
On Mining Satellite and Other Remotely Sensed Images 1, 2

William Perrizo, Qin Ding, Qiang Ding, Amalendu Roy
Department of Computer Science,

North Dakota State University
Fargo, ND 58105-5164

{William_Perrizo, Qin_Ding, Qiang_Ding, Amalendu_Roy}@ndsu.nodak.edu

Abstract

Advanced data mining technologies and the large
quantities of Remotely Sensed Imagery provide a
data mining opportunity with high potential for useful
results. Extracting interesting patterns and rules from
data sets composed of images and associated ground
data, can be of importance in precision agriculture,
community planning, resource discovery and other
areas. However, in most cases the image data sizes
are too large to be mined in a reasonable amount of
time using standard methods. A new spatial data
organization, bit Sequential organization (bSQ) and a
new “data-mining ready” data structure, the Peano
Count Tree (Ptree) provide a lossless and compressed
representation of image data which facilitate
association rule mining, classification and other data
mining techniques markedly. In this paper we
propose a new model for association rule mining and
classification on spatial datasets using Ptrees.
Experimental results show the new model applies
well to data mining on Remotely Sensed Imagery
data.

Keywords: Data mining, Remotely Sensed Imagery
(RSI), Association Rule Mining, Classification

1. Introduction

Data Mining is becoming more and more
important as large quantities of data are generated
and collected rapidly. Association rule mining and
classification are two of the basic approaches in data
mining.

The task of association rule mining (ARM)
[8,9,10,11,12] is to find interesting relationships from
the data in the form of rules. The initial application of
association rule mining was on market basket data.

1 Partially funded by GSA Grant ACT#K96130308
2 Ptree technology is patented to North Dakota State University.

In the spatial data domain, Association Rule
Mining is useful in identifying forest fires, insect and
weed infestations, high and low crop yields, flooding
and other phenomena as rule consequences. The
antecedents of such rules are typically taken from the
Remotely Sensed Imagery (RSI) data bands.

An association rule is a relationship of the form
X=>Y, where X and Y are sets of items. X is called
antecedent and Y is called the consequence. There
are two primary measures, support and confidence,
used in assessing the quality of the rules. The goal of
association rule mining is to find all the rules with
support and confidence exceeding user specified
thresholds. The first step in a basic ARM algorithm
(e.g., Apriori[8] and DHP[11]) is to find all frequent
itemsets whose supports are above the minimal
threshold. The second step is to derive high
confidence rules supported by those frequent
itemsets. The first step is the key issue in terms of
efficiency.

Classification is another useful approach to mining
information from spatial data. In classification, a
training (learning) set is identified for the
construction of a classifier. Each record in the
training set has several attributes. There is one
attribute, called goal or class label attribute, which
indicates the class to which each record belongs. A
test set is used to test the accuracy of the classifier
once it has been developed from the learning dataset.
The classifier, once certified, is used to predict the
class label of unclassified data. Different models
have been proposed for classification, such as
decision tree induction, neural network, Bayesian,
fuzzy set, nearest neighbor and so on. Among these
models, decision tree induction is widely used for
classification, such as ID3, C4.5[1,2], CART[4],
Interval Classifier[3], SPRINT[3,5] and BOAT[6].

Both association rule mining and classification
have been applied in many fields. Remotely Sensed
image data is one of the promising application areas
since there are huge amount of image data. However,
due to the large size of image data, the existing
methods are not very suitable. In this paper, we
propose a new and efficient model to perform both
association rule mining and classification on
remotely sensed images data.

An image can be viewed as a 2-dimensional array
of pixels. Associated with each pixel are various
attributes or bands, such as visible reflectance
intensities (Blue, Green and Red), infrared
reflectance intensities (e.g., NIR, MIR1, MIR2 and
TIR) and possibly other value bands (e.g., yield
quantities, quality measures, soil attributes and radar
reflectance intensities). The pixel coordinates in
raster order constitute the key attribute. In this paper,
our task is to derive rules among spectral bands and
yield. We use two different approaches, association
rule mining and classification, to perform the same
task. In association rule mining, we try to derive rules
with yield as consequent. A rule like
“Green[192,255] ^ NIR[0,63] => Yield [128, 255]” is
expected, where Green[192,255] indicates an interval
with value ranged from 192 to 255 in Green band. In
classification, we specify the yield as the goal
attribute. These kinds of rules are particularly useful
for future yield prediction both for experts and
farmers. For example, if low yield is predicted in the
current growing year, additional inputs can be
applied, such as water and nitrogen, with high
likelihood of increasing the yield.

A new lossless data structure, Peano Count Tree
(Ptree), is used in the model. Ptrees represent image
data bit by bit in a recursive quadrant-by-quadrant
arrangement. With the information in Ptrees, we can
design fast mining algorithms.

