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Abstract: In this paper, the correspondence problem is solved by minimizing an energy functional using a stochastic
approach. Our procedure generally follows Geman and Geman’s Gibbs sampler for Markov Random Fields (MRF). We
propose a transition generator to generate and explore states. The generator allows constraints such as epipolar, uniqueness,
and order to be imposed. We also propose to embed occlusions in the model. The energy functional is designed to take into
account resemblance, continuity, and number of occlusions. The disparity and occlusion maps as modeled by their energy
functional, i.e., as a Gibbs-Boltzmann distribution, are viewed as a MRF where the matching solution is an optimal state.
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1. Introduction

Dense stereo matching allows extraction of depth
physical properties from two images of the same scene.
Depth physical properties may be used in applications
such as robot navigation, obstacle avoidance,
photogrammetry, teleoperation, and measurement in
scanning electron microscopy to name a few. Depth is
inferred from two or more views of the same scene. If
the projections of the same scene point are known to
correspond to each other, the horizontal disparity,
respectively vertical, disparity can be computed as the
difference of abscissas, respectively ordinates. Once the
disparity map is established by matching the left and
right image of the scene, depth may be computed using
the disparity maps, the intrinsic cameras’ parameters
(focal distance, pixel size, CCD grid size, image
coordinates of the center of projection), and the
extrinsic cameras’ parameters (mainly the computation
of the rotation and translation matrices between the
cameras). Cameras’ parameters are determined through
a calibration procedure [21].

Image matching relies on the choice of matching
primitives and a matching algorithm. Primitives may be
points, regions, or contours. Primitives should possess
features that may be used for matching. Points possess
the inherent gray level or brightness attribute. But they
may also be characterized by features like Laplacian
zero crossings, gradient local extrema, or even fancy
photometric attributes such as the specular reflection
coefficient, diffuse reflection coefficient, and the
normal vector coefficient [15, 18]. The main features
that may be used with regions are the center of mass of

the region, the area of the region, the length of the
perimeter and also some higher moments that measure
symmetry and skewness. Contours are characterized
by the length, the center of mass, orientation, and
curvature. Contours may be used and produced by any
edge detector or processed by polygonal
approximation to yield an abstracted sketch of edges.
The usage of a particular matching primitive depends
on the quality of the desired disparity map. There are
mainly two types of disparity maps: sparse and dense
maps. Sparse maps only contain measurements in
areas where primitives are present. Dense maps
contain measurements almost everywhere. Hence,
sparse maps are produced when contours and points of
interest are used as matching primitives. Dense maps
are used when points or regions are used as matching
primitives.

Stereo matching is governed by a number of
constraints. The most important are resemblance,
epipolar, continuity, uniqueness, and order. The
resemblance constraint stipulates that two primitives
are matched only if they are similar. This constraint
enforces the similarity of brightness or photometric
attributes for points. This is particularly true in the
case of Lambertian surfaces-for which the amount of
reflected light is equally distributed for any point of
view. For regions, it matches primitives with similar
area, center of mass location, and dispersion. For
contours, primitives that are matched should have the
same length, orientation, and center of mass. The
major issue with this constraint is the fact that in real
imagery, primitives have seldom the exact same
features and hard similarity measures do not perform
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quite well. The epipolar constraint is the only constraint
due to the stereo rig geometry. Its concept is simple: a
physical point in the scene is projected onto the images
by intersecting a projection line, going through the
center of projection with the image plane; the physical
point and the two centers of projection, one for each
camera, form a plane that intersects both image planes-
the epiplar plane; each intersection yields a line on the
image-the epipolar line; a physical point in the scene
determines two epipolar lines, one in each image-they
are called conjugate epipolar lines. A point in the left
image plane that is the result of the projection of a real
physical point in the scene can only be matched with a
point in the right image plane that belongs to the
conjugate epipolar line. This has the advantage of
reducing the search space from 2D to 1D. The
continuity constraint is the result of the projection
theorem. Physical surfaces are smooth and continuous
and the perspective projection of a continuous surface
is also continuous. Hence, the disparity should vary
smoothly within a region. The uniqueness constraint
translates the fact that a point in the left image should at
most have one corresponding point in the right image.
If the point is occluded in the right view or hidden by
an object, there is obviously no corresponding point.
The constraint of order is only valid for non transparent
objects. A set of ordered points in one image is
matched to a set in the other image with the same order.

