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Abstract

In this paper we present a sound and complete axiomatization of future event logic. Future event logic
is a logic that generalizes a number of dynamic epistemic logics, by using a new operator . that acts as
a quantifier over the set of all refinements of a given model. (A refinement is like a bisimulation except
that from the three relational requirements only ‘atoms’ and ‘back’ need to be satisfied.) Thus the logic
combines the simplicity of modal logic with some powers of monadic second order quantification. We
prove the axiomatization is sound and complete and discuss some extensions to the result.

Keywords: Bisimulation Quantifier, Modal Logic, Temporal Epistemic Logic, Multi-Agent System

1 Introduction

Modal logic is frequently used for modelling knowledge in multi-agent systems. The
semantics of modal logic uses the notion of “possible worlds”, between which an agent is
unable to distinguish. In dynamic systems agents acquire new knowledge (say by an an-
nouncement, or the execution of some action) that allows to distinguish between worlds
they previously could not separate. From the agents point of view, what were “possible
worlds” become inconceivable. Thus, a future informative event may be modelled by a
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reduction in the agent’s accessibility relation. In [21] the future event logic is introduced.
It augments the multi-agent logic of knowledge with (only) an operation Iφ that stands
for “φ holds after all informative events” — the diamond version .φ stands for “there is
an informative event after which φ.” The semantics of informative events axiomatized
in this paper was presented in [21]; it encompasses action model execution à la Baltag et
al [4]: on finite models, it can be easily shown that a model resulting from action model
execution is a refinement of the initial model, and for a given refinement of a model we
can construct an action model such that its execution is bisimilar to that refinement.
Here we examine the important questions that arise for a new logic: expressivity; ax-
iomatizations; and complexity. We visit these questions in both the context of modal
logic, and the modal µ-calculus.

Previous works [10,15] have modelled informative events using a notion of model
refinement. In [15] it was shown that model restrictions were not sufficient to simulate
informative events, and they introduced refinement trees for this purpose—a precursor of
the semantics of dynamic epistemic logics developed later [22]. We incorporate implicit
quantification over informative events directly into the language using a similar notion
of refinement; in our case a refinement is the inverse of simulation [1]. This work is
also closely related to some recent work on bisimulation quantified modal logics [9,11].
The future event operators are weaker operators than bisimulation quantifiers [21], as
they are only based on simulations rather than bisimulations, and do not allow us to
vary the interpretation of propositional atoms. Bisimulation quantified modal logic has
previously been axiomatized by providing a provably correct translation to the modal
µ-calculus [8] (albeit a very complicated one).

Thus we may consider refinement quantification to be a generalization of future
event operators [21] to other modal logics. This is significant in that it motivates the
application of the new operator in many different settings: In logics for games [17,2]
or in control theory [18,20], it may correspond to a player discarding some moves; for
program logics [12] it may correspond to operational refinement [16]; and for topologics
it may correspond to sub-space projections.

This paper will present the definitions for refinement quantification in the general
settings of modal logic and the modal µ-calculus, and seek to motivate their use in a
range of applied logics. We will then address the questions of expressivity, complexity
and axiomatization. Specifically: sound and complete axiomatizations will be provided
for both modal logic and the modal µ-calculus augmented with refinement quantification;
we provide a double exponential upper-bound for each logic; and we show the use of
refinement quantification does not change the expressive power of the logics, although
they do make each logic exponentially more succinct.

2 Technical preliminaries

Structural notions
Assume a finite set of agents A and a countably infinite set of atoms P .

Definition 2.1 [Structures] A model M = (S,R, V ) consists of a domain S of (factual)
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states (or worlds), accessibility R : A → P(S × S), and a valuation V : P → P(S). For
s ∈ S, (M, s) is a state (also known as a pointed Kripke model).

For R(a) we write Ra; accessibility R can be seen as a set of relations Ra, and V as a
set of valuations V (p). Given two states s, s′ in the domain, Ra(s, s′) means that in state
s agent a considers s′ a possibility. As we will be often required to discuss several models
at once, we will use the convention that M = (SM , RM , VM ), N = (SN , RN , V N ) etc.
Also, given s ∈ SM , we let Ms refer to the pair (M, s) or the pointed model.

In the first instance we will assume that there are no further restrictions on the
models. That is, the underlying modal logic is L whose system of axioms is K. In future
work we will consider how our results may be extended to epistemic logics, such as S5
and KD45.

Definition 2.2 [Bisimulation, simulation, refinement] Let two models M = (S,R, V )
and M ′ = (S′, R′, V ′) be given. A non-empty relation R ⊆ S × S′ is a bisimulation, iff
for all s ∈ S and s′ ∈ S′ with (s, s′) ∈ R, for all a ∈ A:

atoms s ∈ V (p) iff s′ ∈ V ′(p) for all p ∈ P
forth-a for all t ∈ S, if Ra(s, t), then there is a t′ ∈ S′ such that R′a(s′, t′) and (t, t′) ∈ R

back-a for all t′ ∈ S′, if R′a(s′, t′), then there is a t ∈ S such that Ra(s, t) and (t, t′) ∈ R

We write Ms↔M ′s′ , iff there is a bisimulation between M and M ′ linking s and s′. Then
we call Ms and M ′s′ bisimilar.

A relation that satisfies atoms and forth-a for every a ∈ A is a simulation, and
in that case M ′s′ is a simulation of Ms, and Ms is a refinement of M ′s′ , and we write
Ms �M ′s′ (or M ′s′ �Ms).

A relation that satisfies atoms and forth-b for every b ∈ A, as well as back-b for
every b ∈ A−{a} is an a-simulation, and in that case M ′s′ is an a-simulation of Ms, and
Ms is an a-refinement of M ′s′ , and we write Ms �a M ′s′ (or M ′s′ �a Ms).

We note that the definition of simulation and refinement above varies slightly to
the one given by Blackburn et al [6]. Here we ensure that simulations and refinements
preserve the interpretations of atoms, whereas [6], has them only preserving the truth
of atoms. We take this approach as we feel it suits the epistemic domain we aspire to.
It is also important to note that in an epistemic setting a refinement corresponds to
the diminishing uncertainty of agents 1 . This means that there is a potential decrease
in the number of states and transitions in a model. This is perhaps contrary to the
concept of program refinement [16] where detail is added to a specification. However,
in program refinement the added detail requires a more detailed state space (i.e. extra
atoms) and as such is more the domain of bisimulation quantifiers, rather than refinement
quantification. It is interesting to note the consequence of program refinement is a more
deterministic system which agrees with the notion of diminishing uncertainty.

We give the following lemma for the properties of the relation �a.

1 At least, with respect to formulas in which knowledge operators appear within the scope of an even
number of negations. It is possible that in a refinement one agent may be less certain about what
another agent does not know.
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Lemma 2.3 The relation �a is reflexive and transitive (a pre-order), and satisfies the
Church-Rosser property.

