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abstract. Arbitrary public announcement logic (APAL) is an extension

of multi-agent epistemic logic that allows agents’ knowledge states to be

updated by the public announcement of (possibly arbitrary) epistemic for-

mulae. It has been shown to be more expressive than epistemic logic, and

a sound and complete axiomatization has been given. Here we address the
question of decidability. We present a proof that the satisfiability problem

for arbitrary public announcement logic (APAL) is co-RE complete, via a

tiling argument.
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1 Introduction

Arbitrary announcement logic (APAL) is an extension of multi-agent epis-
temic logics with public announcements and arbitrary announcements. A
public announcement allows the information state of every agent to be up-
dated by publicly informing them that some epistemic formula, ψ is true.
An arbitrary announcement is added to the language to allow us to quantify
over all possible announcements. This logic is described in detail in [1]. It is
shown to be more expressive than normal epistemic logic and a sound and
complete axiomatization is given. Furthermore, in [2] a tableau-calculus is
presented to determine validity in APAL.

While the above results indicate that the set of validities for APAL is
recursively enumerable, the full decidability of the satisfiability problem has
remained open. Here we show that the satisfiability problem for the logic
is undecidable via a tiling argument. This is a surprising result since in
[1] it is shown that APAL is bisimulation invariant. Hence every APAL
formula is satisfied by a tree-like model, rather than the grid-like models
typically required for tiling arguments (see [9] for a detailed analysis of
undecidability in extensions of epistemic logic). The undecidability follows
from the power of the arbitrary announcement operator. The arbitrary
announcement operator, ⋄φ expresses:

“there exists a true formula of epistemic logic, that when publicly
announced establishes the truth of φ.”

Implicit in this statement is an existential quantification over all formulae of
epistemic logic, and we show that this expressive power is sufficient to allow
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us to encode an undecidable tiling problem. This is not an entirely surpris-
ing result, despite the many other favorable properties of APAL. In [9] a
detailed survey is presented of undecidable temporal and epistemic logics,
and an analysis is presented of the properties leading to undecidability. The
arbitrary announcement operator is transitive in nature and reminiscent of a
temporal operator. However, most undecidable logics surveyed in [9] are not
bisimulation invariant, indicating a certain uniqueness to this result. An-
other related result is the undecidability of iterated modal relativization [7].
This logic is shown to be highly undecidable (Σ1

1-complete), again, by en-
coding a tiling problem. Other undecidable logics considered in [7] combine
common knowledge with iterated relativization. ‘Relativization’ is another
term to denote the structural restriction that constitutes the informative ef-
fect of an announcement. Iterated relativization is different from arbitrary
announcement. The former means that one allows (arbitrary finite length)
sequences of model restrictions for a given epistemic formula (‘announce-
ment’); note that after announcements of a modal formula, announcing that
formula again may still be informative, as in the famous ‘Muddy Children
Problem’ [4]. But the latter means model restriction for any epistemic for-
mula. Now the iteration is implicit. It is there because the sequence of two
epistemic announcements is again equivalent to an epistemic formula [1].

2 Syntax and semantics

The formulas of APAL, Lapal are inductively defined as

φ ::= p | ¬φ | (φ ∧ φ) | Kaφ | [φ]φ | �φ

where a is taken from the set of agents A, and p is taken from the set of
atomic propositions P . Let Lel be the set of formulas not containing any of
the operators [φ] or �.

These formulas are interpreted over structures M = (S,∼, V ) where S
is a set of worlds, ∼: A −→ ℘(S × S) assigns a reflexive, transitive and
symmetric accessibility relation, ∼a to each agent a, and V : P −→ ℘(S)
maps each proposition to the set of worlds where it is true.

Let M = (S,∼, V ) and suppose that s ∈ S. The semantics of APAL are
given as:

M, s |= p iff s ∈ V (p)
M, s |= ¬φ iff M, s 6|= φ

M, s |= φ1 ∧ φ2 iff M, s |= φ1 and M, s |= φ2

M, s |= Kaφ iff ∀t ∈ S where s ∼a t, M, t |= φ

M, s |= [ψ]φ iff M, s |= ψ =⇒Mψ, s |= φ

M, s |= �φ iff ∀ψ ∈ Lel, M, s |= [ψ]φ

where Mψ = (S′,∼′, V ′) is such that: S′ = {s ∈ S | M, s |= ψ}; for all
a ∈ A, ∼′a=∼a ∩(S′ × S′); and for all p ∈ P , V ′(p) = V (p) ∩ S′. As usual
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we take Kaφ to mean agent a knows φ, and let Laφ abbreviate ¬Ka¬φ
(agent a considers φ possible).

We say an APAL formula φ is satisfiable if there exists some model
M = (S,∼, V ) and some world s ∈ S such that M, s |= φ, and if M, s |= φ
for all model-world pairs, M, s, we say φ is valid.

Note that when defining the semantics of �φ we restrict the arbitrary
announcements to range only over the epistemic formulas (i.e. those in
Lel). We reason for this is that we obviously cannot allow the arbitrary
announcements to range over arbitrary announcements (i.e. formulae of the
form �ψ) as the semantics would then be undefined. Further, we do not
let the arbitrary announcements range over announcements (such as [ψ]α
where ψ, α ∈ Lel) since such formulas are expressively equivalent to pure
epistemic formulae (see [11] for a translation).