The rest of the paper is organized as follows. In
section 2, we introduce the data formats of Remotely
Sensed Images data, including a new format called
bit Sequential Format (bSQ). We also describe the
Ptree data structure and its algebra. In Section 3, we
detail our algorithms for association rule mining and
classification on RSI data using Ptree. Performance
analysis is given in Section 4. Related work is given
in Section 5, while conclusion and future work is
given in Section 6.

2. Remotely Sensed Imagery Data and
Ptree Data Structure

2.1 Remotely Sensed Images

There are different types of RSI images, such as
TM, SPOT, AVHRR, TIFF, etc. For example, TM
image (Thematic Mapper) contains 7 bands, which
are B (Blue), G (Green), G (Red), RIR (Reflective-
Infrared), MIR (Mid-Infrared), TIR (Thermal-
Infrared), and MIR2 (Mid_Infrared2). The
reflectance value in each band ranges from 0 to 255.
Typically, a TM scene contains 40M pixels.

Figure 1 TIFF image and its yield map

In precision agriculture, some ground data are also
very useful. For example, yield (production) is one of
the most important ground data. A Yield map is a
map of yield levels, either expressed using a color
legend or using gray-scale levels. Figure 1 gives a
TIFF image and its yield map.

Several formats used for RSI data are Band
Sequential (BSQ), Band Interleaved by Line (BIL)
and Band Interleaved by Pixel (BIP) format. In BSQ
format, each band is stored as a separate file. Raster
order is used within each band. BIL format stores
data in line-major order while BIP format stores data
in pixel-major order. A TM scene uses BSQ format,
SPOT image uses BIL format while TIFF image uses
BIP format.

In this paper, we propose a new format, called bit
Sequential (bSQ) Organization to represent image
data. A reflectance value in a band is a number in the
range 0-255 and is represented as an 8-bit byte. We
split each band into eight separate files, one for each
bit position. Thus for each band there are eight
separate bSQ files. There are several reasons to use
the bSQ format. First, different bits contribute to the
value differently. In some applications, the high-
order bits alone provide the necessary information.
Second, the bSQ format facilitates the representation
of a precision hierarchy (from one bit precision up to
8 bit precision). Third, and most importantly, the bSQ
format facilitates the creation of an efficient, rich data
structure, the Ptree, and accommodates fast mining
algorithms.

2.2 Basic Ptree Data Structure

We organize each bSQ bit file, Bij, into a tree
structure, called a Peano Count Tree (Ptree). A Ptree
is a quadrant-based tree. The root of a Ptree contains
the 1-bit count of the entire bit-band. The next level
of the tree contains the 1-bit counts of the four
quadrants in raster order. This construction is
continued recursively down each tree path until the
sub-quadrant is pure (entirely 1-bits or entirely 0-
bits), which may or may not be at the leaf level (1-
by-1 sub-quadrant). An 8-row-8-column bit-band
example is shown next.

Figure 2. 8×8 bit image and its Ptree
(its basic Ptree and its PM-tree variation)

In this example, 55 is the count of 1’s in the entire
image, called root count. The numbers at the next
level, 16, 8, 15 and 16, are the 1-bit counts for the
four major quadrants. Since the first and last quadrant
is made up of entirely 1-bits (called pure-1 quadrant),
we do not need sub-trees for these two quadrants.
Similarly, quadrant with entirely 0 bits is called pure-
0 quadrant. This pattern is continued recursively.
Piano or Z-ordering is used in partition – therefore,
the name Peano Count trees. The process terminates
at the “leaf” level where each quadrant is a 1-row-1-
column quadrant. If we were to expand all sub-trees,
including pure quadrants, the leaf sequence is just the
Peano space-filling curve for the original raster
image.

We note that, the fan-out of a P-tree need not
necessarily be 4. Also, the fan-out at any one level
need not coincide with the fan-out at another level.
The fan-out pattern can be chosen to produce good
compression for each bSQ band. Finally, we note that
the same general construction can be used for spatial
data of more than 2-dimensions. For 3-dimensional
data, for instance, at each level, we partition into
octants, and so forth. This structure applies well
when the data have clustered properties, for example,
data represented by sparse matrix.

For each band (assuming 8-bit data values), we get
8 basic Ptrees, one for each bit positions. For band Bi,

we will label the basic Ptrees, Pi,1, Pi,2, …, Pi,8, thus,
Pi,j is a lossless representation of the jth bits of the
values from the ith band. However, Pij provides much
more information and are structured to facilitate
many important data mining processes.

A variation of Ptree, called Peano Mask Tree (PM-
tree), can be used for efficient implementation of
Ptree operations. In the PM-tree structure, we use a 3-
value logic, in which 11 represents a pure-1 quadrant,
00 represents a pure-0 quadrant and 01 represents a
mixed quadrant. To simplify, we use 1 instead of 11
for pure-1, 0 for pure-0, and m for mixed. The PM-
tree of the previous example is also given in Figure 2.