Proof. Reflexivity follows from the observation that the identity relation satisfies
atoms, and back-a and forth-a for all agents a, and therefore also the weaker re-
quirement for refinement. Similarly, given two a-simulations B1, and B2, we can see
that their composition, {(x, z) | ∃y, (x, y) ∈ B1, (y, z) ∈ B2} is also an a-simulation.
This is sufficient to demonstrate transitivity. The Church-Rosser property states that
if Nt �a Ms and Nt �a M ′s′ , then there is some model N ′t′ such that Ms �a N ′t′ and
M ′s′ �a N ′t′ . From Definition 2.2 it follows that Ms and M ′s′ must be bisimilar to one
another with respect to A−{a}. We may therefore construct such a model N ′t′ by taking
Ms (or M ′s′) and setting RN

′

a = ∅ and RN
′

b = RMb for all b ∈ A − {a}. It can be seen
that N ′t′ = (SM , RN

′
, VM , s) satisfies the required properties. 2

Finally, note that if Nt �a Ms and Ms �a Nt it is not necessarily the case that
Ms↔Nt.

For example, consider the one agent models M and N where:

• SM = {1, 2, 3}, RMa = {(1, 2), (2, 3)} and VM (p) = ∅ for all p ∈ P ; and
• SN = {a, b, c, d}, RNa = {(a, b), (b, c), (a, d)} and VM (p) = ∅ for all p ∈ P .

These two models are clearly not bisimilar, although M1 � Na via {(1, a), (2, b), (3, c)}
and Na �M1 via {(a, 1), (b, 2), (c, 3), (d, 2)}.

3 Syntax and semantics

Assuming an interpretation where different 2a operators stand for different epistemic
operators (each describing what an agent knows), future event logic is able express what
informative events are consistent with a given information state. The syntax and the
semantics of future event logic are as follows.

Definition 3.1 [Language of L.] Given a finite set of agents A and a set of propositional
atoms P , the language of L. is inductively defined as

φ ::= p | ¬φ | (φ ∧ φ) | 2aφ | Iaφ

where a ∈ A and p ∈ P .

Standard abbreviations include: φ ∨ ψ iff ¬(¬φ ∧ ¬ψ); φ → ψ iff ¬φ ∨ ψ; 3aφ iff
¬2a¬φ. We write .aφ for ¬Ia¬φ. We propose a dynamic modal way to interpret the
refinement quantification. This means that our future is the computable future: .aφ is
true now, iff there is an (unspecified) informative event for agent a, or a-refinement,
after which φ is true.

Definition 3.2 [Semantics of future event logic] Assume an epistemic model M =
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(S,R, V ). The interpretation of φ ∈ L. is defined by induction.

Ms |= p iff s ∈ Vp

Ms |= ¬φ iff Ms 6|= φ

Ms |= φ ∧ ψ iff Ms |= φ and Ms |= ψ

Ms |= 2aφ iff for all t ∈ S : (s, t) ∈ Ra implies Mt |= φ

Ms |= Iaφ iff for all M ′s′ : Ms �a M ′s′ implies M ′s′ |= φ

The logic without the refinement quantifier Ia is the logic L of multi-agent epistemic
logic.

In other words, Iaφ is true in an epistemic state iff φ is true in all of its a-refinements.
Note the inverse direction in the definition: the future epistemic state refines the current
epistemic state. Typical model operations that produce an a-refinement are: blowing
up the model (to a bisimilar model) such as adding copies that are indistinguishable
from the current model and one another, removing states accessible only by agent a,
and removing pairs of the accessibility relation for the agent a. Validity in a model,
and validity, are defined as usual. For an extended discussion of these semantics and a
comparison to related logics see [21].

Lemma 3.3 The logic L. is bisimulation invariant.

Proof. This is straightforward, noting 2a is bisimulation invariant, and the new opera-
tor Ia is clearly bisimulation invariant since a-simulation is transitive and bisimulation
is just a specific type of simulation. Therefore, if Ms↔Nt, and Ou is any model such
that Ou �a Ms then Ms �a Nt, so by Lemma 2.3, we have Ou �a Nt. Thus, Nt |= Iaφ
implies Ms |= Iaφ. The reverse direction is symmetric. 2

Additionally, we may define Lµ. , by including the fixed-point operators µ and ν.
Specifically:

Definition 3.4 [Language of Lµ. ] Given a finite set of agents A and a set of propositional
atoms P , the language of Lµ. is inductively defined as

φ ::= p | ¬φ | (φ ∧ φ) | 2aφ | Iaφ | µx.φ

where a ∈ A, p ∈ P , and the atom x only occurs positively (i.e. in the scope of an even
number of negations) in the formula φ. We will refer to such an atom x as a fixed-point
variable. The formula νx.φ is an abbreviation for ¬µx.¬φ[¬x\x].

The restriction of this logic to the fragment without refinement quantifiers (the modal
µ-calculus) will be referred to as Lµ. An important technical definition we require is that
of a disjunctive formula. Let Γ be a finite set of Lµ. formulas. We let the cover operator
∇aΓ be an abbreviation for 2a

∨
γ∈Γ γ∧

∧
γ∈Γ 3aγ. (To avoid ambiguity, we note

∨
γ∈∅ γ
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is always false, whilst
∧
γ∈∅ γ is always true). This operator has previously been used

in the definition of disjunctive formulae [8], and has recently been axiomatized [5]. We
also note its dual may be written 4aΓ as an abbreviation for 3a

∧
γ∈Γ γ ∨

∨
γ∈Γ 2aγ.

Definition 3.5 [Disjunctive formula] A disjunctive formula (df) is specified by the fol-
lowing abstract syntax:

α ::= x | α ∨ α | µx.α | νx.α | π ∧∇Γ |Iaα | .aα

where π is a conjunction of free literals (atoms or negated atoms, but not fixed-point
variables), and ∇Γ is an abbreviation for ∇a1Γa1 ∧ ... ∧∇anΓan such that a1, ..., an are
distinct elements of the set A, and each Γai is a finite set of disjunctive formulas. To
avoid ambiguity we may refer to the disjunctive formulas of Lµ (the ones without Ia or
.a operators) as µ-disjunctive formulas.

Proposition 3.6 Every formula φ of Lµ is equivalent to a µ-disjunctive formula,

This is shown in [13].

Example 3.7 [Knowledge and belief] Given are two agents that are uncertain about
the value of a fact p, and where this is common knowledge, and where p is true. We
assume that both accessibility relations are equivalence relations, and that the epistemic
operators model the agents’ knowledge. An informative event is possible after which a

knows that p but b does not know that; this is expressed by

.(2ap ∧ ¬2b2ap)

In Figure 1, the structure is on the left, and its refinement validating the post-
condition is on the right. In this visualization, the actual state is the (bottom) right
one, and states that are indistinguishable for an agent are linked and labeled with
the name of that agent, and transitivity and reflexivity are assumed (so on the right,
all three states are indistinguishable for agent b). Note that on the left, the formula
.(2ap ∧ ¬2b2ap) is true, because 2ap ∧ ¬2b2ap is true in the right structure: in the
actual state there is no alternative for agent a, so 2ap is true, whereas agent b considers
it possible that the top-state is the actual state, and in that state agent a considers it
possible that p is false. Therefore, ¬2b2ap is also true in the bottom right state.