The formula �φ expresses the statement “after publicly announcing any
true formula of epistemic logic, φ must be true.” As we see in its formal
semantics above, this statement implicitly quantifies over all true formulae
of epistemic logic. For example, suppose φ were the formula Kap → Kbp.
The formula �φ is true at some world where p is true, if and only if for every
b-related world, u where p is not true, for every epistemic formula ψ, there is
some a-related world, v, that agrees with u on the interpretation of ψ. (This
is because otherwise the announcement of p ∨ ψ would be enough to make
Kap∧¬Kbp true). This is a strong property to be able to express. If two sets
of worlds cannot be distinguished by any epistemic formula then they are,
for the purposes the logic, identical. Given that the epistemic formulae can
be arbitrarily large, using this notion of equivalence we are able to encode
a grid-like property for finite grids of arbitrary size. This expressivity is
exploited to encode an arbitrary tiling problem which is sufficient to show
that the satisfiability problem for APAL is co-RE complete.

3 Tilings and undecidability

We show the satisfiability problem is undecidable for APAL by embedding
a tiling problem that is known to be co-RE complete (i.e. equivalent to
computing the membership of the complement of any recursively enumerable
set).

The tiling problem is as follows:

DEFINITION 1. Let C be a finite set of colours and define a C-tile to be a
four-tuple over C γ = (γt, γr, γf , γℓ), where the elements are referred to as,
respectively, top, right, floor and left. The tiling problem is, for any given
finite set of C-tiles, Γ, determine if there is a function λ : ω × ω −→ Γ such
that for all (i, j) ∈ ω × ω:

1. λ(i, j)t = λ(i, j + 1)f

2. λ(i, j)r = λ(i+ 1, j)ℓ.

The tiling problem has been shown to be co-RE complete by Harel [6]
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(see [8] for an overview of the application of tiling problems to complexity
for modal logics).

4 Encoding the tiling problem

To encode the tiling problem we seek to define a grid like structure in the
model M . That is we define a formula grid whereby M, s |= grid implies the
structure of M is similar to ω×ω. To do this we exploit one of the stronger
properties of APAL: the ability to quantify over all epistemic formulas.
This allows us to define an equivalence between the worlds in a model and
modulo that equivalence, a grid like structure.

Such encodings are rarely elegant and this is no exception. We use the
following atoms:

1. We label each world as either white (W ) or black (B) with the under-
standing that B is an abbreviation for ¬W . We intend to label the
model in chess-board pattern.

2. We use the set of agents a, b, c, d and t where we suppose that:

• a and b describe some vertical successor relation (a goes from a
black square to a white square, and b goes from a white square
to a black square);

• c and d describe some horizontal successor relation (c goes from
a black square to a white square, and d goes from a white square
to a black square);

• the relation for the agent t includes the relations for the agents
a, b, c and d.

3. For each tile γ ∈ Γ we assign a proposition (also denoted γ) with
the understanding that the tiles are mutually exclusive (i.e. γ →∧
δ 6=γ ¬δ).

Such a structure is represented in Figure 1 (with the assumption that ∼t
is a universal relation over all worlds).

Even though our accessibility relations are equivalence relations, in the
multi-agent setting we can enforce directionality by composing equivalence
relations for different agents (and grounding them by referring to truths in
local or boundary conditions of our structure, such as the actual state, or the
top-left state, or ...). More formally, even though ∼a and ∼d are equivalence
relations, their composition ∼a ◦ ∼d is not symmetric: we may have that
x ∼a y ∼d z, i.e., x(∼a ◦ ∼d)z, but not z(∼a ◦ ∼d)x. Although we were
not inspired by this, it deserves mentioning that such emerging asymmetry
in multi-agent conditions is used to great effect in the expressivity proofs in
Chapter 8 of [11].

The encoding comes in three parts: Firstly, we would like to define t
to contain the transitive closure of the other epistemic relations. Next, we
define a grid like (or chessboard like) structure over the model. Finally we
use this grid-like model to state that the given tiling exists.
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Figure 1. A grid-like model.

First note that these descriptions grossly over-simplify the actual con-
struction. To properly execute these steps we would require a mechanism
that allows us to define when one world is equivalent to another. This we
do not have. However, the arbitrary announcement mechanism allows us to
identify when two sets of worlds cannot be distinguished by any announce-
ment. We will, for the moment ignore these considerations. We will use the
term equivalent (rather than equal) to describe to worlds that are indistin-
guishable with respect to epistemic logic, and we will precisely define this
notion in the subsequent sections.

4.1 Weak transitive closure
The following formula sets ∼t to include a weak transitive closure of ∼a,
∼b, ∼c and ∼d. Particularly at every world w in the model, for each agent
x ∈ {a, b, c, d}, if there is some world w′ of a different colour to w where
w ∼x w′, then there is some world u where w ∼t u and u is equivalent to
w′.

alt = Kt

(
B → (LaW ∧ LcW )
W → (LbB ∧ LdB)

)
(1)

T ∗ = Kt�
∧ (

KtB → (KaB ∧KbB ∧KcB ∧KdB)
KtW → (KaW ∧KbW ∧KcW ∧KdW )

)
.(2)

The important part of this formula is the arbitrary announcement (�) in
T ∗. This states that no announcement can be made that informs agent t of



28 Tim French and Hans van Ditmarsch

the colour of the current square, without informing every other agent as well.
To the contrary, suppose that this were not true. Specifically suppose the
current world is black, and agent a considers some white world, u, possible
where u was demonstrably different to every world t considers possible (say
by formula χu). Then the public announcement χu∨B would inform t that
the current world is black, but not a.

4.2 Defining a grid
To define a grid-like structure we will require the following properties:

1. Every black world has an a-successor that is white and a c-successor
that is white.

2. Every white world has a b-successor that is black and a d-successor
that is black.

3. The current world is black and both b and d know this.

4. If the current world is black:

• for every white world u that is a-reachable from the current world,
every black world that is d-reachable from u is equivalent to some
black world that is b-reachable from some white world that is c-
reachable from the current world.

• for every white world u that is c-reachable from the current world,
every black world that is b-reachable from u is equivalent to some
black world that is d-reachable from some white world that is a-
reachable from the current world.