Several algorithms have been proposed in the
literature. These algorithms may be organized in
approaches: spatial, frequency, and space-scale domain
approaches. Spatial domain approaches are usually
based on primitives extracted in the spatial domain
(brightness, contours, regions). Frequency domain
approaches use frequency and phase components.
Scale-space domain approaches use multiscale
decomposition. Among spatial approaches, we cite
correlation [13, 19, 22]. It usually measures the
resemblance peak between two images. As the images
may have different levels and camera gain, a more
robust operator is used: zero mean normalized cross
correlation. Other forms of correlation include the
localized correlation that uses the wavelets coefficients
as matching primitives [16]. Similar spatial approaches
are used with regions and contours. Frequency domain
approaches translate the spatial shift (the disparity) into
a phase modulation. The disparity is directly recovered
as a phase difference. Other approaches use the phase
as a matching primitive in the phase correlation.
Cepstral correlation is another frequency-based method.
Scale-space approaches use Gaussian pyramids and
Burt’s pyramids to create smaller versions of the
original images. Matching is usually easier at low
resolution and the computed disparity maps are
propagated to higher resolutions. Previous works
addressed energy minimization-based dense stereo
matching and several methods were proposed. Among
these we cite level set methods [8], and mean field
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annealing [2, 3, 5, 10, 11, 12, 20]. Stereo matching can
always be cast as a problem of assigning each pixel a
label. Such pixel labeling problems are naturally
represented in terms of energy minimization. This
framework can be justified in terms of maximum a
priori of a Markov random field. A Gauss-Markov
random field model can be used to compute the
optimal Bayesian estimator. Global optimization
methods define the matching as an energy or a cost
function of the disparity field. This functional usually
uses a correspondence term and a regularization term
to enforce the spatial coherence of the disparity field.
The form of these terms vary from one approach to
another and many solvers based on Bayesian
interpretation and Markov random field have been
proposed [9]. Techniques for computing the optimal
estimator range from global energy minimization [12]
to mean field [6, 7, 14].

Stereo matching is an ill-posed problem [4] (it does
not conform to the Hadamard mathematical paradigm
for well-posedness) which solution is hidden by local
minima and where the notion of gradient does not
exist. This work aims at improving results by adding a
global aspect to the stereo vision problem, the
correlation having inherently a local aspect, and
making this module cooperate with other early vision
modules possible. For instance shape from shading
and photometric stereo. In order to attain our
objective, we formulate the problem as a Markov
random field and we solve the functional minimization
within a stochastic framework. We also propose a
random transition generator that is compatible with all
the stereo constraints as well as a disparity validity
criterion that verifies the symmetric property of
disparity maps-left and right disparities should be
equal with opposite signs. The paper is organized as
follows: section 2 deals with the interpretation of
stereo constraints in the context of energy
minimization and Markov random fields, where we
lay down the states random generator; the energy
minimization solver is presented in section 3; finally,
section 4 discusses the experimental protocol and
results in both synthetic and real imagery.

2. Stereo Matching

We are only interested in stereo matching general
constraints: the resemblance of the primitives, the
epipolar lines, the continuity of the disparities, the
uniqueness, and the order. These constraints are
expressed as energy functional and elementary
transitions. We consider the correspondences in both
directions (left to right and right to left), in order to
apply the continuity criterion to the two images and
the wvalidity criterion given by the uniqueness
constraint for the matching. We handle the disparities
and occlusions of the two images in a consistent way.
Images are noted [(x,y) and [(x,y), where



522 The International Arab Journal of Information Technology, Vol. 9, No. 6, November 2012

x,yed{l-
and /, and /, being the left-hand and right-hand side

images. Two cameras and observe the same scene have
a common field of vision. A point in the scene is
projected on the two images in two points which have
different coordinates due to the different points of view
of the cameras. We express this shifting by horizontal
and vertical disparities in the two directions (left with
respect to right and right with respect to left):

dx’(x,y)=x, —x, and dy’(x,y) =y,
(a,b) ={(l,r),(r,))} .

observe exactly the same physical points in the scene,
because some points can be out of the common field of
vision or hidden by objects. A point observed by a
single camera is declared as an occlusion in the image
where it appears. Occlusions are noted O;(x,y) and
O.(x,y)€{0,1}, where 0 stands for an occlusion.
Points that are seen by both cameras can be matched.
Disparities can be calculated by this point matching.
The disparities a depth can easily be computed by
triangulation using the cameras and the stereo rig
parameters.