Example 3.8 [Controller synthesis] Consider a discrete-event system S to be con-
trolled, with two possible actions c and u. Given a control objective φ expressed in,
say the µ-calculus, the following formulas express respectively the well-known verifica-
tion/synthesis problems:

• Controller synthesis: Assume action c is controllable as opposed to u. The system S

is controllable for φ if and only if, S |= .cφ, as a c-refinement of S denotes the result
of applying some control acting on action c.

• Module checking [14]: The system S is interpreted as an open system where action c is
internal and action u comes from the environment. The system S satisfies φ whatever
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Fig. 1. The refinement in Example 3.7.

the environment does but blocking if, and only if, S |= Iu(NonBlocking ⇒ φ),
where NonBlocking ≡ νx.3u>∧2x is an invariant telling that there always exists an
environment reaction. The u-refinements with hypothesis NonBlocking denotes all
possible non-blocking environments.

• Advanced controller synthesis: We combine the two cases above. We reconsider the
control problem for φ where S is interpreted as an open system. The open system S

can be controlled to achieve property φ if, and only if,

S |= .cIu(NonBlocking⇒ φ)

Example 3.9 [Program logic] Consider a specification, MUTEX, of a mutual exclusion
protocol and some property φ of this protocol specified in CTL. Now we may ask if we
can find a refinement of MUTEX that satisfies φ but also such that if Process i is in the
critical section (cs(i)) at time n+ 1, then this is known at time n. This is expressed as

MUTEX |= .(AG[EXcs(i)⇒ AXcs(i)] ∧ φ)

The refinement consists in moving the nondeterministic choices forward, so that a fork
at time n becomes a fork at time n − 1 with each branch having a single successor at
time n.

We also note that Section 6.2 presents an application of the refinement quantification
to two-player asynchronous games.

4 Axiomatization: L.
Here we present a series of axioms for the logic L.. We will derive a number of validities,
show the axioms to be sound, and discuss a general strategy for showing their complete-
ness. For simplicity, we will present the axiomatization in the single agent case (and
hence the 2a operator will simply be referred to as 2), although the axiomatization and
proofs easily generalize to the multi-agent case. We will also use the relation R simply
as a set of pairs ⊆ SM ×SM , and use the abbreviation sRM = {u ∈ SM | (s, u) ∈ RM}.
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cs(2)

�

cs(2)cs(1) cs(1)

Fig. 2. The refinement in Example 3.9.

The axiomatization presented is a substitution schema, since the substitution rule
itself is not valid. Note that for all atomic propositions p, p → Ip, but the same is
not true for an arbitrary formula (substitute 3> for p in the formula of Example 3.7).
This propositional case itself is presented as axiom G1 and prevents the logic FEL from
being a normal modal logic.

Definition 4.1 The axiomatization FEL is such that the axioms are all substitution
instances of the following:

P All tautologies of propositional logic

K 2(φ→ ψ)→ 2φ→ 2ψ

G0 I(φ→ ψ)→ Iφ→ Iψ

G1 α↔ Iα where α is a propositional formula

GK
∧
γ∈Γ 3.γ ↔ .∇Γ

along with the rules:

MP From ` φ→ ψ and ` φ infer ` ψ

Nec1 From ` φ infer ` 2φ

Nec2 From ` φ infer ` Iφ

The axiomatization K for the logic L consists of the axioms P, K, and the rules MP
and Nec1.

The axiomatization is surprisingly simple given the complexity of the semantic def-
inition of the refinement quantification, I. We note that while refinement is known
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to be reflexive, transitive and satisfies the Church-Rosser property (Lemma 2.3), the
corresponding modal axioms are not required. Rather, these properties may be inferred
from the axioms presented above.

4.1 Example of derivation

We present a simple derivation of 3> → .(∇{p} ∨ ∇{¬p}). In some cases several
deductions have been combined into single statements, but this is restricted to cases of
well known modal theorems.

1.P,Nec1,K ` 3> ↔ 3(p ∨ ¬p)
2.P,Nec1,K ` 3(p ∨ ¬p)↔ (3p ∨3¬p)

3.See below ` 3p→ .∇{p}
4.See below ` 3¬p→ .∇{¬p}

5.P,Nec2,G0 ` .2p→ .(∇{p} ∨ ∇{¬p})
6.P,Nec2,G0 ` .2¬p→ .(∇{p} ∨ ∇{¬p})

7.P,MP ` 3> → .(∇{p} ∨ ∇{¬p})

Lines 3 and 4 above require the following deduction, which is true for all propositional
formula α:

1.G1 ` α↔ .α

2.P,Nec1,K ` 3α↔ 3.α

3.GK[Γ = {α}] ` 3α↔ .∇{α}

4.2 Soundness

For notational convenience, given a finite set of L. formulas, Γ = {φ1, . . . , φn}, we let
.Γ = {.φ | φ ∈ Γ} (and likewise for other unary operators).

Theorem 4.2 The axiomatization FEL is sound for L..

Proof. As all models of L. are models of L, the schemas P, K and the rule MP and
Nec1 are all sound. We deal with the remaining schemas and rules below:

G0 Suppose that Ms is a model such that Ms |= I(φ→ ψ). Then for every Nt, where
Nt � Ms, we have Nt |= φ → ψ. Therefore if it is also the case that for every
Nt where Nt � Ms, we have Nt |= φ, then it follows that every such model also
satisfies Iψ.

G1 Suppose that α is a propositional formula. By Definition 2.2 for every model Nt �
Ms, for every propositional atom p, we have s ∈ VM (p) if and only if t ∈ V N (p).
As the interpretation of α depends solely on the the valuation of propositions at s,
then Ms |= α if and only if Nt |= α for every Nt �Ms.

GK Suppose Ms is a model such that for some set Γ, Ms |=
∧
γ∈Γ 3.γ. Therefore for

every γ ∈ Γ there is some tγ ∈ sRM such that Mtγ |= .γ. Thus, for each γ ∈ Γ,
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there is some model Nγ
uγ � Mtγ such that Nγ

uγ |= γ. Without loss of generality,
we may assume that for each γ ∈ Γ the models Nγ are disjoint. We construct the
model MΓ such that SM

Γ
= SM ∪

⋃
γ∈Γ S

Nγ , RM
Γ

= {(s, uγ) | γ ∈ Γ}∪
⋃
γ∈ΓR

Nγ ,

and for all p ∈ P , VM
Γ
(p) = VM (p) ∪

⋃
V N

Γ
(p).