5. If the current world is white:

• for every black world u that is b-reachable from the current world,
every white world that is c-reachable from u is equivalent to some
white world that is a-reachable from some black world that is d-
reachable from the current world.

• for every black world u that is d-reachable from the current world,
every white world that is a-reachable from u is equivalent to some
white world that is c-reachable from some black world that is b-
reachable from the current world.

This is achieved with the following formulas:

st = B ∧KbB ∧KdB(3)
C1 = B → � ((La(W ∧ LdB))→ (Kc(W → LbB)))(4)
C2 = B → � ((Lc(W ∧ LbB))→ (Ka(W → LdB)))(5)
C3 = W → � ((Lb(B ∧ LcW ))→ (Kd(B → LaW )))(6)
C4 = W → � ((Ld(B ∧ LaW ))→ (Kb(B → LcW )))(7)
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Again, the arbitrary announcement is used to establish a notion of equiva-
lence between two worlds. The formula st simply specifies the state of the
initial world (the bottom, left hand corner of the grid which, to extend the
chess-board analogy, is black). The other formulae C1 − C4 define a weak
commutativity property (e.g. every black world that is ∼a∼d reachable from
the current (black) world, is ∼c∼b reachable from the current world).

4.3 The existence of a tiling
Given the previous formulas are sufficient to set up the desired chessboard
pattern, it is a simple matter to exploit it to assert the existence of a tiling.
Suppose the set Γ is given as above. Let:

blk = B →
 ∧
γ∈Γ

(
γ →

∧[
Ka(W →

∨
γt=δb δ))

Kc(W →
∨
γr=δℓ δ))

])(8)

wht = W →
 ∧
γ∈Γ

(
γ →

∧[
Kb(B →

∨
γt=δb δ))

Kd(B →
∨
γr=δℓ δ))

]) .(9)

The interpretation of these formula is straightforward. Given a tile γ is
true at the current state, we assert that the bottom of all successor vertical
tiles 1 is the same colour as γt. In the case that the current state is black
the successor vertical states are the a-reachable white states, and if the
current state is white then all successor vertical states are the b-reachable
black states. A similar characterization exists for the horizontal (left-right)
correspondence.

Finally we can define the formula:

(10) TileΓ = alt ∧ T ∗ ∧ st ∧Kt(C1 ∧ C2 ∧ C3 ∧ C4 ∧ blk ∧ wht).
In the following section we show that the existence of a model for this
formula is equivalent to the existence of a tiling of the ω-plane for γ.

5 Proof of correctness

In this section we show that the above formula, TileΓ, is satisfiable in APAL
if and only if the set of tiles Γ is able to tile the plane ω × ω.

We first address the soundness of the construction of the formula TilesΓ.

LEMMA 2. Given there is a Γ-tiling of the plane, λ : ω×ω −→ Γ, we may
define a model of APAL that satisfies the formula TileΓ.

Proof. This model is taken directly from the tiling see Figure 2 with the
knowledge relation of t being the universal modality. That is we let our
model be M = (S,∼, V ) where:

• S = ω × ω,
1Whilst the existence of multiple vertical successors is not very “grid-like” we will

later show this is inconsequential.
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• V (B) = {(i, j)| i+ j is even} and V (W ) = {(i, j)| i+ j is odd},
• for each γ ∈ Γ, V (γ) = {(i, j)| λ(i, j) = γ},
• ∼a is the transitive, reflexive and symmetric closure of the relation
{((i, j), (i, j + 1))| (i, j) ∈ V (B)},
• ∼b is the transitive, reflexive and symmetric closure of the relation
{((i, j), (i, j + 1))| (i, j) ∈ V (W )},
• ∼c is the transitive, reflexive and symmetric closure of the relation
{((i, j), (i+ 1, j))| (i, j) ∈ V (B)},
• ∼a is the transitive, reflexive and symmetric closure of the relation
{((i, j), (i+ 1, j))| (i, j) ∈ V (W )},
• ∼t = {((i, j), (k, ℓ))| i, j, k, ℓ ∈ ω}.

We now show that M, (0, 0) |= TileΓ. For the parts of TileΓ not con-
taining arbitrary announcements this is straightforward. We can see that
M, (0, 0) |= alt ∧ st by construction and as λ is a tiling it follows that
M, (0, 0) |= Kt(blk∧wht). The remaining formulas T ∗ and C1−C4 involve
arbitrary announcements. Let’s first examine T ∗. This is equivalent to, for
all i, j ∈ ω,

M, (i, j) |= �
∧ (

KtB → (KaB ∧KbB ∧KcB ∧KdB)
KtW → (KaW ∧KbW ∧KcW ∧KdW )

)
.

Suppose that (i, j) ∈ V (B). If any announcement [φ] makes KtB true, it
must be that Mφ consists only of black worlds, and hence, Mφ, (i, j) |=
(KaB ∧KbB ∧KcB ∧KdB). A similar argument holds for (i, j) ∈ V (W ).

We will now show that M, (0, 0) |= Kt(C1), and the cases for C2-C4 can
be shown similarly. Suppose that (i, j) ∈ V (B). We must show that for all
epistemic ψ where M, (i, j) |= ψ, Mψ, (i, j) |= La(W ∧ LdB)) → Kc(W →
LbB). Since we are quantifying over all submodels Mφ corresponding to
epistemic formula, it is sufficient to show that M ′, (i, j) |= La(W ∧LdB))→
Kc(W → LbB) where M ′ = (S′,∼′, V ′) is any submodel where (i, j) ∈ S′.
In such a case, since M ′, (i, j) |= La(W ∧LdB), it follows that (i, j+1), (i+
1, j + 1) ∈ S′. Also, (i+ 1, j) is the only one white world c-related to (i, j).
If (i + 1, j) ∈ S′, then because (i + 1, j + 1) ∈ S′, we have M ′, (i, j) |=
Kc(W → LbB). If (i + 1, j) /∈ S′ then M ′, (i, j) |= Kc(W → LbB) as
M ′, (i, j) |= Kc¬W . Thus for every sub-model, M ′ including (i, j) we have

M ′, (i, j) |= La(W ∧ LdB))→ Kc(W → LbB)

and thus for every epistemic announcement ψ where M, (i, j) |= ψ we have
Mψ, (i, j) |= La(W∧LdB))→ Kc(W → LbB). ThereforeM, (0, 0) |= KtC1.
A similar argument can be applied for C2-C4 so it follows that given a Γ-
tiling exists, we can show, TileΓ is satisfiable. �
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Figure 2. The conversion of a a tiling into a model.

