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Abstract
For any planar straight line graph (Pslg), there is a vertex-

face assignment such that every vertex is assigned to at most

two incident faces, and every face is assigned to all its reflex

vertices and one more incident vertex. The existence of such

an assignment implies, in turn, that any Pslg can be aug-

mented to a connected Pslg such that the degree of every

vertex increases by at most two.

1 Introduction

A planar straight line graph (Pslg) partitions the plane
into connected components, which are the faces of the
graph. Every Pslg has an unbounded outer face and,
if it has circuits, then it also has bounded faces.

Let V (G) and F (G) denote the set of vertices and
faces, respectively, of a Pslg G. A vertex-face assign-
ment for G is a multiset A ⊂ V (G) × F (G), where
every pair (v, f) ∈ A is an incident vertex-face pair. If
(v, f) ∈ A, then we say that vertex v is assigned to face
f , and vice versa, face f is assigned to vertex v. Our
main result relates vertices and faces through a special
type of vertex-face assignment.

Given a Pslg G and a vertex v0 ∈ V (G), a vertex-face
assignment is a ?-assignment if it satisfies the following
conditions.

(i) Every vertex is assigned to at most two faces1;

(ii) v0 is assigned to at most one face;

(iii) Every face is assigned to all its reflex vertices and
one additional vertex2.

Theorem 1 For every Pslg G and v0 ∈ V (G), there
is a ?-assignment.

A triangulation on n vertices, for example, has 2n−4
faces. The outer face has three reflex vertices, all other
faces are convex. Therefore, a ?-assignment maps the
2n − 4 faces to a total of at least (2n − 4) + 3 = 2n −
1 vertices, and the n vertices are assigned to at most
2n − 1 faces. Theorem 1 is similarly tight for pseudo-
triangulations (Ptns). A Ptn is a Pslg where the outer
face has no convex vertices, and every bounded face has
exactly three convex vertices. A vertex v is pointed if it
is a reflex vertex for some face. A Ptn is pointed if all
vertices are pointed. Consider a Ptn G with n vertices,
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1This includes the possibility of assigning a vertex twice to the

same face, since the assignment A may be a multiset.
2The additional vertex may be a reflex vertex, in which case

the face is assigned twice to one of its reflex vertices.

m of which are not pointed. It is easy to see that G has
n+m−1 faces [12]. The n+m−1 faces have n−m reflex
vertices in total, and so a ?-assignment maps these faces
to at least (n + m − 1) + (n − m) = 2n − 1 vertices.

Recently, Hoffmann and Tóth [6] conjectured that
every Pslg has a ?-assignment with the additional con-
dition that every bounded face is assigned to at least
one convex vertex. We show that such an assignment
does not always exist.

Proposition 2 There is a Pslg Γ with the property
that for every ?-assignment there is a bounded face f ∈
F (Γ) which is not assigned to any convex vertex of f .

We can, as well, generate an infinite family of such
Pslgs by gluing several copies of Γ together.

1.1 Encompassing graphs

A Pslg is not necessarily connected. An encompassing
graph for a Pslg G is a connected Pslg on the same
vertex set that contains all edges of G. Encompassing
graphs for Pslgs are similar to spanning trees for planar
point sets. The key difference is, though, that the edges
connecting disjoint components of G are pairwise non-
crossing, and they cannot cross the edges of G, either.

Bose, Houle, and Toussaint [1] proved that any plane
straight line matching (i.e., disjoint line segments in the
plane) has an encompassing tree of maximum degree
at most three. Hoffmann and Tóth [6] have generalized
this result and proved that any plane straight line forest
can be augmented to an encompassing tree such that
the degree of every vertex increases by at most two. As
a consequence of Theorem 1, we can now extend their
result to arbitrary Pslgs.

Theorem 3 Any Pslg G can be augmented to an en-
compassing graph of G such that the degree of every ver-
tex increases by at most two.

We say that a graph is vertex-colored if every vertex
has a color and adjacent vertices have different colors.
Hurtado et al. [7] proved that any vertex-colored Pslg

with no singletons can be augmented to a vertex-colored
encompassing graph. Hoffmann and Tóth [6] proved
that any vertex-colored Pslg forest (which has exactly
one face) with no singletons can be augmented to an
encompassing graph while the degree of every vertex
increases by at most two. Using Theorem 1, we can ex-
tend this result, too, to arbitrary vertex-colored Pslgs.

Theorem 4 Any vertex-colored Pslg G with no sin-
gleton component can be augmented to a vertex-colored
encompassing graph of G such that the degree of every
vertex increases by at most two.
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Related previous work. There seems to be little
known about vertex-face assignments. Brooks et al. [2]
showed that a ?-assignment exists for even degree tri-
angulations. In fact, it is not difficult to construct a
?-assignment for any triangulation.