We can see that MΓ
s � Ms, via the relation RΓ = {(s, s)} ∪

⋃
γ∈ΓRγ where

Rγ is the refinement relation corresponding to Nγ
uγ � Mtγ . Furthermore, for each

t ∈ sRM
Γ

it is clear that MΓ
t
↔Nγ

uγ for some γ, and thus MΓ
t |= γ. Therefore

MΓ
s |= 2

∨
γ∈Γ γ. Finally, for each γ ∈ Γ there is some uγ ∈ sRMΓ

where MΓ
uγ |= γ

so MΓ
s |=

∧
γ∈Γ 3γ. Therefore MΓ

s |= ∇Γ, so Ms |= .∇Γ.
Conversely, suppose that Ms |= .∇Γ. Therefore, there is a model, Nt � Ms such
that Nt |= ∇Γ. Expanding the definitions, we have, for every γ ∈ Γ there is some
u ∈ tRN such that Nu |= γ, and for every u ∈ tRN there is some v ∈ sRM such
that Nu �,Mv. Combining these statements we have, for every γ ∈ Γ there is some
v ∈ sRM such that Mv |= .γ, and thus Ms |=

∧
γ∈Γ 3.γ.

Nec2 If φ is a validity, then it is satisfied by every model, so for any model Ms, φ is
satisfied by every model Nt �Ms, and hence every model satisfies Iφ.

2

4.3 Completeness

We first show that every L. formula is logically equivalent to a L formula. We then
show that if the latter is a theorem in K, the former is also a theorem, in FEL.

Lemma 4.3 Every formula of L. is logically equivalent to a formula of L.

Proof. As the axiom GK is formulated in terms of the cover operator, it is convenient
to prove this equivalence by means of an equally expressive version of the modal logic L
that is also formulated with the cover operator [5]. 2 (A direct proof in our own setting
is quite possible, but considerably longer.) Consider the syntax of cover logic

φ ::= ⊥ | > | φ ∨ φ | p ∧ φ | ¬p ∧ φ | ∇Γ.

The semantics of ∇Γ is the obvious one if we recall our introduction by abbreviation of
the cover operator: Ms |= ∇Γ iff for all φ ∈ Γ there is a t ∈ R(s) such that Mt |= φ, and
for all t ∈ R(s) there is a φ ∈ Γ such that Mt |= φ. The modal box and diamond are
definable as: 2φ iff ∇∅ ∨∇{φ}, and 3φ iff ∇{φ,>}

Now consider the extension of cover logic with the refinement quantification .. By
the definition of 3 in cover logic, axiom GK now takes shape

∧
γ∈Γ∇{.γ,>} ↔ .∇Γ.

(And this is clearly also sound.) Given a formula ψ in cover logic with refinement, we
prove by induction on the number of the occurrences of . in ψ that it is equivalent to
an .-free formula, and therefore to a formula in the modal logic L. The base is trivial.
Now assume ψ contains n+ 1 .-operators. Choose a subformula of type .φ of our given
formula ψ, where φ is .-free (i.e. choose an innermost .). We prove by induction on the
structure of φ that .φ is logically equivalent to a formula χ without ..

2 We thank Yde Venema for suggesting this proof.
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• .⊥ iff ⊥.
• .> iff >.
• .(p ∧ φ) iff p ∧ .φ (refinements do not affect atoms); IH.
• .(¬p ∧ φ) iff ¬p ∧ .φ (refinements do not affect atoms); IH.
• .(φ ∨ ψ) iff .φ ∨ .ψ (directly from the semantics of .); IH.
• .∇Γ iff

∧
γ∈Γ∇{.γ,>}; IH. (By induction, each .γ is equivalent to an .-free formula

ψ, and the resulting
∧
ψ∇{ψ,>} is also .-free.)

Thus we are able to push the refinement operators deeper into the formula until they
eventually reach > or ⊥, at which point they disappear and we are left with χ (which
does not contain . and is equivalent to .φ). Replacing .φ by χ in ψ gives a result with
at least one less .-operator, to which the (original) induction hypothesis applies. 2

Lemma 4.4 Let φ ∈ L. be given and ψ ∈ L be equivalent to φ. If ψ is a theorem in K,
then φ is a theorem in FEL.

Proof. Given a φ ∈ L., Lemma 4.3 gives us an equivalent ψ ∈ L. Assume that ψ is
a theorem in K. We can extend the derivation of ψ to a derivation of φ by observing
that the first five of the six itemized reduction steps in Lemma 4.3 are all provable
equivalences, and that the last item is of course the axiom GK. (Where we also need to
observe that the system FEL satisfies the substitution of equivalents: if φ1 is equivalent
to φ2 and φ1 is a subformula of φ3, and φ3 is a theorem, then φ3[φ1\φ2] is also a
theorem.) 2

Theorem 4.5 The axiom schema FEL is sound and complete for the logic L..

Proof. The soundness proof is given in Theorem 4.2, so we are left to show completeness.
Suppose that φ is valid: |= φ. Applying Lemma 4.3 we know that there is some equivalent
formula ψ not containing any refinement quantification. As φ is valid, from that and
the validity φ↔ ψ it follows that ψ is also valid in future event logic, and therefore also
valid in the logic L (note that the model class is the same!). From the completeness of
K it follows that ψ is derivable, i.e. it is a theorem. From Lemma 4.4 it follows that φ
is a theorem. 2

5 Axiomatization: Lµ.
The axiomatization for Lµ. extends the axiomatization for L. with the extra axiom
and rule of Kozen’s axiomatization of the modal µ-calculus (F1 and F2), and two new
interaction axioms (G3 and G4). The axiomatization FELµ is a substitution schema
of the axioms and rules for L., FEL (see Section 4), along with the axiom and rule for
the modal µ-calculus:

F1 φ[µx.φ\x]→ µx.φ

F2 From φ[ψ\x]→ ψ infer µxφ→ ψ
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and two new interaction axioms:

G3 Iµx.φ↔ µx.Iφ where µx.φ is a df (Def. 3.5)

G4 Iνx.φ↔ νx.Iφ where νx.φ is a df

These interaction axioms have an important associated condition: the refinement quan-
tification will only commute with a fixed-point operator if the fixed-point formula is a
disjunctive formula.

5.1 Soundness

The soundness proofs of Section 4.2 still apply and the soundness of F1 and F2 are well
known [3], so we are left to show that G3 and G4 are sound.

Theorem 5.1 The axioms G3 and G4 are sound.

Proof. In this proof we will find it convenient to use the bisimulation quantifiers char-
acterization of both fixed-point operators and refinement quantification. We recall what
bisimulation quantifier is: Given an atom x and a formula φ, the expression ∃xφ means
that there exists x such that φ, and it is interpreted as Ms |= ∃xφ if, and only if, for some
Nt bisimilar to Ms except for x—for which we will write Nt↔xMs— we have Nt |= φ.
We let ∀xφ abbreviate ¬∃x¬φ, and a deeper technical discussion of the properties of
bisimulation quantifiers may be found in [8].

(i) µx.φ is equivalent to ∀x(�(φ → x) → x) [11] (where � is the universal modality
which quantifies over all states in the model).

(ii) νx.φ is equivalent to ∃x(�(x→ φ) ∧ x) [11].

(iii) Iφ is equivalent to ∀rφr, where φr is the relativization of φ to the atom r, which may
be computed recursively by replacing every occurrence of 2ψ in φ with 2(r → ψr)
[21].