For the completeness argument, we suppose that M, s |= TileΓ. From M
we will show that, for each n ∈ ω we can construct a tiling, λn of an n× n
grid. This is shown to be equivalent to tiling the full ω × ω plane in the
following lemma.

LEMMA 3. If Γ is able to tile an n × n grid for all n ∈ ω, then Γ is able
to tile the ω × ω plane.

Proof. Let λn be the n × n tiling, and define λ∗ as a tiling of the plane
where λ∗(0, 0) = γ for some γ where for some infinite N0,0 ⊆ ω, for all
n ∈ N0,0 λn(0, 0) = γ. We then proceed by induction over ω × ω where
(i1, j1) ≤ (i2, j2) if and only if i1 + j1 < i2 + j2 or i1 + j1 = i2 + j2 and
i1 ≤ i2. For (i, j) > (0, 0), we define λ∗(i, j) such that

• if i > 0 then λ∗(i, j) = γ where for some infinite Ni,j ⊆ Ni−1,j+1, for
all n ∈ Ni,j λn(i, j) = γ,

• otherwise (if i = 0) we let λ∗(0, j) = γ where for some infinite N0,j ⊆
Nj−1,0, for all n ∈ N0,j λn(0, j) = γ

It can be shown that such γ and Ni,j can always be found (since there
are infinitely many finite tilings and only finitely many tiles, the pigeon
hole principle may be applied). Therefore such a λ∗ may be defined by
induction, (or indeed, Koenig’s Lemma). �
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To proceed we require the following definition:

DEFINITION 4. Two worlds are 0-Q-bisimilar, iff they satisfy exactly the
same set of propositional atoms taken from Q.
For all n ∈ ω, two worlds, u and v in M , are n-Q-bisimilar (written u ∼=Q

n v)
if and only if:

1. u ∼=Q
n−1 v;

2. for every x ∈ {a, b, c, d, t}, for every world w where u ∼x w, there is
some world w′ where v ∼x w′ and w ∼=Q

n−1 w
′; and

3. for every x ∈ {a, b, c, d, t}, for every world w where v ∼x w, there is
some world w′ where u ∼x w′ and w ∼=Q

n−1 w
′.

We note for all n and Q, n-Q-bisimilarity is an equivalence relation.

LEMMA 5. Suppose that the set of propositions, Q, is finite. Then for
every n, there is a finite set of Lel formulas {φ1, . . . , φm} such that for
every u ∈ S, there is some i ≤ m such that for all v ∈ S, u ∼=Q

n v if and
only if M,v |= φi.

Proof. This can be shown by induction. As a base case we take the set of
formulas φ(Q′) =

∧
x∈Q′ x ∧ ¬

∨
x∈Q\Q′ x for all Q′ ⊆ Q. Clearly, for each

u ∈ S, we can let Q′ = {x|u ∈ V (x)} and then for all v ∈ S, M,v |= φ(Q′)
if and only if v ∼=Q

0 u.
For the inductive step, suppose that {φ1, . . . , φm} is a set of formulas

such that for every u in S, there is some i ≤ m such that for all v ∈ S,
u ∼=Q

n v if and only if M,v |= φi. For each u ∈ S let the corresponding
formula φi be denoted φnu, and let

φn+1
u = φnu ∧

∧
x∈A

(succux ∧ nsuccux)

where

succux =
∧
{Lxφnv | v ∼x u}

nsuccux = Kx

∧
{¬φi| ∀v ∼x u, M, v 6|= φi}

for the set of agents, A = {a, b, c, d, t}.
Then for any v ∈ S where M,v |= φn+1

u we have:

1. v ∼=Q
n u since M,v |= φnu.

2. for every x ∈ {a, b, c, d, t}, for every world w where u ∼x w, we have
succux → Lxφ

n
w, so M,v |= Lxφ

n
w, and thus there is some world w′

where v ∼x w′, M,w′ |= φnw, so w ∼=Q
n w′.
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3. for every x ∈ {a, b, c, d, t}, for every world w where v ∼x w, there is
some world w′ where u ∼x w′ and w ∼=Q

n w′. To see this, suppose for
contradiction that there was some world w such that v ∼x w and for
every world w′ where u ∼x w′ we have w 6∼=Q

n w′. Therefore, we have
nsuccux → Kx¬φnw so M,v |= Kx¬φnw, contradicting v ∼x w.

Therefore v ∼=Q
n+1 u as required. Conversely, if v ∼=Q

n+1 u, then

1. M,v |= φnu since v ∼=Q
n u.

2. for all x ∈ A, for every world w where u ∼x w there is some world
w′ where v ∼x w′ and w ∼=Q

n w′ (hence M,w′ |= φnw). Therefore
M,v |= succux.

3. for every x ∈ {a, b, c, d, t}, for every world w where v ∼x w, there
is some world w′ where u ∼x w′ and w ∼=Q

n w′. By the induction
hypothesis, for every w where v ∼x w, we have M,w |= ∨

u∼xw′ φ
n
w′ .