-n} denote columns and lines respectively,

-y, where

The two cameras do not

2.1. Resemblance Constraint

This constraint allows the matching of two points only
if they have the same gray level. In the case of
lambertian surfaces, a point in the scene has the same
gray level in both images. A point is a corner of a pixel
for which we attribute the average of the gray levels of
its four adjacent neighbors:
1 1 1

A(xyy)—kEOIEOI(X+k,y+1) (1
We also consider using redundant information on the
scene by changing the lighting conditions. Each
lighting condition provides a stereo image pair. Within
the same stereo pair, corresponding points should have
similar gray level values. We express this constraint by
the square of the difference of the gray values
associated with the matching candidates for each
lighting condition £:

2
(Ak/(x,y)—Akr(x+dx](x,y),y+dyl(x,y))) (2)

This term is weighted with the term representing
occlusions, because if there is any occlusion there will
be no matching. The energy associated with this
constraint over the whole image is:

/ 2
4 (x,y)-
Ep =22 r(x+dxl(x,y)} Ol(va’) (3)
Y X| 4 /
y+dy (x,y)

2.2. Epipolar Constraint

A point in the scene is projected onto a point in the
image. All the points in the scene which belong to the
line going through the point of the scene and the
optical center are projected on the same point in the
image. The projection of this line on the other image
represents the epipolar line associated with the point.
A point can only be matched with a point in the other
image which lies on its epipolar line. The search space
is reduced to the epipolar line. It is the only constraint
that is due to stereoscopic geometry. It is expressed in
the elementary transitions.

2.3. Continuity Constraint

We consider the physical surfaces as locally
continuous. In this case, their Euclidean projection is
continuous as well. The disparity varies a little, except
on the edges. The reason is we cancel the continuity
constraint at the edges because we cancel the
constraint on occlusions; where no matching exists.
This constraint is expressed by the energy functional
given hereafter. Horizontal and vertical edges are
respectively denoted by Cy and )

c. (x5, )¢ (x,y) € {0,1}, where 0 stands for the

presence of an edge.
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2.4. Occlusions Counterweight

With occlusions all over the image, the energy is
minimal (null), but this is not a viable solution. This is
why we add a counterweight in the energy functional

in order to limit the number of occlusions. For one
image, this energy functional is:
£ =33 (1-0%x)) )
xy

2.5. Uniqueness Constraint

Every point can only be matched with at most one
point from the other image. This constraint was
introduced by Marr, and it is strictly verified in the
case of the nontransparent objects. This constraint
simplifies the computations and enables the
application of the wvalidity criterion for a given
matching. A matching is valid if both disparities (left
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to right and right to left) enable us to reach the point in
the right hand side image from the point in the left hand
side image and go back to the left hand side image
initial point. This constraint is expressed in the
elementary transitions. However, in case of
foreshortening, corresponding surfaces do not exhibit
the same number of pixels. As we are considering a
point-based matching approach, we will end up with
pixels that will not be matched at all. The algorithm
will force these pixels to be occluded.

2.6. Energy Functional

The energy functional of the stereo matching problem
is the weighted sum of the energy functionals derived
from the stereo matching constraints:

/ r /
E=ppEg +pc(Ec +Eq )+ po(Eg +Ep) (6)

Selected camera Epipolar line

Selected pixel corner Selected element
©) EEEEEEETS empty

(1A)
(1B)
2A)
(2B)

20

B occlusion
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The p terms denote the weighting coefficients. It is

always possible to set one of them to 1 and determine
the others accordingly. This allows to balance between
the functional terms or to give more importance to one
term with respect to the others. For example, the
cameras photometric/gain imbalance is an inherent
degradation for any stereo rig. It is dealt properly by
adjusting the weighting coefficients energy functional,
to the detriment of the number of occlusions and the
preservation of discontinuities. Similarly, for a
continuous surface, we might want to increase the
continuity weighting coefficient to obtain a smooth
disparity map. This will result in matching pixels that
do not have necessarily the same gray level and thus
acts as a tolerance level.

Elementary transformations

nothing

] no occlusion indifferent

Figure 1. Elementary transitions.