(iv) .φ is equivalent to ∃rφr.

Note that from [7] we know that bisimulation quantifiers are expressible in the modal
µ-calculus, and thus the equivalences (i) and (ii) hold in the modal µ-calculus. Further-
more, in [21], the equivalences (iii) and (iv) are shown to hold for all logics that are
closed under bisimulation and announcement. As the modal µ-calculus is such a logic,
all four equivalences hold in the modal µ-calculus, and they may be reasonably applied
in the proofs given below:
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G3 It is more convenient in this proof to reason about the axiom in its contrapositive
form: .νx.φ↔ νx..φ. Using the equivalent transformations above we have:

.νx.φ↔∃r∃x(�(x→ φ) ∧ x)r

↔∃x∃r(�(x→ φr) ∧ x)

↔∃x(∃r�(x→ φr) ∧ x)

→∃x(�∃r(x→ φr) ∧ x)

↔∃x(�(x→ ∃rφr) ∧ x)

↔ νx..φ

This proof simply applies known validities of bisimulation quantifiers. Note that
the fourth line is not an equivalence in the general case. However, we may show that
where φ is a disjunctive formula, the equivalence does hold. To do this, suppose
Ms is any countable model such that Ms |= ∃x(�∃r(x → αr) ∧ x), where α is
a disjunctive formula. As the µ-calculus enjoys the tree-model property, we may
assume that there is some tree-like model Nt↔xMs such that Nt |= x ∧�∃r(x →
αr). We inductively build a series of models N i

t
↔r,xNt where N i = (SN , RN , Vi).

We set V0(x) = {t}, V0(r) = ∅ and V0(p) = V N (p) for all p /∈ {r, x}. As Nt |= ∃rαr
and νx.α is a disjunctive formula, the only case where the atom x may influence
the interpretation of ∃rαr is at a set of states such that all states beyond that set
of states are irrelevant to the interpretation of ∃rαr at t (this set of states forms
a frontier). This is because from Definition 3.5, if x is a sub-formula of α, then if
x appears in the scope of a conjunction, it appears within the scope of a modality
within that conjunction. Thus, there is a set of states {u0, u1, ...} ∈ V N (x) such that
N ′t |= αr, where N ′ = (SN , R′, V ′) for V ′(x) = {t, u0, u1, ...}, V ′(y) = V N (y) for
y /∈ {x, r} and R′ = RN\{(ui, s)|s ∈ SN , i = 0, 1, ...}. Consequently the valuation
of r maybe restricted to states that are not reachable from any state, {u0, u1, ...}
Let S0 ⊂ SN be the set of states reachable from t, but not reachable from ui for any
i. We define N1 by setting V1(x) = V ′(x), V1(r) = V ′(r) ∩ S0 and V1(y) = V N (y)
for y /∈ {x, r}. As u0, u1, ... ∈ V N (x), we have Nui |= x ∧�(∃r(x→ αr) for all i.

As Ms is a countable model, we may assume an enumeration of the worlds (or
states) in that model. The induction proceeds by taking the first state u0 on the
frontier and repeating the process (i.e. finding a valuation V ′ such that V ′ make
x true on a frontier {v0, v1, ...}, agrees with V N on the interpretation of all atoms
except x and r, makes N ′u0

|= αr and makes Nvi |= x ∧ �(∃r(x → αr)) for all i).
We define V2 by taking the union of V2(x) = V ′(x) and V2(r) = V1(r)∪ (V ′(r)∩S1

where S1 is the set of states reachable from u0, but not from vi for and i, and
all other atoms have their valuations unchanged. The states {v0, v1, ...} are added
to the set of frontier states and the induction continues. As the sets Vi(x) and
Vi(r) are strictly increasing with i, this process is well defined, and its limit N∗t
will satisfy ∃x∃r(�(x → αr) ∧ x), as required. The construction is represented in
Figure 3.

G4 We also use the contrapositive form of the axiom: .µx.φ↔ µx..φ.
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Fig. 3. The inductive step for the construction of N∗
t . The formula αr is independent of any state

where r is not true, or any state beyond the frontier defined by u0, u1, ....

.µx.φ↔∃r(∀x(�(φ→ x)→ x))r

→∀x∃r(�(φ→ x)→ x)r

↔∀x∃r(�(φ ∧ ¬x) ∨ x)r

↔∀x(∃r�(φ ∧ ¬x)r ∨ x)

↔∀x(�∃r(φ ∧ ¬x)r ∨ x)

↔∀x(�(∃rφr ∧ ¬x) ∨ x)

↔∀x(�(∃rφr → x)→ x)

↔ µx..φ

While the forward implication is generally true, the right to left implication again
relies on the fact that µxφ is a disjunctive formula. For this, write the formula µxα
to emphasize it is a disjunctive formula. We use the inductive characterization of
µx..α: if for x ∈ P and S ⊆ SM , M [x 7→S] = (SM , RM , V ) such that V (x) = S

and V (y) = VM (y) for y 6= x, then we may inductively define ‖.α‖0 = ∅, and

‖Fα‖i = {s ∈ SM | M [x 7→
⋃
j<i ‖.α‖j ]

s |= .α}. Then Ms |= µx..α if and only if
s ∈ ‖.α‖τ , where τ is an ordinal [3].

Now suppose Ms |= µx..α. Without loss of generality we may suppose that M
is a countable tree-like model. As Ms satisfies µx..α, there must be some least
ordinal τ whereby s ∈ ‖.α‖τ . We give a proof by induction, and the base case
where τ = 0 is trivial. Let Mτ = M [x 7→

⋃
j<τ ‖.α‖j ], and then Mτ

s |= .α. As µxα is
a disjunctive formula, we are again in the case where there is a refinement of Mτ

and a frontier such that x may only be true at s or on the frontier, and no point
beyond the frontier affects the interpretation of α. Formally, there is a set of states
{u0, u1, ...} ∈ VM

τ

(x) such that M ′s |= ∃rαr, where M ′ = (S′, R′, V ′) such that
• S′ ⊆ SMτ

is the set of states reachable from s, but not from any ui;
• V ′(x) = {t, u0, u1, ...}, V ′(y) = VM

τ

(y) for y 6= x; and
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• R′ = RM
τ \{(ui, t)|t ∈ SM

τ

, i = 0, 1, ...}.
We note that M ′s is a refinement of Mτ

s . Now as for each i, ui ∈ ‖.α‖j for some j <
τ , by the inductive hypothesis we may assume there is some model N i = (Si, Ri, V i)
where N i

vi � Mτ
ui and N i

ui |= µx.α. We may append these models to M ′ to define
M∗ = (S∗, R∗, V ∗) where S∗ = S′ ∪

⋃
i S

i, R∗ = R′ ∪
⋃
iR

i ∪{(t, vi) | (t, ui) ∈ R′},
and V ∗(y) = V ′(y) ∪

⋃
i V

i(y) for all y ∈ P . It is clear that M∗s is a refinement of
Ms, and by the axiom F1 we can see M∗s |= µx.α as required.

