
Efficiently Determine the Starting Sample Size

for Progressive Sampling

Baohua Gu ∗ Bing Liu † Feifang Hu ‡ Huan Liu §

Abstract

Given a large data set and a classification learning algorithm, Progressive Sampling (PS) uses

increasingly larger random samples to learn until model accuracy no longer improves. It is shown

that the technique is remarkably efficient compared to using the entire data. However, how to set

the starting sample size for PS is still an open problem. We show that an improper starting sample

size can still make PS expensive in computation due to running the learning algorithm on a large

number of instances (of a sequence of random samples before achieving convergence) and excessive

database scans to fetch the sample data. Using a suitable starting sample size can further improve

the efficiency of PS. In this paper, we present a statistical approach which is able to efficiently find

such a size. We call it the Statistical Optimal Sample Size (SOSS), in the sense that a sample of

this size sufficiently resembles the entire data. We introduce an information-based measure of this

resemblance (Sample Quality) to define the SOSS and show that it can be efficiently obtained in one

scan of the data. We prove that learning on a sample of SOSS will produce model accuracy that

asymptotically approaches the highest achievable accuracy on the entire data. Empirical results on

a number of large data sets from the UCIKDD repository show that SOSS is a suitable starting size

for Progressive Sampling.

Keywords: data mining, sampling, learning curve, optimal sample size.

1 Introduction

Classification is an important data mining (DM) task. It is often solved by the decision tree approach [13].

However, given a very large data set, directly running a tree-building algorithm on the whole data may

require too much computation resource and lead to an overly complex tree. A natural way to overcome

these problems is to do sampling [7, 3]. One of the recent works towards improving tree-building efficiency

(both in terms of time and memory space required) by sampling is Boat by Gehrke et al [6]. [6] builds

an initial decision tree using a small sample and then refines it via bootstrap to produce exactly the same

tree as that would be produced using the entire data. Boat is able to achieve excellent efficiency in tree

construction. However, due to the large size of the data, the produced tree can be very complex and

large, which makes it hard for human understanding. It has been observed that the tree size often linearly

increases with the size of training data, and additional complexity in the tree results in no significant

increase in model accuracy [9]. Another recent work on improving the efficiency of tree building for large

data sets is Progressive Sampling (PS for short) proposed by Provost et al [11]. By means of a learning

curve (see an example learning curve in Figure 1) which depicts the relationship between sample size and
∗Email: gubh@comp.nus.edu.sg; School of Computing, National University of Singapore
†Email: liub@comp.nus.edu.sg; School of Computing, National University of Singapore
‡Email: stahuff@nus.edu.sg; Department of Statistics & Applied Probability, National University of Singapore
§Email: hliu@asu.edu; Department of Computer Science and Engineering, Arizona State University

1

Training set size

Ac
cu

rac
y

n n n n N 1 2 3 4

OSS sizek+1

Figure 1: Learning Curves and Progressive Samples

model accuracy, PS searches for the optimal model accuracy (the highest achievable on the entire data)

by feeding a learning algorithm with progressively larger samples. Assuming a well-behaved learning

curve, it will stop at a size equal to or slightly larger than the optimal sample size (OSS for short)

corresponding to the optimal model accuracy. [11] shows that PS is more efficient than using the entire

data. It also avoids loading the entire data into memory, and can produce a less complex tree or model

(if the real OSS is far less than the total data size). In this paper, we restrict our attention to PS and

aim to improve it further by finding a good starting sample size for it.

Obviously, the efficiency of PS gets to the highest when the starting sample size is equal to the OSS;

and the smaller the difference between the two, the higher the efficiency. The following analysis shows

how much benefit can be gained from a proper starting sample size. Suppose we use the simple geometric

sampling schedule suggested by [11]. We denote the sample size sequence by {n0, a∗n0, a
2∗n0, a

3∗n0, ...},

where n0 > 0 is the starting sample size, a > 1 is the increment ratio. If the convergence is detected

at the (k + 1)th sample (its size being sizek+1 = ak ∗ n0 ≈ OSS), then the total size of the previous k

samples will be size1..k = n0 ∗ (1 + a + a2 + ... + ak−1) = n0 ∗ (ak − 1)/(a− 1) = (sizek+1 − n0)/(a− 1).