For all w′ where u ∼x w′ we clearly have φnw′ →
∧{¬φi| ∀v ∼x

u, M, v 6|= φi}, so it follows that M,v |= nsuccux.

Thus M,v |= φn+1
u completing the induction. �

For the following proofs we define a new operator �Q
n , to mean “for all

public Q-announcements of depth n”. The semantics are given as: M,u |=
�Q
n φ if and only if for all Lel formulae ψ with at most n nestings of knowledge

operators and containing only the atoms Q, if M,u |= ψ, then Mψ, u |= φ.

LEMMA 6.

1. For all n, for all Q, �φ→ �Q
n φ is a validity.

2. For any two worlds u, v where u ∼=Q
n v, for any Lel formula φ of depth

at most n and containing only atoms from Q, M,u |= φ if and only if
M,v |= φ.

3. For any two worlds u, v where u ∼=Q
n+m v, for any Lel formula φ of

depth at most n and containing atoms only from Q, M,u |= �Q
mφ if

and only if M,v |= �Q
mφ.

Proof.

1. Obvious.

2. By induction. Clearly the statement holds for the case n = 0. Suppose
the statement holds for n. Every Lel formula φ, of depth n+1, can be
written as a Boolean combination of atoms and formulas Kxi

φi (for
i = 1, . . . ,m) where φi is a formula of depth at most n. If u ∼=Q

n+1 v,
then for every u′ ∼x u there is some v′ ∼x v where u′ ∼=Q

n v′, and
vice-versa. By the induction hypothesis, M,u′ |= φi for all u′ ∼xi

u
if and only if M,v′ |= φi for all v′ ∼xi

v. It follows that M,u |= φ if
and only if M,v |= φ.
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3. To prove this statement we extend the induction above with the case
for m. In the case m = 0 it is effectively the second part of this
lemma. Now suppose the statement holds for a givenm (and for all n).
Without loss of generality, suppose that u ∼=Q

n+m v and M,u |= ¬�Q
mφ

where φ is of depth n. Therefore there is some announcement, ψ, of
depth m that makes φ false. This is equivalent to M,u |= ψ ∧ ¬φψ
where φψ is inductively defined by replacing subformulas Kx(α) with
Kx(ψ → αψ), and otherwise acting as the identity (see Proposition
4.22 of [11] for a formal description of this translation). Now ψ∧¬φψ
is of depth n + m so the result follows from the second part of this
Lemma.

�

We will refer to a formula of depth n, containing only atoms from Q
as an n-Q-formula. The above lemmas and definitions will be applied to
show how the arbitrary announcements in the formula TileΓ can allow us
to establish that two worlds are n-Q-bisimilar for arbitrary n and arbitrary
Q. To this end, for n ∈ ω and finite Q ⊂ P , we define the formula Tile(n,Q)

Γ

to be the formula TileΓ with every arbitrary announcement � replaced by
�Q
n (and likewise for subformulas such as C1(n,Q)).
There are two types of public announcement in the formula TileΓ. The

first appears in the sub-formula T ∗, and the following lemma shows how this
allows the knowledge relation of agent t to act as a weak kind of transitive
closure for the other knowledge relations.

LEMMA 7. Let n ≥ 1, x ∈ {a, b, c, d} and Q ⊂ P be a finite set of
propositional atoms including {B,W} ∪ Γ. Suppose that u ∈ V (B) (resp.
u ∈ V (W )), u ∼x v for some v ∈ V (W ) (resp. v ∈ V (B)), u ∼=Q

n w,
and M,u |= (alt ∧ T ∗)(n,Q). Then there is some w′ such that w ∼t w′ and
w′ ∼=Q

n−1 v.

Proof. Suppose that M,u |= (alt ∧ T ∗)(n,Q), u ∼=Q
n w, and u ∼x v where

u ∈ V (B) and v ∈ V (W ). From T ∗ we have M,u |= �Q
n−1(KtB → KxB).

As u ∼=Q
n w and n ≥ 1, by Lemma 6.3 we have M,w |= �Q

n−1(KtB → KxB).
Now, suppose for contradiction that for all w′ ∼t w we have w′ 6∼=Q

n−1 v. By
Lemma 5 there is some formula φn−1

v such that M,v |= φn−1
v , and for all

w′ ∼t w we have M,w′ |= ¬φn−1
v . Therefore we may make the public

announcement ψ = B ∨ φn−1
v . Thus Mψ, w |= KtB, and since M,w |=

�Q
n−1(KtB → KxB), we have Mψ, w |= KxB. It follows that M,w |=

ψ ∧Kx(ψ → B). However, M,u |= ψ ∧ ¬Kx(ψ → B). Since ψ = φn−1
v ∨B,

ψ has depth n − 1 and thus Kx(ψ → B) has depth n. As u ∼=Q
n w, by

Lemma 6.2, u and w agree on all formulas of depth n. This contradicts the
inference that M,u |= ¬Kx(ψ → B) and M,w |= Kx(ψ → B). �

The other occurrences of arbitrary announcements in the formula TileΓ
appear in the formulae C1−C4. These formulas use the arbitrary announce-
ments to establish a weak type of commutativity property, which is essential
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u

v’

v

w

w’

n n−2

u’

Figure 3. The construction of Lemma 8, inferring the worlds w and w′ are
n− 2-bisimilar, given the worlds u and u′ are n bisimilar.

in defining a grid. The following lemmas clarify this property and show that
it is enforced by the formula TileΓ. The first lemma deals with the black
worlds and the second lemma deals (symmetrically) with the white worlds.