2 Proof of Theorem 1

We construct an assignment for a Pslg in four steps.
We first prove Theorem 1 for pointed Ptns and combi-
natorial pointed Ptns. We then extend the assignment
for Ptns and for arbitrary Pslgs.

2.1 Pointed pseudo-triangulations

It is well known that pointed Ptns are related to rigidity
theory. Henneberg [4] defined two (rigidity preserving)
operations for abstract graphs almost one hundred years
ago. Restricting these operations for Pslgs, we can
modify a graph only along the boundary of one face.
There are two planar Henneberg operations for a Pslg:

H1 Consider two vertices u, v along a face f . Add a
new vertex w in the interior of f , and split f into
two faces by two new edges uw and vw. (Fig. 1)

H2 Consider an edge u1u2 and a vertex v along a face
f . Replace edge u1u2 by a path (u1, w, u2) where
w is a new vertex, and split face f into two faces
by a new edge vw. (Fig. 1, right)

f
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u v

u1

u2

w

Figure 1: Operations H1 and H2.

Recently, Haas et al. [3] proved a planar decomposition
theorem for pointed Ptns.
Theorem 5 (Haas et al. [3]) Given a pointed Ptn

G and a vertex v0 ∈ V (G), there is a sequence
(G0, G1, . . . , Gk) of pointed Ptns such that G0 is a tri-
angle u0v0w0, Gk = G, and Gi+1 is obtained from Gi

by a planar Henneberg operation for i = 0, 1, . . . , k − 1.

Lemma 6 Every pointed Ptn has a ?-assignment.

Proof. Consider the sequence (G0, G1, . . . , Gk) of
pointed Ptns from Theorem 5. Every vertex in every
Gi, i = 0, 1, . . . , k − 1, is pointed. For every vertex
v, the pair (v, f) where v is reflex for f must be in a
?-assignment. By discarding these pairs, we obtain a
reduced ?-assignment, which satisfies the following con-
ditions: (i’) Every vertex is assigned to at most one face;
(ii’) v0 is not assigned; (iii’) every face is assigned to one
vertex.

It suffices to find a reduced assignment for every Gi,
i = 0, 1, . . . , k − 1. The initial graph G0 has two faces:
the outer face f0 and the triangle f . Let A′(G0) =
{(u0, f0), (w, f)}, which is a reduced ?-assignment.

Consider a pointed Ptn Gi with a reduced ?-
assignment A′

i. We obtain Gi+1 from Gi through oper-
ation H1 or H2. Both H1 and H2 split a face f ∈ F (Gi)
into two faces, f1 and f2, and insert a new vertex w

incident to both f1 and f2. All other faces f3 ∈ F (Gi),
f3 6= f , remain incident to all vertices they were in-
cident to in Gi. Suppose A′

i assigns f to a vertex v1

and w.l.o.g. v1 is incident to f1. We obtain a reduced
?-assignment A′

i+1 = A′

i − {(v1, f)} + {(v1, f1), (w, f2)}
that assigns the new vertex w to f2. �

2.2 Pointed combinatorial pseudo-triangulations

Haas et al. [3] defined the combinatorial pseudo-
triangulation, which replaces the intuitive notion of re-
flex and convex vertices by abstract ones. An angle of a
Pslg is a triple (v, e1, e2) of a vertex v and two incident
edges e1 and e2 which are consecutive in the cyclic order
of all edges incident to v. Since e1 and e2 are on the
boundary of a common face, every vertex-face incidence
determines (at least one) angle.

A combinatorial pseudo-triangulation (Cptn) is a
Pslg where every angle is labeled either big or small;
every vertex is the apex of at most one big angle; every
angle of the outer face is labeled big, and every bounded
face has exactly three angles labeled small. In particu-
lar, a Ptn with the natural labeling (where reflex angles
are big and convex angles are small) is a Cptn. A ver-
tex of a Cptn is pointed if it is the apex of a big angle,
and a Cptn is pointed if all its vertices are pointed.

Haas et al. [3] proved that every pointed Cptn can be
realized (with the same vertex-face incidence structure)
as a pointed Ptn. It follows immediately that:
Lemma 7 Every pointed Cptn has a ?-assignment3.

2.3 Combinatorial pseudo-triangulations

Next, we would like to construct arbitrary Ptns with lo-
cal planar operations, similarly to the planar Henneberg
construction of pointed Ptns. For this, we define one
more operation (inserting an edge) and cite a recent re-
sult by Orden et al. [10].