Obviously, the extra learning on the size1..k number of instances could be significantly reduced if n0 is

set near to the OSS. Moreover, as k = loga
Sk+1
n0

≈ loga
OSS
n0

, if n0 is much less than OSS, then k, the

number of samples needed before convergence, will be large. Note that generating a random sample from

a single-table database typically requires scanning the entire table once [12]. Thus a large k will result

in considerably high disk I/O cost. Therefore setting a good starting sample size can further improve the

efficiency of PS by cutting the two kinds of costs.

In this paper, we find such a size via a statistical approach. The intuition is that a sample with the

OSS should sufficiently resemble its mother data (the entire data set). We implement this intuition via

three steps. First, we define an information-based measure of the resemblance (we call Sample Quality).

Based on this measure, we then define a Statistical Optimal Sample Size (SOSS for short). We prove

that learning on a sample of the SOSS will produce a model accuracy that is sufficiently close to that

of the OSS. We show that the SOSS can be efficiently determined in one scan of the mother data. Our

experiments on a number of UCIKDD [1] data sets show that our approach is effective.

The remainder of this paper is organized as follows. Below we first discuss the related work. In

Section 2, we introduce the measure of sample quality and its calculation. In Section 3, we define SOSS,

prove an useful theorem and show its calculation. Experimental results are given in Section 4. Section 5

concludes the paper.

1.1 Related Work

Besides being used in classification, sampling has also been applied to other data mining tasks. For

example, Zaki et al [14] set the sample size using Chernoff bounds and find that sampling can speed up

2

mining of association rules. However, the size bounds are found too conservative in practice. Bradley et

al scale up an existing clustering algorithm to large databases via repeatedly updating current model with

(random) samples [2]. In the database community, sampling is also widely studied. For example, Ganti

et al [5] introduce self-tuning samples that incrementally maintain a sample, in which the probability of a

tuple being selected is proportional to the frequency with which it is required to answer queries (exactly).

However, in both [2] and [5], how to decide a proper sample size is not mentioned.

The work that we find most similar to ours is that given in [4], where Ganti et al introduce a measure

to quantify the difference between two data sets in terms of the models built by a given data mining

algorithm. Our measure is different as it is based on statistical information divergence of the data sets.

Although [4] also addresses the issue of building models using random samples and shows that bigger

sample sizes produce better models, it does not study how to determine a proper sample size.

Our method can be a useful complement to the existing techniques. The proposed SOSS also has a

good property: it only depends on the data set and is independent of the algorithm. Although we present

it for classification in this paper, this property may make it applicable to other DM techniques, which

will be studied in our future research.

2 Sample Quality Measure

2.1 Underlying Information Theory

A sample with the OSS should inherit the “property” of its mother data as much as possible. This prop-

erty can be intuitively interpreted as information. In this work, we make use of Kullback’s information

measure [8], which is generally called the divergence or deviation, as it depends on two probability distri-

butions and describes the divergence between the two. Below we briefly describe its related definitions

and conclusions.

Suppose x is a specific value (i.e., an observation) of a generic variable X, and Hi is the hypothesis

that X is from a statistical population with generalized probability densities (under a probability measure

λ) fi(x), i = 1, 2, then the information divergence is defined by J(1, 2) =
∫

(f1(x) − f2(x))log f1(x)
f2(x)dλ(x).

According to [8], J(1, 2) is a measure of the divergence between hypotheses H1 and H2, and is a measure

of the difficulty of discriminating between them. Specifically, for two multinomial populations with c

values (c categories), if pij is the probability of occurrence of the jth value in population i (i = 1, 2, and

j = 1, 2, ..., c), then the information divergence is J(1, 2) =
∑c

j=1(p1j − p2j)log p1j

p2j
.

The information divergence has a good limiting property described in Theorem 1 below (see [8] for

its proof), based on which we will prove an important theorem about SOSS in Section 3.