2.7. Elementary Transitions

The random state generator is based on the definition of
a set of elementary transitions with a decision rule for
their application. Figure 1 illustrates the elementary
transitions, these are the states before and after their
application. Two conjugate epipolar lines are shown;
before the transition has taken place and after the
transition has been applied. Any complex transition
could be obtained by combining these elementary
transitions.

Left: two conjugate epipolar lines before transition
takes place. @ and b are the label of the epipolar lines
that belong to images (a) and () respectively; (a; b) is
in {(/; ), (r; D)}, where (a) is the label of the reference
image. Right: the two conjugate epipolar lines after the
transition. Depending on the selected point in the
reference image epipolar line, the transitions {0, 14,
1B} are possible if the point in the reference image is

occluded, {24, 2B; 2C} otherwise. The choice of a
particular transition is fully determined by the point
selected in the conjugate epipolar line.

2.7.1. Decision Rule

We select with equal randomization one of the two
images and a first point. If this point has an occlusion,
one of the transitions (0), (1A) or (1B) is applied. If its
epipolar line is empty, (0) is applied; otherwise, a
point in the epipolar line is selected with equal
randomization for a potential matching. If the selected
point has an occlusion, (1A) is applied; otherwise, we
apply (1B). If the first point does not have an
occlusion, we select with equal randomization either
(2A) or {(2B), (2C)}. If the choice is {(2B), (2C)}, a
point in the epipolar line is selected with equal
randomization. If the selected point has an occlusion,
(2B) is applied; otherwise (2C) is applied. We also
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guarantee the same application probability for
transitions (2A), (2B), and (2C) as (2A) is selected
randomly, to balance the number of applied elementary
transitions.

2.7.2. Transitions

The elementary transitions are depicted in Figure 1.
The left side shows the matching in the current state.
The right side shows the new matching corresponding
to the new state. Depending on the current state, one of
the elementary transitions is applied. The decision rule
is outlined hereunder:

e (0): Do nothing (because of the empty epipolar line).

e (14): Matches the first point with the selected point
in its epipolar line.

e (1B): A new matching point between the first point
and the selected point in its epipolar line; the former
correspondent is occluded.

e (24): Establishes two occlusions, one for the first
point, and the other for its correspondent.

e (2B): Occludes the first point former correspondent
and establishes a new matching with the selected
point in the epipolar line.

e (2C): Establishes two occlusions, one for the first
point former correspondent and the other for
correspondent of the selected point in the epipolar
line; a new matching between the first point and the
selected epipolar line point is set.

The energy differential is computed locally. The
configuration space corresponds to the configurations
where the epipolar line and the uniqueness constraints
as well as the validity criterion are respected.

3. Stochastic Optimization

Random walk processes associated with Gibbs-
Boltzmann sampler is a stochastic approach for general
nonlinear optimization problems. It is suitable for large
size problems, where the global minimum is hidden by
several local minima and where the notion of gradient
has no signification. This approach is applied to a
combinatorial discrete problem. Several conditions are
required [1]: a description of all possible system
configurations x = {xi }, which are the generated states
to be explored including the optimal states; an
initialization x° = {xl.o }, the initial state; a generator of

random states x — x'; an energy functional J(x) that
describes the problem and which minimization is the
goal of the procedure; a control parameter with its
initial value Tj; and finally a decrease rule 7 — 7.

3.1. Algorithm

The annealing is a well known framework in stochastic
optimization. We are only interested in the particular

breed that is based on Gibbs-Boltzmann distribution.
The algorithm can be summarized as in Figure 2.
Initially, the system is set to an initial state. The initial
state can be chosen randomly. The energy J(x) is
evaluated. A small change is made to the state
vectorx, corresponding to a state change. The
dwelling in the new state is possible if the energy
differential is negative. Otherwise, the probability to
be in the new state is determined by the Gibbs-
Boltzmann probability distribution. There are two
parameters controlling the speed and quality of the
convergence: the number of equilibrium plateaus and
the number of iterations within an equilibrium plateau.
Both numbers could be selected. However, selecting a
low number of iterations might cause the system to
step down to the next equilibrium plateau before
reaching its equilibrium at that plateau. A high number
of iterations will make the plateau last longer and may
not affect the quality of the equilibrium. The
equilibrium is reached when at least a certain
proportion of the suggested transitions are accepted.
Regarding the number of equilibrium plateaus, a small
number results in an unstable solution while a high
number of plateaus result in a long unnecessary
computation, since no transitions are no longer
accepted. This is why we choose to step down to the
next equilibrium plateau as soon as the equilibrium is
reached and we stop the annealing as soon as there are
no suggested transitions accepted within few
successive equilibrium plateaus.

