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Abstract

Given a �nite set of discrete points in three dimen-

sional Euclidean space R3, the subset that forms its

surface could be di�erent when observed in di�erent

levels of details. In this paper, we introduce a notion

called �-surface. We present an algorithm that ex-

tracts the �-surface from a �nite set of points in R3.

We apply the algorithm to extracting the �-surfaces

of proteins and discover patterns from these surface

structures, using the pattern discovery algorithm we

developed earlier. We then use these patterns to clas-

sify the proteins. Experimental results show the good

performance of the proposed approach.

1 Introduction

Discovering frequently occurring patterns has been

explored in many di�erent domains, e.g. sequences [1],

trees [6], semistructured data [7], three dimensional

data [9]. Classi�cation is also one of the major tasks

of data mining [3].

Protein classi�cation is a very important research

topic [3, 4, 6]. Traditionally, proteins are classi�ed

according to their functions. However, recently, many

approaches have been proposed to classify proteins ac-

cording to their structures, e.g. sequences [6], sec-

ondary structures [6], and three dimensional struc-

tures [9]. Many of these methods complemented the

traditional approach. In [8, 9], we developed an al-

gorithm for discovering frequently occurring patterns

in three dimensional data and applied it to protein

classi�cation. While we succeeded in classifying two

families of proteins with high recall and precision, ex-

perimental results showed that it was diÆcult to ex-

tend the approach to classifying more than two fami-

lies of proteins. One reason is that proteins are large

molecules, typically with several hundreds or even

thousands of atoms. Many of the substructures that

occur frequently in multiple proteins are not speci�-

cally related to their functions.

Signi�cant studies have shown that the structure of

the surface of a protein relates more to the function

of the protein. For example, in [5], the authors exam-

ined the reliability of surface comparisons in searching

for active sites in proteins. They suggested that, the

detection of a patch of surface on one protein that is

similar to an active site in another may indicate simi-

larities in enzymatic mechanisms in enzyme functions,

and implicate a potential target for ligand/inhibitor

design.

In this paper, we de�ne �-surface of a �nite set

of points in three dimensional Euclidean space and

present an algorithm for extracting �-surfaces from �-

nite point sets. We apply the algorithm to extracting

�-surfaces of proteins. We then employ the pattern

discovery algorithm that we developed earlier to �nd

frequently occurring patterns on the �-surfaces and

use these patterns to classify the proteins. The rest of

the paper is organized as follows. In Section 2, we de-

�ne �-surface and describe the surface extracting algo-

rithm. Section 3 discusses how the surface extracting

algorithm and the pattern discovery algorithm are ap-

plied to protein classi�cation. Section 4 presents some

experimental results. Section 5 concludes the paper.

2 �-Surfaces

Our de�nition of �-surfaces is inspired by the

de�nition of �-shapes, introduced by Edelsbrunner

and M�ucke [2].

De�nition 2.1 Given a point O in three di-

mensional Euclidean space R3 and a real number

� (0 < � < 1), an �-ball is the set of points

B(O;�) = fP jP 2 R3 and jjP � Ojj < �g,

where jjP � Ojj is the Euclidean distance be-

tween P and O. A closed �-ball B(O;�) is

the �-ball B(O;�) plus its bounding sphere, i.e.

B(O;�) = fP jP 2 R3 and jjP �Ojj � �g.



De�nition 2.2 Given a �nite set D of discrete points

in R3 and a real number � (0 < � < 1), the �-

surface S of D is de�ned as S = fP jP 2 D and (9O 2

R3 such that B(O;�) \ D = ; and P 2 B(O;�))g.

When B(O;�) \ D = ; and P 2 B(O;�) \ D, we

say that �-ball B(O;�) touches P . P 2 S is called a

surface point with respect to � (simply a surface point

when the context is clear).

For simplicity, we illustrate the notion in two

dimensional Euclidean space. Figure 1 shows the

�-surface of a �nite point set. Surface points are

highlighted by solid bullets in the �gure. Apparently,

given the same set of points D, with respect to

di�erent �'s, the �-surfaces are di�erent.

Figure 1. An �-surface.

The de�nition of �-surfaces is general. In the

context of mining protein data, we need some ad-

justment. First of all, the surface of a protein is

important to its function, because a protein reacts to

its surrounding through its surface. Thus we are not

concern with those parts of �-surfaces that are not

visible, namely those surface points that are enclosed

inside the proteins. Secondly, when � is small, the

�-surface of D could be split to two pieces. A protein

is one molecule. Its surface should be in one piece.

We specify the adjustment in the following de�nition.

De�nition 2.3 Let � (0 < � < 1) be a real

number and S be the �-surface of a �nite set D. S

is connected, if for any two surface points P1; P2 2 S

there are a �nite number of �-balls: B(O1; �),

B(O2; �), ..., B(On; �), such that:

(i) B(Oi; �) \ D = ; (1 � i � n).