LEMMA 8. Suppose that u ∈ V (B), u ∼a v, for some v ∈ V (W ). Let n ≥ 2
and suppose also that u ∼=Q

n u′ for some finite Q ⊂ P including {B,W}∪Γ,
and u′ ∼c v′ for some v′ ∈ V (W ). Given that M,u |= (C1 ∧ C2)(n,Q):

1. for all w ∈ V (B) where v ∼d w, if there is some w′ ∈ V (B) where
v′ ∼b w′ then there is some such w′ where either w ∼=n−2 w′ or
w′ ∼=Q

n−2 u
′.

2. for all w′ ∈ V (B) where v′ ∼b w′, if there is some w where v ∼d w,
then there is some such w where either w ∼=n−2 w

′ or w ∼=Q
n−2 u.

Proof. We will show case 1, and case 2 can be shown similarly. So given the
assumptions of the Lemma, let w ∈ V (B) be such that v ∼d w. Consider
the announcement ψ = W ∨ φn−2

u ∨ φn−2
w . Since M,u |= C1(n,Q), Mψ, u |=

La(W ∧LdB)→ Kc(W → LbB), and by Lemma 5, Mψ, u |= La(W ∧LdB).
We may apply modus ponens and Lemma 6 to deduce, Mψ

u′ |= Kc(W →
LbB). Therefore Mψ

v′ |= LbB, so there is some w′ ∈ V (B) where v′ ∼b w′,
and M,w′ |= ψ. As w′ ∈ V (B), we have either M,w′ |= φn−2

u and thus
w′ ∼=Q

n u′, or M,w′ |= φn−2
w , and thus w ∼=Q

n−2 w
′, (by Lemma 5). This

scenario is represented in Figure 3 �
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Notice that the lemma does not perfectly capture the notion of commu-
tativity. Ideally we would like to have:
For all u,w, u′ ∈ V (B) for all v ∈ V (W ) where u ∼a v, v ∼d w and u ∼=Q

n u′,
there’s some v′ ∈ V (W ) and some w′ ∈ V (B) such that u′ ∼c v′, v′ ∼b w′
and w′ ∼=Q

n−2 w, (and vice-versa).
However, we must consider the additional possibility that there’s some
v′ ∈ V (W ) and some w′ ∈ V (B) such that u′ ∼c v′, v′ ∼b w′ and
w′ ∼=Q

n−2 u′. In such a case we would have, by the second part of the
lemma, that there is some w where v ∼d w and either w ∼=Q

n−2 w′ or
w ∼=Q

n−2 u. In either case, as w′ ∼=Q
n−2 u′ and u ∼=Q

n u′, we will have
w′ ∼=Q

n−2 u
′ ∼=Q

n−2 u
∼=Q
n−2 w, which is sufficient for our purposes.

LEMMA 9. Suppose that u ∈ V (W ), u ∼b v, for some v ∈ V (B). Suppose
also that u ∼=Q

n u′ for some finite Q ⊂ P including {B,W}∪Γ, and u′ ∼d v′
for some v′ ∈ V (B). Given that M,u |= (C3 ∧ C4)(n,Q):

1. for all w ∈ V (W ) where v ∼c w, if there is some w′ ∈ V (W ) where
v′ ∼a w′ then there is some such w′ where either w ∼=Q

n−2 w′ or
w′ ∼=Q

n−2 u
′.

2. for all w′ ∈ V (W ) where v′ ∼a w′, if there is some w where v ∼c w,
then there is some such w where either w ∼=Q

n−2 w
′ or w ∼=Q

n−2 u.

Proof. The proof of this is symmetrical to the proof of Lemma 8 �

These lemmas are sufficient to establish a finite grid structure, as depicted
in Figure 4. The formulas blk and wht are then clearly sufficient to encode
a finite tiling, so if M, s |= TileΓ then by Lemma 3 a Γ tiling exists.

Recall

(11) TileΓ = alt ∧ T ∗ ∧ st ∧Kt(C1 ∧ C2 ∧ C3 ∧ C4 ∧ blk ∧ wht).
We give the following Lemma.

LEMMA 10. Suppose that M, s |= TileΓ. Then for all n ∈ ω, for Q =
Γ ∪ {B,W} we may define a partial function f : {0, . . . , n}2 −→ S such
that:

1. f(0, 0) = s;

2. if f(i, j) ∈ V (B), then

(a) if i < n, there is some u ∈ V (W ) where f(i+ 1, j) ∼=Q
k(i,j) u and

f(i, j) ∼c u, and

(b) if j < n, there is some u ∈ V (W ) where f(i, j + 1) ∼=Q
k(i,j) u and

f(i, j) ∼a u;
(c) M,f(i, j) |= blk
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Figure 4. The construction of the finite grid.

3. if f(i, j) ∈ V (W ), then

(a) if i < n, there is some u ∈ V (B) where f(i + 1, j) ∼=Q
k(i,j) u and

f(i, j) ∼d u, and

(b) if j < n, there is some u ∈ V (B) where f(i, j + 1) ∼=Q
k(i,j) u and

f(i, j) ∼b u;
(c) M,f(i, j) |= wht

where k(i, j) = 2n+ 3− (i+ j).

We can show this by construction, applying Lemmas 7, 8 and 9. The
function k(i, j) is chosen such that for all i, j ≤ n, k(i, j) ≥ 3. This allows
the preconditions of the Lemmas 7, 8 and 9 to be met for all i, j ≤ n. The
proof is illustrated in Figure 4. You can view this figure as a cube, cut in
half diagonally up from a bottom corner. The base of the shape makes a
finite grid. We construct a function, f , mapping {0, . . . , n}2 to the states
of the model, such that f(i, j) is k(i, j)-Q-bisimilar to the corresponding
world at the base of the grid. As we get further from the corner k(i, j)
decreases so this correspondence becomes progressively weaker. By the
time i + j > 2n, k(i, j) < 3 so the preconditions for the necessary lemmas
is not met. However, by this stage we have already defined an n× n grid.