‘ Initalization dx(x), dy(Q. OO ‘

‘ Evaluate J(x) the system total energy ‘

v
‘ Shake the system by making a small change ‘

to dxQ, dyO, OO

‘ Evaluate the energy differential dJ ‘

HEEdr<0 >
o Accept new state with
BSisman protabiiy |
* T
Yes
L No System stable ©s

Figure 2. Block diagram.

Showing the steps performed from initialization to
system equilibrium. The system state vector, namely
the occlusions, horizontal, and vertical disparities are
initialized. The initialization may be random or one
can use a preliminary even an inaccurate result
provided by a fast matching algorithm. The total
energy of the system is evaluated. Then the system
performs a small step in the configuration space. This
destination is accepted as the new state if the system's
energy decreases. From time to time, even new states
increasing the system's energy are accepted. This
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helps the system free itself if trapped in a local
minimum valley. The procedure is repeated until no
steps decreasing the energy are possible.

In practice, we compare a random number between 0
and 1 with the Gibbs-Boltzmann exponential ¢™/®",
and we accept the change if this number is smaller than
this probability. The system reaches the thermal
equilibrium in a given plateau after a certain number M
of elementary transitions. The number M is set to 100
by some authors. This number should rather depend on
the size of the definition domain of the variables. If we
try 100 transitions on a variable, there is a difference in
whether this variable can take one value out of 100 or
one value out of 10000 values. In the first case each
value is tried once in average, whereas. In the second
case, only 1% of the values are used. We propose to
define M according to the size of the definition domain:
M=1(SizeOfDomain). The parameter 7 determines how
many times the same value is used in average. The
system is considered fairly unstable if more than 10%
of M attempts are accepted; otherwise, it is considered
fairly stable. If the system is unstable, it is considered
in local equilibrium after 10% of M successful
transitions. We get to the next equilibrium floor by
stepping down the control parameter 7. The procedure
stops when no more transitions are accepted.

4. Experimental Results

A simple method is used to compute the weighting
coefficients in the energy function. If a tolerance of 0.5
is allowed on the resemblance constraint, the matching
is cancelled if the gray level difference is higher than
this value: 0.5xpp=2x%po. With po=1, we have pp>4.
Furthermore, we assume for a smooth surface that the
local difference in disparities is not higher than 1. If the
accumulated disparities differences in 4 directions for a
pair of matched points are larger than the energy
provided by 2 occlusions, the 2 occlusions are set:
2x4xpc>2xpo. With, po=1 we have p>0.25. Finally,
as we handle the two cases (left to right and right to
left) altogether, we should set: po,=2. This allows to
balance between the functional terms or to give more
importance to one term with respect to the others. The
results obtained with the weighting gains given above
are already better than the ones obtained with the
initialization. Even better results could be obtained with
thorough experimentations on the weighting gains. The

starting control parameter 7, is set to 2, which

corresponds to the system's state where, virtually, all
the elementary transitions are accepted. The parameter
7 1is set to 100. This parameter’s value has proven to
give good results. To provide an acceptable initial state,
we considered using the Sum of Squared Differences-
based correlation (SSD); we have used the same
resemblance constraint, epipolar constraint, uniqueness
constraint, and validity criterion. The correlation
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consists in sweeping the candidate point over the
epipolar line and to establish a matching with the point
that minimizes the resemblance constraint. This is
done in both directions (left w.r.t. right and right w.r.t.
left). Only valid matches are kept invalid matches are
cancelled and occlusions are set instead.

We considered both synthesized and real images to
evaluate our approach. Figure 3 shows the synthesized
dataset and the ground-truth. The gray level images
(top row) are generated using an in-house image
synthesis system. The image synthesis system is
developed for the purpose of verifying and analyzing
an image analysis system. A geometric model of the
objects and background is given along with the model
and positioning of the cameras and light sources. The
ground-truth (disparity maps) is also generated for
comparisons against the computed disparity maps. The
disparity maps generated by the image synthesis
system and therefore corresponding to the solution are
used to show the matching errors produced by our
method. In the disparity maps shown in Figure 3-b,
black pixels stand for occlusions while gray shades
correspond to different depths. Dark areas are closer to
the camera while lighter ones are farther.

a) left and right gray level images.

b) left and right disparity maps (ground-truth).