(ii) B(Oi; �) \ B(Oi+1; �) \ S 6= ; (1 � i � n� 1).

(iii) P1 2 B(O1; �).

(vi) P2 2 B(On; �).

Notice that, (ii) requires two contiguous �-balls to

touch at least one common surface point. Imagine

that the �-ball is solid, so are the points in D, and we

roll the �-ball along the surface of D. Intuitively, if

an �-surface is connected, we can roll an �-ball from

one surface point to another along the surface.

Starting from the point with the maximum X-

coordinate in D, the surface extracting algorithm rolls

the �-ball to any surface point that can be touched in

a breadth �rst manner1. The algorithm maintains a

queue Q which holds a subset of the �-surface S that

are under extension. The basic rolling procedure of

the algorithm rolls the �-ball around one surface point

in Q, so that all its neighboring points in S will be

touched at least once by the �-ball. These neighbors

are added to Q. Figure 2 illustrates the procedure.

The �-ball is rolled around P0 so that P0's neighbors

P1, P2, P3, P4, P5, and P6 are touched by the �-ball.
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Figure 2. Rolling the �-ball.

Since the neighboring surface points are within dis-

tance 2� of the current surface point, to speed up the

process, we partition D at the very beginning. Let

xmin (xmax) be the minimum (maximum) X coordi-

nate of all the points in D, respectively. Let x0, x1,

..., xn be de�ned as the following:

(i) x0 = xmin,

(ii) xi+1 = xi + 2� (0 � i � n� 1), and

(iii) xn�1 � xmax and xmax < xn.

We cut the range [xmin; xmax] to segments [xi; xi+1)

(0 � i � n � 1) with length 2�. Similarly, let ymin

(ymax) be the minimum (maximum) Y coordinate and

zmin (zmax) be the minimum (maximum) Z coordi-

nate, respectively. We cut the ranges [ymin; ymax] and

[zmin; zmax] to segments with length 2�. Each par-

tition Pti;j;k is a cube Pti;j;k = f(x; y; z)jxi � x <

xi+1; yj � y < yj+1; and zk � z < zk+1g. Figure 3

shows a two dimensional example.

1Obviously, the point with the maximumX-coordinate in D

is a surface point with respect to any �.



Figure 3. Partitioning the points.

For any given point P = (x; y; z) 2 D, let i =

b
x�xmin

2�
c, j = b

y�ymin

2�
c, and k = b

z�zmin

2�
c. P be-

longs to partition Pti;j;k and the points that are within

distance 2� of P are all located in the 27 partitions

surrounding Pti;j;k.

Assuming that the points in D are evenly dis-

tributed, the complexity of the surface extracting al-

gorithm is O(
jDj

2

N
), where jDj is the size of D and

N = d
xmax�xmin

2�
e� d

ymax�ymin

2�
e� d

zmax�zmin

2�
e is the

total number of partitions.

3 Classifying Proteins

To evaluate the performance of the surface extract-

ing algorithm, we applied it to classifying three fami-

lies of proteins. We �rst utilized the surface extracting

algorithm to �nd the surfaces of the proteins in the

training data. We then employed the pattern discov-

ery algorithm we developed before to �nd frequently

occurring patterns from these surfaces. Finally, we

used these patterns to classify the proteins in the test

data.

Let S be the surface points outputted by the surface

extracting algorithm. We apply our pattern discovery

algorithm to S as follows. For any point P 2 S, we

consider P and its k-nearest neighbors in S as a sub-

structure and attach a local coordinate system SF to

P (see Figure 4). We hash the node-triplets from the

substructure to a three dimensional hash table (see

Figure 5). The hash bin address is determined by the

lengths of the three edges of the triangle formed by the

triplet. Stored in the hash bin are a protein identi�-

cation number, a substructure number, and the local

coordinate system SF . We then consider each sub-

structure as a candidate pattern and rehash it to eval-

uate its number of occurrences in the hash table. In

this phase, we again decompose the candidate pattern

to triplets and utilize the lengths of the three edges to

access the hash table. All the triplets that were stored

in the accessed hash bin are recognized as matches and

their local coordinate systems SF are recovered based

on the global coordinate system that de�nes the can-

didate pattern. The triplet matches are augmented to

larger substructure matches when their recovered local

coordinate systems match each other. The interested

readers are referred to [8, 9] for more details.
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Figure 4. A substructure.
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Figure 5. One of the triplets.

For each family i of the proteins, we identify two

types of patterns on the surfaces of the training data,

the pro patterns and the con patterns. The pro pat-

terns occur more frequently in family i than in the

other two families. The con patterns occur more fre-

quently in the other two families than in family i.