2

We note that the general form of G3 is not sound, for example, take φ = µz.3(y →
z) → 3(¬y → x). Then Iµx.φ is true if y is true at every immediate successor of the
current state, whereas µx.Iφ is only true at states with no successor. Likewise G4 is
not true in the general case, as can be seen by taking φ = p∧2(3> → x). Then νx.Iφ
is true if and only if p is true at every reachable state, and Iνx.φ is true only if p is
true at every state within one step.

5.2 Completeness

The completeness proof of FELµ proceeds exactly as for Theorem 4.5, replacing the
formulas in cover logic with disjunctive formulas to get a statement similar to the one
of Lemma 4.3.

Lemma 5.2 Every formula of Lµ. is equivalent in FELµ to a formula of the modal
µ-calculus Lµ.

Proof. Given a formula ψ, we prove by induction on the number of the occurrences
of . in ψ that it is equivalent to an .-free formula, and therefore to a formula in the
modal µ-calculus Lµ. The base is trivial. Now assume ψ contains n + 1 .-operators.
Choose a subformula of type .φ of our given formula ψ, where φ is .-free (i.e. choose
an innermost .). As φ is .-free, it follows from Proposition 3.6 that φ is semantically
equivalent to a formula in disjunctive normal form, and by the completeness of Kozen’s
axiom system [23] this equivalence is provable in FELµ. By Nec2 and G0 it follows that
.φ is provably equivalent to some formula .ψ where ψ is a disjunctive formula. Thus
without loss of generalization, we may assume in the following that φ is in disjunctive
normal form. We may now proceed by induction over the complexity of φ, and conclude
that .φ is logically equivalent to a formula χ without .. All cases of this induction are
as before, we only show the final two, different cases:

• .µx.φ iff µx..φ (by G4 noting that all subformulas of a disjunctive formula are them-
selves disjunctive); IH.

• .νx.φ iff νx..φ (by G3); IH.

Replacing .φ by χ in ψ gives a result with one less .-operator, to which the (original)
induction hypothesis applies. 2

Theorem 5.3 The axiom schema FELµ is sound and complete for the logic Lµ.
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Proof. Soundness follows from Theorem 5.1 and Theorem 4.2. To see FELµ is com-
plete, suppose φ is a valid formula. Then by Lemma 5.2, φ is provably equivalent to
some valid formula ψ of Lµ. As ψ is valid, it must be provable since P, K, F1, F2,
Nec1, and MP give a sound and complete proof system for the modal µ-calculus [23].
A proof of φ follows by MP. 2

6 Complexity

Both axiomatizations demonstrated the expressivity and decidability of L. (expressively
equivalent to K) and Lµ. (expressively equivalent to Lµ). Decidability for both follows
from the fact that a computable translation is given in the completeness proofs. Note
that as the translations given are recursive and involve translating formulas to disjunctive
normal form, the translation is non-elementary in the size of of the original formula. In
this section we examine the complexity of L., providing both an elementary upper bound
and a succinctness proof.

6.1 Upper-Bound

A decision procedure for L. is given via a tableau. Given any L. formula φ, we describe
a tableau construction that either constructs a model for φ, or reports that φ is not
satisfiable.

Definition 6.1 A formula is in positive normal form if it is built from the following
abstract syntax.

α ::= > | ⊥| p | ¬p | α ∧ α | α ∨ α |2α | 3α | Iα | .α

We note every L. formula may be converted into positive normal form with linear
change to the size of formula.

Tableau Definition:
Let φ be a formula in positive normal form. Suppose that each subformula of φ

is uniquely indexed as φi for i = 0, ...m (thus, two identical subformulas appearing in
different places in φ would be indexed differently). Let I = {1, ...,m}, let ⊂ be the
subformula relation over these nodes (so j ⊂ i if and only if φj is a subformula of φi),
and given σ ⊆ I, let σ+ be the set {j ∈ I | ∃i ∈ σ, i ⊂ j}. Suppose also that φ = φ0.
The initial tableau, T0 ∈ ℘(℘(I)) consists of the set of nodes, σ, each of which is a subset
of I satisfying the following conditions:

• if i ∈ σ and φi = φj ∧ φk then j, k ∈ σ;
• if i ∈ σ and φi = φj ∨ φk then either j ∈ σ or k ∈ σ;
• if i ∈ σ and φi = .φj or φi = Iφj then j ∈ σ;
• if i, j ∈ σ then if φi = p, then φj 6= ¬p.

The tableau, Tn is then successively pruned according to a game for each node:
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Definition 6.2 Let the two players be E and A, and σ be some node in Tn. We define
the pruning game G(Tn, σ) where each game position is a tuple (Θ, i) where Θ ⊂ Tn and
i ∈ I. For two sets Θ1,Θ2 ⊂ Tn we define Θ1 v Θ2 if and only if for every θ ∈ Θ1 there
is some Θ′ ⊂ Θ1 and some λ ∈ Θ2 where θ ∪

⋃
ρ∈Θ′ ρ = λ.

Init Player E selects some Θ ⊆ Tn, and then the initial state is (Θ, 0).

Move given the state (Θ, i):
(i) if φi = Iαj , A selects some Θ′ v Θ, and the new game position is (Θ′, j),
(ii) else if φi = .αj , E selects some Θ′ v Θ, and the new game position is (Θ′, j),
(iii) else if φi = φj ∧ φk, A selects ` ∈ {j, k} and the new game position is (Θ, `),
(iv) else if φi = φj ∨ φk, E selects ` ∈ {j, k} ∩ σ+ and the new state is (Θ, `).
(v) else if φi /∈ σ and φi = 2φj or φi = 3φj , the new state is (Θ, j).

Wins The game proceeds until no further move can be made. For such a game position
(Θ, i):
(i) if φi = p, ¬p, > or i /∈ σ, player E wins,
(ii) else if φi = ⊥, player A wins,
(iii) else if φi = 2φj , then if for all θ ∈ Θ, j ∈ θ, then E wins and otherwise A wins,
(iv) else if φi = 3φj , then if for some θ ∈ Θ, j ∈ θ, then E wins and otherwise A wins.

The next tableau is then Tn+1 = {σ ∈ Tn | E has a winning strategy in G(Tn, σ)}.
We note that each game is easily determined since because the subformula φi is strictly
decreasing, there is a maximum of m moves in any game. Furthermore, T0 is finite and
Tn+1 ⊆ Tn, so a fixed point T ∗ is eventually reached. If for some σ ∈ T ∗ we have 0 ∈ σ
the tableau reports that φ is satisfiable, and otherwise it reports φ is unsatisfiable. We
let G(σ) abbreviate G(T ∗, σ).

The intuition behind this tableau is that each node represents a state in the model,
and records which parts of the formula φ are satisfied at that state. The semantics of
the . and I operator are captured by a game that is played at each state in the model
(i.e. successors may be kept, pruned or split). To take a global view, the players are
playing a game over Tn where E is trying to show a model for φ exists, and A is trying
to show that whichever model E builds does not satisfy φ. Every time they get to a
new state (i.e. they reach a game position (Θ, i) where i = 2φj or 3φj) they replay the
series of moves that brought them to that state, so that each player may select, in turn,
refinements of the set of successors for the new state.