Figure 3. Synthesized dataset.

In Figure 4, we show the initialization (using the
SSD correlation-based matching), and the error
against the ground-truth. The correlation produced a
large number of occlusions, due to a large number of
invalid matches. The disparity map contains too many
errors. The error maps are computed as the difference
between the produced disparity maps and the ground-
truth. In the error maps, black pixels stand for areas
where no measurements could have been done; dark
areas represent large errors while lighter ones
represent small or no errors.

r

a) Lleft and right disparity maps computed with SSD correlation.
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b) Left and right error maps computed as the difference between the
initialization and ground-truth.

Figure 4. Synthesized data. Initialization and error map computed
against the ground-truth.

The MRF model results in synthesized imagery as
shown in Figure 5. The correlation disparity map has
been used as an initialization for the stochastic
approach. This really does not influence the stochastic

algorithm since the starting control parameter 7 is

high enough to allow all the transitions to be accepted
at the beginning, thus moving the system far way from
the initialization. Another way to initialize the system
could have been by setting up occlusions everywhere
and initializing all the disparities to 0. The results
generated by the stochastic algorithm not only shows a
small number of occlusions, but more importantly,
occlusions are judiciously placed. The areas where
disparity is not correctly produced are less important
than for the correlation.

——

a) Left and right disparity maps; four lighting conditions stereo pairs were
considered at the same time.

b) Left and right error maps computed as the difference between the
disparity maps and ground-truth.

Figure 5. Synthesized data. Image matching using MRF and
stochastic approach.

Experimental results on real imagery are shown in
Figure 6. Similarly, we considered four lighting
conditions during the image acquisition. The four
lighting conditions stereo pairs were used at the same
time to generate the disparity maps. First row shows
one of the four stereo image pairs. Second row shows
the disparity maps computed by the stochastic approach
on the MRF.

a) Gray level stereo pair.

b) Left and right disparity maps.

Figure 6. Real imagery.

Finally, the evolution of the energy functional is
shown in Figure 7. We note that the continuity and
number of occlusions functional are decreasing and
converging towards small values. However, the gray
level functional somehow increases, although it
reaches a stability plateau. This is due to the fact that
corresponding pixels do not have necessarily the same
gray level and also the continuity weight coefficient
that favors local continuity over gray level
resemblance.

Resemblance term

Shting condition
5 conditions ---o--mo---

e
Shting

o z o0 ao s o0 =0 10cC

Iterations

a)  Matching energy.

Continuity term

.4 00
T lignting condition ———
lighting conditions -
=200
o oo
>
5
g soo
43|
soo H i
aco H -
200 H 4
o
o =20 4 O s O 20 100
Iterations
b) Continuity energy.
Occlusions term
4000
1 lighting condition
h 1lighting conditions -
3500 — —
3000
)
by 2500
[}
=
43|

2000

1500

1000

500 | —

e}

o 20 a4 0O [S)e) 80 100
Iterations

¢) Number of occlusions energy.

Figure 7. Evolution of the energy functional components.
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Note that both the number of occlusions and
continuity energies decrease and converge towards a
small value. The matching energy also converges to a
stable value. This value is higher than the initial value
as the matched pixels do not have necessarily the same
gray level.

5. Conclusions

We tackled the dense stereo matching problem in a
stochastic energy minimization framework. We
proposed to formulate the problem as a random walk,
moving the system from one state to another based on
its energy and the Gibbs-Boltzmann sampler. We also
proposed a random transitions generator that allows the
system to only visit viable states, i.e., states that are
compatible with the stereo constraints. As an initial
state, we used the SSD correlation disparity maps. We

showed that the stochastic framework improves
significantly the disparity and occlusion maps.
Experimental results are satisfactory on both

synthesized and real imagery. Future perspectives of
this work include the cooperation of this low level
module with the stereo photometry module, where the
shape of the objects is used as a constraint and the gray
level for the resemblance constraint is replaced by the
photometric attribute of the Phong/Cook-Torrance
model [17, 18], taking into consideration the gray level
changes as a function of the position of the cameras.
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