Proof. We construct the a function, F , satisfying the stated properties by
induction over i + j, where i + j ≤ 2n. For the induction hypothesis we
assume for all g, h where g + h < i+ j, f(g, h) is defined such that:
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1. if f(g, h) ∈ V (B), then

(a) if 0 < g < n, then f(g − 1, h) ∈ V (W ) and for some u ∈ V (B)
we have f(g, h) ∼=Q

k(g,h) u and f(g − 1, h) ∼d u, and

(b) if 0 < h < n, then f(g, h − 1) ∈ V (W ) and for some u ∈ V (B)
we have f(g, h) ∼=Q

k(g,h) u and f(g, h− 1) ∼b u;

2. if f(g, h) ∈ V (W ), then

(a) if 0 < g < n then f(g− 1, h) ∈ V (B) and for some u ∈ V (W ) we
have f(g, h) ∼=Q

k(g,h) u and f(g − 1, h) ∼c u, and

(b) if 0 < h < n then f(g, h− 1) ∈ V (B) and for some u ∈ V (W ) we
have f(g, h) ∼=Q

k(g,h) u and f(g, h− 1) ∼a u;

3. there is some u where f(g, h) ∼=Q
k(g,h) u and

(12) M,u |= (alt∧T ∗ ∧Kt(C1∧C2∧C3∧C4∧ blk ∧wht))(k(g,h),Q).

For brevity let,

(13) Hyp = alt ∧ T ∗ ∧Kt(C1 ∧ C2 ∧ C3 ∧ C4 ∧ blk ∧ wht).
For the base case of this induction, suppose M, s |= TileΓ, and let n ∈ ω.
We define f(0, 0) = s. Then

1. s ∼=k(0,0) fn(0, 0),

2. M, s |= alt ∧ T ∗,

3. M, s |= C1 ∧ C2 ∧ C3 ∧ C4,

so it clearly satisfies the inductive hypothesis.
For the induction, suppose that the inductive hypothesis holds for the

pair i, j. There are three cases to consider, i = 0, j = 0 and i, j 6= 0.

1. if i = 0 we may assume j 6= 0 (since f(0, 0) is already defined). By the
induction hypothesis, f(i, j−1) is defined. We suppose, without loss of
generality, that f(i, j − 1) ∈ V (B) and the case of f(i, j − 1) ∈ V (W )
may be handled similarly. Also by the induction hypothesis, there
is some u ∼=Q

k(i,j−1) f(i, j − 1), where M,u |= Hyp(k(i,j−1),Q). By
Lemma 6 we have M,f(i, j − 1) |= LaW . Therefore there is some
world v ∈ V (W ) where f(i, j − 1) ∼a v and we let f(i, j) = v. By
Lemma 7 there is some world w ∼t u such that w ∼=Q

k(i,j) v and since
|= Hyp→ KtHyp, M,w |= Hyp(k(i,j),Q) as required.

2. the case for j = 0 is symmetric to the case above.
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3. if i, j 6= 0 suppose, without loss of generality, that f(i, j) ∈ V (B)
(and the case for f(i− 1, j− 1) ∈ V (W ) is handled similarly). By the
induction hypothesis for some u ∼=Q

k(i−1,j−1) f(i − 1, j − 1), we have

M,u |= Hyp(k(i−1,j−1),Q), u ∼a v for some v ∼=Q
k(i−1,j) f(i − 1, j) ∈

V (W ), and u ∼c v′ for some v′ ∼=k(i,j−1) f(i, j − 1). By Lemma 8,
either:

(a) there is some w,w′ ∈ V (B) such that v ∼d w, v′ ∼b w′ and
w′ ∼=Q

k(i,j) w. In such a case we let f(i, j) = w; or

(b) there is some w′ ∈ V (B) where v′ ∼b w′ and w′ ∼=Q
k(i,j) u. In

this case we let f(i, j) = u. By Lemma 8 we also have for all
w′ ∈ V (B) where v′ ∼b w′ there is some w ∈ V (B) where v ∼d w
and w ∼=Q

k(i,j) u.

Also by the induction hypothesis we have M,v |= Hyp(f(i−1,j),Q), so
we may apply Lemma 7 to show that there is some world z such that
z ∼=k(i,j) fn(i, j) and v ∼t z. As the formula

(14) Hyp(f(i−1,j),Q) → Kt(Hyp(f(i−1,j),Q))

is a tautology of epistemic logic and M,v |= Hyp(f(i−1,j),Q) we have
M, z |= (alt ∧ T ∗ ∧Kt(C1 ∧ C2 ∧ C3 ∧ C4 ∧ blk ∧ wht))(k(i,j),Q), for
some z ∼=k(i,j) fn(i, j), as required.

Therefore, the induction hypothesis holds for the pair (n, n). Thus for all
(i, j) where i+ j < 2n we have

1. if f(i, j) ∈ V (W ), then

(a) f(i+1, j) ∈ V (B) and for some u ∈ V (W ) we have f(i, j) ∼=Q
k(i,j)

u and f(i+ 1, j) ∼d u, and

(b) f(i, j+1) ∈ V (B) and for some u ∈ V (W ) we have f(i, j) ∼=Q
k(i,j)

u and f(i, j + 1) ∼b u;
(c) M,f(i, j) |= wht

2. if f(i, j) ∈ V (B), then

(a) f(i+1, j) ∈ V (W ) and for some u ∈ V (B) we have f(i, j) ∼=Q
k(i,j)

u and f(i+ 1, j) ∼c u, and

(b) f(i, j+1) ∈ V (W ) and for some u ∈ V (B) we have f(i, j) ∼=Q
k(i,j)

u and f(i, j + 1) ∼a u;
(c) M,f(i, j) |= blk

so f satisfies the required properties. �
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Note that this lemma only defines an n × n grid, since as Lemmas 6, 8
and 9 are used the induction and Lemma 6 is only available when k(i, j) > 2,
and Lemmas 8 and 9 are only available when k(i, j) > 1. However, n is
chosen arbitrarily. Because f(0, 0) ∼=Q

n f(0, 0) for all n, we can seed the
induction with an arbitrarily large n. This allows us to apply Lemma 3 to
define a tiling.