Each candidate pattern M found on the surfaces of

the training data is associated with two weights proi

and coni where

proi =
ni �maxj2f1;2;3g�figfnjg

maxj2f1;2;3g�figfnjg+ 1

coni =
minj2f1;2;3g�figfnjg � ni

ni + 1

Here ni is M 's occurrence number in the training

data of family i. We add denominators to both weights



because we observed that some patterns are common

to proteins from di�erent families. Although they may

still occur more frequently in some family, they really

are not speci�c to any family. For each family we

collect all the patterns having a weight greater than

zero and use them as pro patterns and con patterns

of that family, respectively. It can be proved that any

pattern M that occurs in the training data is either

a pro pattern or a con pattern of some family, unless

M 's occurrence numbers tie in all the three families.

We classify a test protein Q in the following way.

Let M i

1; : : : ;M
i

pi
be all the pro patterns for family i.

Family i obtains a pro score

N
i

pro
=

P
pi

k=1
dk � proi

kP
pi

k=1
proi

k

where

dk =

�
1 if M i

k
occurs in Q

0 otherwise

and proi
k
is the weight associated with M i

k
. The pro-

tein Q is classi�ed to the family i with maximumNpro.

We add the denominator to make the score fair to all

families. Notice that the maximum possible score for

any family is 1. If we can not decide a winner from

the pro scores, e.g. the scores are ties for two fami-

lies, the con patterns are used to break the ties. Let

T i

1; : : : ; T
i

qi
be all the con patterns for family i. Family

i obtains a con score

N
i

con
=

P
qi

k=1
dk � coni

kP
qi

k=1
coni

k

where

dk =

�
1 if T i

k
occurs in Q

0 otherwise

and coni
k
is the weight associated with T i

k
. The protein

Q is classi�ed to the family i with minimum Ncon. If

we still can not decide a winner, then the \no-opinion"

verdict is given.

4 Experimental Results

We have implemented the surface extracting al-

gorithm using C++ on a Sun Ultra 10 worksta-

tion running Solaris 8. We selected three families

of proteins from SCOP [4]. SCOP is accessible at

http://scop.mrc-lmb.cam.ac.uk/scop/. The three

families pertain to Transmembrane Helical Fragments,

Matrix Metalloproteases { catalytic domain, and Im-

munoglobulin { I set domains. In determining the

structure of a protein, we consider only the C�, C�

and N atoms. These atoms form the polypeptide chain

backbone of a protein where the polypeptide chain is

made up of residues linked together by peptide bonds.

The peptide bonds have strong covalent bonding forces

that make the polypeptide chain rigid. Figure 6 shows

a protein whose PDB Code is 1cqr. It has 1089 atoms

in the backbone. Figure 7 shows an �-surface found

by the proposed algorithm, with respect to �=7.5. It

has 242 atoms.

Figure 6. A protein (1cqr).

Figure 7. An �-surface of the protein (1cqr).

We classi�ed the proteins as discussed in Section 3.

When adjusting � in the surface extracting algorithm,

we found that � = 7:5 yielded the best result. When

constructing substructures (patterns), we found the

substructures with 6 points yielded the best result. In

each of these substructures, there was a surface point

together with its 5 nearest neighbors on the �-surface.

The algorithm produced a set of surface points that

were on average 25% of the size of the protein.



We use recall (R) and precision (P) to evaluate the

e�ectiveness of our classi�cation algorithm. Recall is

de�ned as

R =
T �

P3

i=1
M

i

T
� 100%

where T is the total number of test proteins and Mi

is the number of test proteins that belong to family

i but are not assigned to family i by our algorithm

(they are either assigned to family j, j 6= i, or they

receive the \no-opinion" verdict). Precision is de�ned

as

P =
T �

P3

i=1
G
i

T
� 100%

where Gi is the number of test proteins that do not

belong to family i but are assigned by our algorithm

to family i. With the 10-way cross validation scheme2,

the average R over the ten tests was 93.7% and the

average P was 95.2%. It was found that 4.3% test

proteins on average received the \no-opinion" verdict

during the classi�cation.

5 Conclusion

We have given a formal de�nition of surface points

of a �nite point set in R3 and presented an algorithm

for extracting such surface points. We applied this

algorithm, together with previously developed algo-

rithms for 3D pattern discovery, to classifying three

families of proteins. In our previous work [9], we also

tried to classify three families of proteins and the recall

and precision dropped to 80%. The results reported

here are much better. The idea of pro patterns and con

patterns can be extended to more than three families.

For our future work, we will conduct comprehensive

experiments on more protein families to �nd interest-

ing patterns on their surfaces and to classify them. We

will also extend our algorithm to applications in three

dimensional visualization.
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were used as training data for that family.
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