H3 Consider two non-adjacent pointed vertices u, v

along a face f such that f has a big angle at u.
Add a new edge uv that splits f into two faces.
Edge uv splits the big angle of u into two small an-
gles; it splits the angle of v into two small angles iff
f had a small angle along v4.

Theorem 8 (Orden et al. [10]) Given a Ptn G and
a vertex v0 ∈ V (G), there is a sequence (G0, G1, . . . , Gk)
of Cptns such that G0 is a pointed Cptn with v0 ∈
V (G0), Gk = G, and Gi+1 is obtained from Gi by op-
eration H1 or H3, for i = 0, 1, . . . , k − 1.

3For a Cptn, condition (iii) of ?-assignments requires that
every face is assigned to the apexes of all its big angles and one
additional incident vertex.

4That is, u becomes non-pointed, and v remains pointed.
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(In fact, Orden et al. [10] proved a stronger result:
Every generically rigid Cptn can be constructed from
a pointed Cptn by operations H1 and H3 through a
sequence of generically rigid Cptns. And, in particular,
every Ptn is a generically rigid Cptn.)

Note that the Cptns are, indeed, necessarily for The-
orem 8: The Ptn on the right of Fig. 2 cannot be ob-
tained from another Ptn by operations H1 or H3.

u

v

u

v

f

Figure 2: Operation H3. Big angles are marked. The
Cptn on the right is a Ptn (all big angles are reflex).

Lemma 9 Every Cptn has a ?-assignment.

Proof. Similarly to the proof of Lemma 6, we may ig-
nore the assignment of pointed vertices to the faces at
which they are big. It is enough to find a reduced ?-
assignment that satisfies these conditions: (i’) Every
pointed (non-pointed) vertex is assigned to at most one
face (two faces); (ii’) If v0 is pointed (non-pointed) then
it is not assigned (assigned to at most one face); (iii’)
every face is assigned to one vertex.

Consider a Cptn Gi with a reduced ?-assignment A′

i.
We obtain Gi+1 from Gi via operation H1 or H3. In
case of operation H1, we repeat the argument in the
proof of Lemma 6. Operation H3 inserts a new edge uv

and splits a face f ∈ F (Gi) into two faces, f1 and f2.
All other faces f3 ∈ F (Gi), f3 6= f , remain incident to
the same vertices. Suppose A′

i assigns f to a vertex v1

and w.l.o.g. v1 is incident to f1. We obtain a reduced
?-assignment A′

i+1 = A′

i − {(v1, f)} + {(v1, f1), (u, f2)}
that assigns the new non-pointed vertex u to f2. �

2.4 Arbitrary Pslgs

Given a Pslg G, we can augment G to a Ptn G′ such
that every pointed vertex of G remains pointed: One
can insert edges recursively so that no new edge crosses
any previous edge or partitions any reflex angle into two
convex angles [12].
Proof. [of Theorem 1] Consider a Pslg G. We aug-
ment G to a Ptn G′ by adding a set E of edges while
keeping all pointed vertices pointed. The Ptn G′ has
a ?-assignment by Lemma 9. We remove the edges of
E one by one and maintain a ?-assignment. When we
remove an edge uv, let f1 and f2 denote the two faces
along uv. If f1 = f2 then we do not change the as-
signments. If f1 6= f2, then the edge removal merges
them to a face f = f1 ∪ f2. Every vertex assigned to
f1 or f2 should now be assigned to f . Since no edge
removal merges two convex angles into a reflex angle,
the resulting assignment is a ?-assignment for G′. �

Computational complexity. For a given pointed
Cptn with n vertices, Haas et al. [3] can compute a
sequence of planar Henneberg operations in O(n) time
(in fact, they compute the sequence of reverse opera-
tions), and so a ?-assignment can also be constructed
in O(n) time. For a given Cptn with n vertices, one
can compute a sequence of H1 and H3 operations to ob-
tain a pointed Cptn in O(n) time by results of Orden
et al. [10] (again, computing the reverse sequence first),
and so a ?-assignment can also be constructed in O(n)
time. Finally for a given Pslg G with n vertices, we can
compute a minimal encompassing pseudo-triangulation
T (G) in O(n log n) time (by applying in every face of
G a variant of Pocchiola and Vegter’s greedy flip algo-
rithm [11, 12]). T (G) has O(n) more edges than G.
While deleting these edges one-by-one, we can compute
a ?-assignment for G from a ?-assignment of T (G) in
O(n) time. Altogether, the total complexity of our al-
gorithm for computing a ?-assignment for a Pslg G on
n vertices is O(n log n).