Lemma 6.3 If the tableau reports that φ is satisfiable, then φ has a model.

Proof. Suppose that T ∗ is the final tableau, and σ ∈ T ∗ and φ ∈ σ. We build a model
M = (S,R, V ) from T ∗ where S = T ∗, for all θ ∈ S, if θ ∈ V (p) if and only if p ∈ θ,
and for each θ ∈ S, {ξ |(θ, ξ) ∈ R} is the first move of player E’s winning strategy in the
game G(θ). By induction over φ we may see that Mσ |= φ. For our inductive hypothesis
we assume if E has a winning strategy for the game position ({ξ | (θ, ξ) ∈ RM}, i), and
i ∈ θ, then Mθ |= φi. Let θM be the set of successors of θ in the model M .

(i) If i ∈ θ where φi ∈ {p,¬p,>} then Mθ |= φi.

(ii) If i ∈ θ where φi = φj ∧ φk then E must have a winning strategy for the game
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position (θM, i) in G(θ), so E must also have a winning strategy for (θM, j) and a
winning strategy (θM, k), so by the inductive hypothesis we have Mθ |= φi.

(iii) If i ∈ θ where φi = φj ∨ φk then E must have a winning strategy for the game
position (θM, i) in G(θ), so E must also have a winning strategy for (θM, j) or a
winning strategy for (θM, k), so by the inductive hypothesis we have Mθ |= φi.

(iv) If i ∈ θ where φi = 2φj then every ξ ∈ θM must have j ∈ ξ. Therefore E has a
winning strategy from (ξM, j) in G(ξ), so every successor of θ satisfies φj .

(v) If i ∈ θ where φi = 3φj then some ξ ∈ θM must have j ∈ ξ. Therefore E has a
winning strategy from (ξM, j) in G(ξ), so some successor of θ satisfies φj .

(vi) If i ∈ θ where φi = Iφj , then E has a winning strategy in the game G(θ) from the
game position (θM, i), so for every A v θM , player E has a winning strategy from
the game position (A, j). Every refinement M ′θ of Mθ may be represented by the
restrictions Aξ v ξM for all ξ reachable from θ. As E has a winning strategy for all
such game positions starting from (Aθ, j) we have M ′θ |= φj and the result follows.

(vii) If i ∈ θ where φi = .φj , then E has a winning strategy to select restrictions
Aξ v ξM for all ξ reachable from θ, in the game G(ξ) so that she has a winning
strategy from the game position (Aξ, j). Collecting these restrictions together we
are able to define a single refinement M ′θ of Mθ for which E has a winning strategy
from (θM ′, j), and thus M ′θ |= φj .

By induction it follows that since E has a winning strategy for G(σ), Mσ |= φ. 2

Lemma 6.4 If φ is satisfiable, then the tableau reports that φ is satisfiable.

Proof. If φ is satisfiable, then φ has some model, Ms. Seeing as φ is equivalent to a
formula of L we may assume that Ms contains no infinite paths [6]. We use Ms to build
a set of nodes in the tableau and define a winning strategy for E in each, ensuring they
are never pruned. The construction of the tableau mirrors the semantics of L.. Given
the set of all refinements of M modulo bisimulation,M, and the states in SM , we index
a set of nodes as nNt where t ∈ SM and N ∈ M. We ensure 0 ∈ nMs and build up the
nodes as follows:

(i) if i ∈ nNt and i = φj ∧ φk, then j, k ∈ nNt ,

(ii) if i ∈ nNt and i = φj ∨ φk, then j ∈ nNt if and only if Nt |= φj , and k ∈ nNt if and
only if Nt |= φk,

(iii) if i ∈ nNt and i = Iφj , then for all N ′t � Nt, j ∈ nN
′

t
3 ,

(iv) if i ∈ nNt and i = .φj , then for all N ′t � Nt, j ∈ nN
′

t if and only if N ′t |= φj ,

(v) if i ∈ nNt and i = 2φj , then for all u where (t, u) ∈ RN , j ∈ nNu ,

(vi) if i ∈ nNt and i = 3φj , then for all u where (t, u) ∈ RN , j ∈ nNu if and only if
Nu |= φj .

3 We assume, without loss of generality that every state in every refinement is associated with a single
state from SM



Hans van Ditmarsch, Tim French and Sophie Pinchinat 95

It is clear from the semantics of L. that that for all i ∈ nNt , Nt |= φi. Let T be the set
of nodes {nt | nt =

⋃
Nt�Mt

nNt }. Now E’s moves may be dictated by the model Ms.
For the node nt, the game G(nt) simulates the set of formulas that must be true along
the path leading to t (whose index is not in nt in the model M), and the sets of formula
true at Mt (whose index is in nt). Throughout the play, player E records a tuple (N, u)
of the current refinement and state that is being used to evaluate the formula φi, where
the game position is (Θ, i). Furthermore, at each step she may ensure that Θ represents
the set of nodes {nv | (t, v) ∈ RN}. As E is guided by the semantic interpretation of φ
in Ms, her recorded tuple (N, u) for the game position (Θ, i) is such that Nu |= φi. If at
the end of play, u 6= t, then it will be the case that i /∈ nt, so player E wins. Otherwise,
we will have the game position (Θ, i) and either:

(i) φi ∈ {>, p,¬p} in which case E wins (⊥ is not an option since Nt 6|= ⊥); or

(ii) φi = 2φj so Nt |= 2φj and thus for all u where (t, u) ∈ RN , Nu |= φj so j ∈ nu = Θ
and E wins; or

(iii) φi = 3φj so Nt |= 3φj and thus for some u where (t, u) ∈ RN , Nu |= φj so
j ∈ nu = Θ and E wins.

Therefore no node nt ∈ T is pruned from the tableau, and as 0 ∈ ns the tableau reports
that φ is satisfiable. 2

Corollary 6.5 The satisfiability problem for L. can be determined in 2EXP time.

Proof. This follows directly from the tableau description. If φ is a formula of size m,
then there at most 2m nodes in the initial tableau. To do the pruning steps we must
search all possible strategies for E to see if any are winning strategies. As the players
moves involve sets of nodes, this takes time 22m . For each step we must examine Gn(σ)
for every node σ, and as the tableau are strictly decreasing, there are at most 2m steps.
Thus the overall complexity is 2O(2m). 2

It is not yet known whether this complexity bound is optimal. However, below we
show that L. is exponentially more succinct than Lµ, which suggests that the 2EXP
bound may be optimal.

6.2 Succinctness

Here we use the refinement quantification to show that L. is able to express the property
that two binary trees are n-bisimilar, with a formula of size O(n2). We will then show
that neither K, nor Lµ are able to express this property in size less than 2O(n).