Theorem 1 Given a probability density function f(x) and a series of probability density functions {fn(x)},
where n → +∞, denote the information divergence from fn(x) to f(x) as J(fn(x), f(x)), we have, if

J(fn(x), f(x)) → 0, then fn(x)/f(x) → 1[λ], uniformly. Here [λ] means that the limitation and the

fraction hold in a probability measure λ.

2.2 Definition and Calculation

We borrow the concept of information divergence between two populations and define our sample quality

measure below. The idea is to measure the dissimilarity of a sample from its mother data by calculating

the information divergence between them.

Definition 1 Given a large data set D (with r attributes) and its sample S, denote the information

divergence between them on attribute k as Jk(S,D), (k = 1, 2, ..., r), then the sample quality of S is

Q(S) = exp(−J), where the averaged information divergence J = 1
r

∑r
k=1 Jk(S,D).

3

In calculating Jk(S,D), we treat a categorical (nominal) attribute as a multinomial population. For a

continuous (numerical) attribute, we build its histogram (e.g., using a simple discretization), and then

treat it also as a multinomial population by taking each bin as a categorical value and the bin size as its

frequency. According to [8], the information divergence J > 0, therefore 0 < Q ≤ 1, where Q = 1 means

that no information divergence exists between S and D. The larger the information divergence J , the

smaller the sample quality Q; and vice versa. For numerical attributes, if we have prior knowledge about

their distributions, further improvement on the calculation of J can be achieved by directly applying

them to the information divergence.

The calculation of Q is straightforward. In one scan of the data set, both the occurrences of categor-

ical values and the frequencies of numerical values that fall in the bins can be incrementally gathered.

Therefore the time complexity of calculating sample quality is O(N) (N is the total number of instances

or records of the mother data), while the space complexity is O(r ∗ v) (v is the largest number of distinct

values or bins of each attribute). Note that a random sample can be obtained also in one scan. Thus we

can calculate a sample’s quality while generating it.

3 Statistical Optimal Sample Size

3.1 Definition

From the definition of sample quality, we can observe that the larger the sample size, the higher the

sample quality. This is because as sample size increases, a sample will have more in common with its

mother data, therefore the information divergence between the two will decrease. We define the Statistical

Optimal Sample Size (SOSS) as follows:

Definition 2 Given a large data set D, its SOSS is the size at which its sample quality is sufficiently

close to 1.

Clearly, the SOSS only depends on the data set D, while the OSS depends on both the data set and

the learning algorithm. Therefore, the SOSS is not necessarily the OSS. However, by the following

theorem, we can see that their corresponding model accuracies can be very close.

Given an learning algorithm L and a sufficiently large data set D with probability density function

fD(x), we take L as an operator mapping fD(x) to a real number (namely the model accuracy), i.e.,

L : fD(x) → Acc∗, where Acc∗ is the maximum accuracy obtained on D. Assume that a random sample

of OSS has the probability density function foss(x), and a random sample of SOSS has fsoss(x). Let the

model accuracies on the two samples be Accoss and Accsoss respectively. We have the following theorem.

Theorem 2 If a random sample S of D has a probability density function fS(x) and L satisfies that

fS(x)/fD(x) → 1[λ] =⇒ |L(fS(x)) − L(fD(x))| → 0, then Accsoss → Accoss.

Proof (Sketch): Suppose we have a series of n random samples of D with incrementally larger sample

sizes. Denote the size of the i-th sample as {Si}, and the corresponding sample quality of the sample

with Q(Si), i = 1, 2, ..., n. According to the definition of SOSS, when Si → SOSS, Q(Si) → 1, i.e., the

information divergence of Si from D is J(Si,D) → 0. Applying Theorem 1, we have, fSi
(x)/f(x) → 1,

therefore, |L(fSi
(x))−L(f(x))| → 0. In an asymptotic sense, L(fSi

(x)) → Accsoss and L(f(x)) → Accoss,

that is, Accsoss → Accoss. #

The premise of the theorem means that if two data sets are quite similar in their probability distribu-

tions, then the learning algorithm should produce quite close model accuracy on them. This is reasonable

for a typical learning algorithm. Based on this theorem, we can search for the SOSS by measuring sample

quality instead of directly searching for the OSS by running an expensive learning algorithm. We can

also expect that the two are close in terms of model accuracy.