3 A negative result

In this section, we prove Proposition 2. Consider
the pointed Ptn Γ in Fig. 3. We argue that for any
?-assignment of Γ, there is a pseudo-triangle face
assigned to reflex vertices only.

1

2 3

4

56

7

8 9

Figure 3: Graph Γ.

Suppose, to the contrary, that every bounded face of Γ
is assigned to a convex vertex. Consider the six bounded
faces along the triangle 123. All convex vertices of these
faces are in the six element set {1, 2, 3, 4, 5, 6}. But one
of {1, 2, 3} is assigned twice to the outer face, and it
cannot be assigned to any bounded face. A contradic-
tion: A ?-assignment cannot assign a convex vertex to
one of the quadrilaterals {1675, 3594, 2486}.

4 Encompassing graphs

Proof. [of Theorem 3.] Consider a Pslg G, and let
C0, C1, . . . , Ck−1 denote its connected components. We
augment G to a connected Pslg inductively. During
our algorithm we choose a special vertex vi for every
component Ci and a ?-assignment Ai for the pairs of
Ci and vi. The following two properties guarantee that
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the degree of every vertex increases by at most two: (a)
for every pair (v, f) ∈ Ai, i = 0, 1, . . . , k − 1, we may
increase the degree of v by an edge lying in the face
f ; (b) in addition, we may increase the degree of each
special vertex vi ∈ Ci by one.

We initiate our inductive algorithm by choosing an
vertex v0 ∈ V (G) on the convex hull of G, setting B0

to be the component Cj containing vo, and computing
a ?-assignment A(B0) for B0 and v0. One induction
step inserts an edge ei between Bi, i = 0, 1, . . . , k −
1, and a component of G − Bi. Then it computes a
?-assignment for Bi+1, which is the component of the
augmented graph G ∪ {e0, . . . , ei} containing vertex v0.
The induction step is performed as follows.

Consider a face f of Bi that contains some component
of G − Bi. We denote by Gf the graph formed by all
components of G − Bi lying in f . Let vf be a vertex
assigned to f by the reduced ?-assignment A′(Bi). We
search iteratively for a visibility edge ei = uivi+1, where
ui ∈ V (Bi) is either vertex vf or a reflex vertex of f ,
and some vi+1 ∈ V (Gf ). For this iterative search, we
let g := f and ui := vf .

Repeat until ui sees some vertex vi+1 ∈ V (Gf )
lying in g: Let Vis(ui) ⊂ g be the region visible
from ui where Gf is considered opaque. Let g′

be a connected region of g \ Vis(ui) that con-
tains vertices of both Gf and Bi. The common
boundary of Vis(ui) and g′ contains a reflex
vertex u′

i of g. Let g := g′ and ui := u′

i.

f = g

vf = ui

Gf

Bi
g′

Gf

Bi

u′

i

vi+1

Figure 4: One iteration for g and ui.

Once we have found edge ei = uivi+1 between Bi and
a component Ci+1 ⊂ G−Bi, we compute a ?-assignment
Ai+1 for Ci+1 and vi+1. Let Bi+1 = Bi ∪ Ci+1 ∪ {ei}.
Every face of Bi+1 is the face of either Bi or Ci+1, with
one exception: face f of Bi and the outer face of Ci+1

correspond to the same face f ′ in F (Bi+1). We combine
the ?-assignments A(Bi) and AI+1 into a common ?-
assignment A(Bi+1). To face f ′ ∈ F (Bi+1), the reduced
?-assignment A′(Bi+1) maps the vertex of Ci+1 that
A′

i+1 assigns to the outer face of Ci+1.

It is easy to see that the resulting graph G∪ {ei : i =
0, 1, . . . , k − 1} satisfies constraints (a) and (b). This
completes the proof of Theorem 3. �

The proof of the colorful variant, Theorem 4, is more
involved and is omitted from this abstract. It uses
the same technique as [6] (based on multiple visibility
sweeps of the faces of the input Pslg G).

5 Open problems

We have constructed a ?-assignment for every Pslg. Is
there a Pslg with a unique ?-assignment? How many
?-assignments exist for a given Pslg G and v0 ∈ V (G)?

The definition of ?-assignments poses different condi-
tions for convex and reflex vertices of a Pslg. Is it true
that every Cptn has a ?-assignment5?

For disjoint line segments in the plane, a bounded
degree encompassing tree can be used to construct a
bounded degree encompassing Ptn [5, 9]. Can every
Pslg be augmented to a Ptn so that the degree of
every vertex increases by no more than a constant?
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