The basic idea of this construction is to encode a pebble game (or bisimulation game)
for showing n-bisimilarity, using the refinement quantification to encode players moves.
We restrict our attention to complete binary trees labelled by a single atom, a that
marks a prefix closed subtree, and consider the property: “The left subtree marked by
a is n-bisimilar to the right subtree marked by a”. To enforce the binary nature of the
tree we suppose that there is an atom ` that labels each left successor, and we suppose
that r is an abbreviation for ¬`. We may then refer to the left successor using the modal
abbreviations 〈`〉φ for 3(` ∧ φ), and likewise for the right successor. Note orientation
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(left or right) of a successor does not affect whether two subtrees are bisimilar. They
are just used to ensure that the rules of the game are followed.

Our intent is to encode a pebble game played by a Spoiler and a Duplicator. Each
player takes turns at selecting a successor (or moving a pebble) in either subtree. Spoiler
goes first, selecting a successor in either subtree (left or right), where a is true, and then
Duplicator must select a successor in the other subtree where a is true. If Spoiler is ever
unable to move Duplicator wins, and if Duplicator is unable to move, Spoiler wins. If
Duplicator has a strategy to survive at least n moves, then the left and right sub-trees
must be n-bisimilar [19].

In L. we simulate “selecting a successor” by taking a refinement that leaves only the
left or right successor, but otherwise leave the tree intact. To do this we introduce the
abbreviation trunkm to represent a (1-2)-tree where nodes of height less than m have
only a left successor, or only a right successor and nodes of height greater than or equal
to m, but less than n have a left successor and a right successor:

trunkm =
m∧
i=1

(2i(` ∧ a) ∨2i(r ∧ a) ∧
n−1∧
i=m

2i(3` ∧3r)

We can present the definition for n-bisimilarity recursively, where:

Bni = I



〈`〉trunki ∧ 〈r〉trunki−1

∨

〈r〉trunki ∧ 〈`〉trunki−1

 −→ .
[
〈`〉trunki ∧ 〈r〉trunki ∧ Bni+1

]


and Bnn = 〈`〉trunkn ∧ 〈r〉trunkn. Then the property of n-bisimilarity is just equivalent
to Bn1 .

A game scenario in presented in Figure 4.

Lemma 6.6 Let Ms be a complete binary tree. Then Ms |= Bn1 if and only if the subtree
of the left node that is labelled by a is n-bisimilar to the subtree of the right node that is
labelled by a.

Proof. The proof follows the semantic encoding of a pebble game. If the left and
right a-marked subtree are n-bisimilar, then Duplicator has a winning strategy in the
game. Thus if Ms |= Bn1 , any move Spoiler makes corresponds to a refinement that
makes trunk1 true at one branch, and trunk2 true at the other. But for any move that
Spoiler makes, Duplicator may find a move (a refinement that makes trunk2 true for
both subtrees) where the remaining subtrees are (n− 1)-bisimilar (and thus Bn2 is true
for the refined binary tree). Applying the argument inductively, it follows that if the
left and right a-marked subtrees are n-bisimilar, then Ms |= Bn1 .
Conversely, if Ms |= Bn1 , then we may extract a winning strategy for Duplicator in
the pebble game. Any move that Spoiler may make in the game will correspond to a
refinement, M1

s that makes trunk1 true at one subtree and trunk2 true at the other. As
Ms |= Bn1 , for every such refinement, there is a further refinement, M2

s that has both
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left right
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a

a
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a a

aaa a
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a

Fig. 4. The state of the game after four moves. The winning move for Spoiler to play is to select the bold
successor. Then no matter what successor Duplicator picks, Spoiler may select one of it’s successors,
leaving Duplicator with no move to make

a-marked subtrees satisfying trunk2, and furthermore, M2
s |= Bn2 . Therefore, Duplicator

may chose to move according to this bisimulation (i.e. by selecting which ever successor
was preserved in the refinement). As Ms |= Bn1 , Duplicator’s strategy is guaranteed to
last at least n moves and thus the left and right a-marked subtrees are n-bisimilar. 2

Lemma 6.7 No formula of the modal µ-calculus can express the property of (n + 1)-
bisimilarity in size less than 2n/4.

Proof. We note that there are roughly 22n non-bisimilar (1,2)-trees of height n + 1.
The actual number is specified by the recurrence f(n) = (f(n− 1)2 + f(n− 1))/2 where
f(0) = 2 and a simple induction will show that f(n) > 22n/4. As every formula of
the µ-calculus is expressively equivalent to an alternating automaton of equal size, if a
formula of size less than 2n/4 were able to express n+ 1-bisimilarity then an alternating
automaton of size less than 2n/4 would be able to accept all pairs of subtrees that are
n+1-bisimilar. Given the 2-player parity game that results from applying the alternating
automaton to any we may associate with every distinct sub-tree (up to bisimulation)
the set of automaton states for which the automaton player has a winning strategy from
that state in the the subtree. As there are more than 22n/4 non-bisimilar subtrees and
less than 2n/4 states, there must be two non-bisimilar subtrees, T1 and T2 for which an
automaton winning strategy exists for exactly the same set of states. The alternating
automaton would not be able to distinguish the case where T1 is the left successor and T2

is the right successor (which it cannot accept), and the case where T2 is the left and right
successor (which it does accept). Therefore, any formula that expresses n+1-bisimilarity
for (1, 2)-trees must have at least 2n/4 subformulas. 2

Corollary 6.8 L. is exponentially more succinct than L.

Proof. From the lemmas above, L. is able to express n-bisimilarity with a formula of
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size O(n2), while L requires a formula of size 2n/4 at least. The quadratic growth of the
L. formula is cancelled out by by a constant in the exponent of the growth rate of the
L formula, so we may find a family of formulas in L., such that for a formula of size n,
the smallest equivalent L formula is bound below by 2O(n). 2

We note this proof applies without change to show Lµ. is exponentially more succinct
than Lµ.

7 Discussion and perspectives

The logic L. is presented with respect to the class of all epistemic models. By restricting
the class of models the logic is interpreted over we may associate different meanings with
the modalities. For example, the epistemic logic S5 is interpreted over all models where
the accessibility relation is reflexive, transitive and symmetric (we will denote this class
S5), and the logic K4 is interpreted over all models with a transitive accessibility relation
(denoted K4). Given any class of models C, we define the logic LC. to be as in Section 3
except:

(i) The interpretation is restricted to models in the class C
(ii) The semantic interpretation of I is given by:

Ms |= Iaφ iff for all M ′s′ ∈ C : Ms �a M ′s′ implies M ′s′ |= φ.

A study of how various classes of models affect the properties of bisimulation quantified
logics is given in [11]. For the effect of varying classes of models on the axiomatization
given, we note that while the schema FEL is sound for L., it is not the case that the
axiom GK is sound for restricted classes of models. For example in the class of reflexive,
transitive and symmetric models (i.e. S5 frames) we have 3.2p∧3.¬2p is consistent,
but .∇(2p,¬2p) is not. In future work we will examine axiomatizations and complexity
for refinement quantifiers in logics such as S5, KD45 and K4.
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