inclusion of several matches from the
sibling category “AKP251002 – Reflexions-Lichtschranke (Reflection light
barrier)”.

Screenshot 3: A matching product from a silbing category

5 Conclusions and Future Work

In this paper, we have presented the prototypical implementation of an ontology
based product catalogue system that supports semantic matchmaking of user re-
quests against the product descriptions in the catalogue. We have argued that cata-
logues benefit from an encoding in the web ontology language OWL, because this
provides a formal foundation for comparing products on a semantic level. We
further argued that the description of products should be linked to a standardized
representation of product categories such as eCl@ss which provides a common
terminological basis for taking about product types and their properties. In our
work, we have found that the eClassOWL is a very good starting point for ontol-
ogy-based product catalogues as it combines the fixed terminology of eCl@ss with
the formal language OWL that helps us to link product definitions with back-
ground information.

From our experience, we conclude that ontology-based product catalogues are
feasible from a technical point of view. Development in the field of semantic web
technologies has led to stable ontology language and mature query and reasoning

MKWI 2010 – Conceptual Analysis and Ontological Modelling in Information Systems

25

tools. Further, models like eClassOWL are emerging that can provide the termino-
logical basis for catalogues. The biggest obstacle so far seems to be the link be-
tween proprietary catalogue solutions and standard classifications like eCl@ss.
Standardization efforts are progressing, but legacy data is still a problem. On the
other hand, companies that want to compete on the major markets will have to
adhere to the leading standards anyways, making the most critical step towards
ontology-based product catalogues.

References

Antoniou G, van Harmelen H (2003) Web ontology language: OWL. In
Handbook on Ontologies in Information Systems, Pages : 67–92.

Bechhofer S, Volz R, Lord P (2003) Cooking the semantic web with the OWL
API. Lecture Notes in Computer Science, Pages : 659–675.

Hepp M, Leukel J, Schmitz V (2007) A Quantitative Analysis of Product
Categorization Standards: Content, Coverage, and Maintenance of eCl@ss,
UNSPSC, eOTD, and the RosettaNet.Knowledge and Information Systems
13(1):77–114.

Hepp M (2006) Products and Services Ontologies: A Methodology for Deriving
OWL Ontologies from Industrial Categorization Standards. International
Journal on Semantic Web and Information Systems (IJSWIS) 2(1):72–99.

Hepp M (2005) Representing the hierarchy of industrial taxonomies in owl: The
gen/tax approach. ISWC Workshop Semantic Web Case Studies and Best
Practices for eBusiness (SWCASE05), Galway, Irland.

Li L, Horrocks I (2004) A Software Framework for Matchmaking Based on
Semantic Web Technology. International Journal of Electronic Commerce,
8(4):39–60.

Sirin E, Parsia B, Cuenca-Grau B, Kalyanpur A, Katz Y (2007) Pellet: A practical
OWL-DL reasoner. Journal of Web Semantics 5(2):51–53.

Stuckenschmidt H, Kolb M (2008) Partial Matchmaking for Complex Productand
Service Descriptions. Proceedings of Multikonferenz Wirtschaftsinformatik
(MKWI 2008), München.

Stuckenschmidt H (2007) Partial Matching Using Approximate Subsumption. In
Proceedings of the 22nd Conference on Artificial Intelligence (AAAI-07).

Veit D (2003) Matchmaking in Electronic Markets, Jgg. 2882 of Lecture Notes in
Computer, Science. Springer Verlag, Berlin.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Parsia:Bijan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/g/Grau:Bernardo_Cuenca.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kalyanpur:Aditya.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Katz:Yarden.html
http://www.informatik.uni-trier.de/~ley/db/journals/ws/ws5.html#SirinPGKK07