4

3.2 Calculation

To calculate the SOSS of D, we can set n sample sizes Si spanning the range of [1, N] and compute the

corresponding qualities Qi (i = 1, 2, ..., n). We then draw a sample quality curve (relationship between

sample size and sample quality) using these (Si, Qi) points. The SOSS is estimated using the curve. To

be efficient, we can calculate all samples’ qualities at the same time in one sequential scan of D by using

the idea of Binomial Sampling [10]. That is, upon reading in each instance or data record, an random

number x uniformly distributed on [0.0, 1.0) is generated. If x < Si/N , then corresponding statistics (by

counting a categorical value or binning a numerical value) are gathered for the i-th sample. We describe

the procedure using the pseudo algorithm below.

Pseudo Algorithm SOSS

input: a large data set D of size N , n sample sizes {Si|i = 1, 2, ..., n};

output: n pairs of (Si, Qi);

begin
1. for each instance k in D (k ∈ [1, N]):

update corresponding statistics for D;

for each sample i:

r ← UniformRand(0.0, 1.0);

if (r < Si
N
), then update corresponding statistics for sample i;

2. for each sample i: calculate its Qi and output (Si, Qi);

end

It is easy to see that its run-time complexity and the memory needed are n times that of computing

sample quality for a single sample. With these (Si, Qi) points in hand, we draw the quality curve and

decide the SOSS in the following way: starting from the first point, we do a linear regression on every

l consecutive points (we set l = 5 in our experiment), if the 95% confidence interval of the slope of the

regressed line includes zero, then the size of the middle point is the SOSS.

4 Experimental Results

We evaluate our measure on four large UCIKDD data sets: adult, led, census, and covtype. The number

of instances in training data/testing data are, 36k/12.8k for adult, 100k/50k for led, 199.5k/99.8k for

census, and 400k/181k for covtype. The classification algorithm we use is C5.0, the latest improvement of

C4.5 [13]. We first draw the learning curve for each data set by running C5.0 on a number of sample sizes

from 1% to 100% of all training data. All accuracies are tested against corresponding testing data. Then

we draw the quality curve for each data set by calculating multiple sample qualities in one scan. We set

the bin number to be 20 for discretizing numerical attributes. We use 50 sample sizes equally covering

[1, N]. The learning curves and quality curves (averaged on 10 runs for the four data sets) are shown in

Figure 2. We decide the OSS as the size corresponding to 99.5%∗Acc∗, where Acc∗ is the model accuracy

on all instances. The SOSS is determined by the method in Section 3. The resulting OSS and SOSS

with their corresponding tree sizes (Stree) and tested accuracies (Acc) are listed in Table 1. We can see

that for led and census, the SOSS is equal to or very close to the OSS 1. If starting from this size, PS

will reach the optimal model accuracy at once. For the adult and covtype data sets, the SOSS is about

half of the OSS, which means only one more iteration is needed for PS (if the size increment ratio a = 2)

starting with the SOSS. In all data sets, the resulting tree sizes with both the SOSS and the OSS are
1It happens that the SOSS is slightly larger than the OSS for census. This may be due to the way we decide the OSS.

Intuitively, the SOSS could not be far larger than the OSS, unless the learning algorithm might produce very different

learning accuracy on two similar distributions.

5

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy
 (%

)

% of Training Data

C5.0 Learning Curves of The 4 UCI data sets

adult
led

census
covtype

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Sa
m

pl
e

Q
ua

lit
y

% of Training Data

Quality Curves of The 4 UCI data sets

adult
led

census
covtype

Figure 2: C5.0 Learning Curves (left) and Quality Curves (right)

Table 1: Results of the 4 Data Sets

data set N Stree Acc∗ oss Stree Acc soss Stree Acc tps+soss (tps/tN)

adult 36k 344 86.2% 14k 170 85.8% 8k 127 85.6% 18s (20s/22s)

led 100k 3896 73.3% 10k 480 72.9% 10k 480 72.9% 14s (38s/41s)

census 199.5k 848 95.3% 30k 91 94.8% 35k 108 94.9% 94s (152s/176s)

covtype 400k 10970 75.8% 140k 4402 75.4% 70k 2417 73.0% 668s (766s/1330s)

significantly smaller than those with the full size, while their accuracy are very close. We also empirically

compare the execution time used for PS starting with the found SOSS (tps+soss) (including the time for

finding the SOSS) to that without the SOSS (tps) 2. The execution time of directly learning on the

entire data (tN) is also given. They are all in the last column of Table 1. We can see that the SOSS

indeed speeds up PS in all the data sets. All these results support our expectation that the SOSS can

be used as a good starting sample size for PS.