COROLLARY 11. If M,u |= TileΓ then a Γ-tiling exists

Proof. If M,u |= TileΓ, then by Lemma 10, for all n we may define f such
that for all i, j where i+ j < 2n,

1. if f(i, j) ∈ V (B) then

(a) if j < n, f(i, j) ∼a u for some u ∼=Q
k(i,j+1) f(i, j + 1).

(b) if i < n, f(i, j) ∼c u for some u ∼=Q
k(i,j+1) f(i+ 1, j).

(c) M,f(i, j) |= blk.

2. if f(i, j) ∈ V (W ) then

(a) if j < n, f(i, j) ∼b u for some u ∼=Q
k(i,j+1) f(i, j + 1).

(b) if i < n, f(i, j) ∼d u for some u ∼=Q
k(i,j+1) f(i+ 1, j).

(c) M,f(i, j) |= wht.

Recall the formulas:

blk = B →
 ∧
γ∈Γ

(
γ →

∧[
Ka(W →

∨
γt=δb δ))

Kc(W →
∨
γr=δℓ δ))

])(15)

wht = W →
 ∧
γ∈Γ

(
γ →

∧[
Kb(B →

∨
γt=δb δ))

Kd(B →
∨
γr=δℓ δ))

]) .(16)

Applying the semantics of epistemic logic:

1. if f(i, j) ∈ V (B), and M,f(i, j) |= γ then for some u ∼=Q
k(i,j+1) f(i, j+

1) we have f(i, j) ∼a u and u ∈ V (W ). Therefore M,u |= δ for some
δ where γt = δb. Thus M,f(i + 1, j) |= δ for some δ where γt = δb.
Likewise for some u ∼=Q

k(i,j+1) f(i + 1, j) we have f(i, j) ∼c u and
u ∈ V (W ), so M,f(i, j + 1) |= δ for some δ where γr = δℓ.

2. if f(i, j) ∈ V (W ), and M,f(i, j) |= γ then for some u ∼=Q
k(i,j+1) f(i, j+

1) we have f(i, j) ∼a u and u ∈ V (B). Therefore M,u |= δ for some
δ where γt = δb. Thus M,f(i + 1, j) |= δ for some δ where γt = δb.
Likewise for some u ∼=Q

k(i,j+1) f(i + 1, j) we have f(i, j) ∼c u and
u ∈ V (B), so M,f(i, j + 1) |= δ for some δ where γr = δℓ.
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Therefore f defines a tiling of an n×n grid with the tiles of Γ. Therefore
the formula TileΓ is satisfiable if and only if Γ can tile the n × n grid for
arbitrary n. Applying Lemma 3 it follows a γ-tiling exists. �

Thus the satisfiability problem APAL is co-RE hard, as it is able to
embed the tiling problem. As we know from [2] that the set of valid formulas
for APAL is recursively enumerable, it follows that the satisfiability problem
is co-RE complete.

6 Future work

Up to this point arbitrary public announcement logic has shown some
promise for practical reasoning applications: it has an axiomatization, a
tableau-calculus, it is bisimulation invariant, naturally extends epistemic
logic, and model checking is PSPACE-complete [1]. The notion of an ar-
bitrary public announcement is also a natural concept (consider the plea,
“is there anything I can say to make you believe X”). Therefore, a natural
avenue of investigation is to consider whether we may be able to somehow
expressively weaken APAL to a decidable logic which also enjoys all these
favorable properties.

One area of investigation may be to consider the set of formulae (or more
abstractly, model-properties) that announcements may range over. From
the encoding TileΓ we have given, we note that the encoding of the tiling
problem for Γ only requires five agents in the language (although it is con-
ceivable a more complex encoding could do with less). Also, from the proof
of correctness we have given, we note that the arbitrary announcements do
not need to range over all epistemic formulae. The announcements only
need to range over all formulae containing the atoms from Γ ∪ {B,W} (or
the atoms appearing in the formula). However, the proof does require that
the arbitrary announcements range over formulae of unbounded depth, so
it may be of interest to consider restrictions where the arbitrary announce-
ments ranged over announcements of a bounded depth (say, formulas of
depth at most one).

We also note that generalizing the set of formulae that the arbitrary an-
nouncements range over would not affect this undecidability result. For
example, if we allowed fixed-point operators to appear in the arbitrary an-
nouncements, then the proofs of Lemmas 7 and 8 would remain. However
we may consider restrictions of the set of formulae. One natural restriction
to consider would be to restrict arbitrary announcements to positive knowl-
edge formulae (formulae where the knowledge operators Kx always appear
in the scope of an even number of negations). For such a restricted set of
formulae Lemma 5 would not hold so decidability may still be achievable.

An alternative approach is discussed [10]. Here it is suggested that infor-
mative events such as announcements, rather than simply being evaluated
with respect to the given model, could add additional information (at an
atomic level) into the model. This approach is motivated by the observation
that while the APAL is bisimulation invariant, it is not the case that two
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models bisimilar with respect to a subset of atoms, X, agree on all formulas
that contain only the atoms X. The suggested Future event logic quantifies
over refinements of a model, which includes all public announcements of
epistemic formulae, but also other public or non-public informative events
that can be described as action models [3]. It is shown to be decidable
via a reduction to a bisimulation quantified logic [5]. Future event logic is
interesting in its own right, and it aims to provide the sort of link between
dynamic and temporal epistemics pointed out in [9]
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