5 Concluding Remarks

[11] shows that Progressive Sampling is more efficient than learning on the entire data. In this paper,

we showed that a proper starting sample size can further improve its efficiency. With the intuition that

a sample “must” sufficiently resemble its mother data in order to produce a good model, we proposed

a technique to find a suitable starting sample size by measuring the similarity of a sample and the

mother data. An information-based sample quality or similarity measure was introduced. Based on this

measure, we defined the SOSS, and proved that asymptotically, the SOSS will achieve model accuracy

very close to that of the OSS. This claim was supported by our experimental results on UCIKDD data

sets. Furthermore, the SOSS can also be efficiently determined in one scan of the mother data and

is independent of learning algorithms. All these clearly suggest that the proposed SOSS can be used

to start a Progressive Sampling. It can save many runs on unnecessary small samples, which are too

dissimilar to the entire data.

In the proposed sample quality measure, we did not consider dependency (or interaction) among the

attributes for computational reason. Although our results are rather good, we shall in our future work

examine whether including this factor would do even better. Another related issue is how the proposed
2We use the geometric size scheme for PS as suggested in [11]. The sample size starts from 1% of the total data and

doubles in the next iteration (a = 2) and so on. All experiments run on SUN Sparc 450.

6

measure and the SOSS will be affected by data skewness. We will address it in the future as well.

Acknowledgment

The authors wish to thank all anonymous referees for their valuable comments on the earlier version of

the paper.

References

[1] S.D. Bay. The UCI KDD Archive [http://kdd.ics.uci.edu], 1999.

[2] P.S. Bradley, U. Fayyad, and C. Reina. Scaling cluster algorithms to large databases. In Proceedings

of KDD’98, 1998.

[3] M.S. Chen, J.W. Han, and P.S. Yu. Data mining: An overview from a database perspective. IEEE

Transactions on Knowledge and Data Engineering, 1996.

[4] V. Ganti, J. Gehrke, R. Ramakrishnan, and W.Y. Loh. A framework for measuring changes in data

characteristics. In Proceedings of PODS’99, 1999.

[5] V. Ganti, M.L. Lee, and R. Ramakrishnan. Icicles: Self-tuning samples for approximate query

answering. In Proceedings of VLDB’00, 2000.

[6] J. Gehrke, V. Ganti, R. Ramakrishnan, and W.Y. Loh. Boat—optimistic decision tree construction.

In Proceedings of ACM SIGMOD’99, 1999.

[7] J. Kivinen and H. Mannila. The power of sampling in knowledge discovery. In Proceedings of ACM

SIGMOD/PODS’94, 1994.

[8] S. Kullback. Information Theory and Statistics. John Wiley & Sons, Inc, New York, 1959.

[9] T. Oates and D. Jensen. Large datasets lead to overly complex models: an explanation and a

solution. In Proceedings of KDD’98, 1998.

[10] F. Olken. Random Sampling from Databases. PhD thesis, Department of Computer Science, Uni-

versity of California Berkeley, 1993.

[11] F. Provost, D. Jensen, and T. Oates. Efficient progressive sampling. In Proceedings of KDD’99.

AAAI/MIT Press, 1999.

[12] F. Provost and V. Kolluri. A survey of methods for scaling up inductive algorithms. Machine

Learning, pages 1–42, 1999.

[13] J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA, 1993.

(http://www.cse.unsw.edu.au/ quinlan/).

[14] M.J. Zaki, S. Parthasarathy, W. Li, and M. Ogihara. Evaluation of sampling for data mining of

association rules. In Proceedings of the 7th Worhshop on Research Issues in Data Engineering, 1997.

7