2.3 Ptree Algebra

Different operations can be applied on Ptrees.
Ptree algebra contains operators COMPLEMENT,
AND, OR, and XOR, which are the pixel-by-pixel
logical operations on Ptrees. The COMPLEMENT
operation is a straightforward translation of each
count to its quadrant-complement (e.g., a 5 count for
a quadrant of 16 pixels has complement of 11). AND
operation is the most frequently used operation for
mining on images. Figure 3 gives an example of PM-
tree ANDing. OR and XOR operations are performed
in a similar way.

Figure 3. PM-tree ANDing

2.4 Value Ptree and Tuple Ptree

PM-Tree-1: m
______/ / \ ______

/ / \ \
/ / \ \

1 m m 1
/ / \ \ / / \ \

m 0 1 m 1 1 m 1
//|\ //|\ //|\

1110 0010 1101

PM-Tree-2: m
______/ / \ ______

/ / \ \
/ / \ \

1 0 m 0
/ / \ \

1 1 1 m
//|\

0100

Result: m
________ / / \ ___

/ ____ / \ \
/ / \ \
1 0 _ m__ 0

/ | \ \
1 1 m m

//|\ //|\
1101 1000

1 1 1 1 1 1 0 0
1 1 1 1 1 0 0 0
1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1

55
____________/ / \ ___________

/ _____/ \ ___ \
16 ____8__ _15__ 16

/ / | \ / | \ \
3 0 4 1 4 4 3 4

//|\ //|\ //|\

Ptree

m
_____________/ / \ ____________

/ ____/ \ ____ \
1 ____m__ _m__ 1

/ / | \ / | \ \
m 0 1 m 1 1 m 1
//|\ //|\ //|\

1110 0010 1101

PM-tree

The basic Ptrees can be combined using simple
logical operations (AND, OR, COMPLEMENT) to
produce Ptrees for any number of bit values (any
level of precision, 1-bit precision, 2-bit precision,
etc.). We let Pb,v denote the Ptree for band, b, and
value, v, where v can be expressed in 1-bit, 2-bit,.., or
8-bit precision. Pb,v is called a value-Ptree. Through
the same kinds of AND/Complement operations,
value-Ptrees can be combined to construct tuple
Ptree, which will contain the hit counts of an entire
tuple for all quadrants. Figure 4 shows the
relationships among Basic, Value and Tuple Ptrees,
where ’ indicates the COMPLEMENT operation.

Figure 4. Basic, Value and Tuple Ptrees

3. Data Mining on RSI data using Ptrees

3.1 P-ARM Algorithm – Association Rule
Mining on RSI data using Ptrees

The formal definition of association rules is
introduced in [8]. Let I = {i1, i2, …, im} be a set of
literals, called items. Let D be a set of transactions,
where each transaction T is a set of items (called
“itemset”) such that T⊆ I. We say that a transaction T
contains X, a set of items in I, if X ⊆ T. An
association rule is an implication of the form X => Y,
where X ⊂ I, Y ⊂ I, and X ∩ Y = ∅ . The rule X =>
Y holds in the transaction set D with confidence c if
c% of transactions in D that contain X also contain Y.
The rule X => Y has support s in the transaction set
D if s% of transactions in D contain X ∪ Y.

Given a set of transactions D, the problem of
mining association rules is to generate all association
rules that have certain user-specified minimum
support (called minsup) and confidence (called
minconf).

The discovery of association rules is usually
performed in two steps. The first step is to find all
itemsets whose support is greater than the user-
specified minimum support. Itemsets with minimum

support are called frequent itemsets. The second step
is to generate the desired rules using the frequent
itemsets generated in the first step. The overall
performance is mainly determined by the first step.
Once the frequent itemsets have been generated, it’s
straightforward to derive the rules.

Basic association rule mining algorithms are
proposed for dealing with Boolean attributes, such as
Market Basket data. To perform association rule
mining on RSI data, data partition is required since
RSI data are quantitative data [10]. There are various
kinds of partition approaches [7], including Equi-
length partition, Equi-depth partition and user-
customized partition.

As we mentioned, frequent itemsets generation is
the key step in association rule mining. Usually a
step-wise procedure is used to generate frequent
itemsets [8,9]. To determine if a candidate itemset is
frequent, the support is calculated then compared to
the threshold. In Apriori and most other ARM
algorithms, the entire transaction database needs to
be scanned to calculate the support for each candidate
itemset. When the transaction set is large, (e.g., a
large image with 40,000,000 pixels), this cost will be
extremely high.

We propose a new algorithm, P-ARM, to solve this
problem. The main idea is that support of each
candidate itemset can be obtained directly from
ANDing Ptrees (i.e., the support count is just the root
count of the result). There is no need to scan the
transaction database, which is the main cost for
standard ARM methods.

In P-ARM, each pixel is a transaction. After
performing data partition, items are all the intervals
in all the bands. An itemset is in the form of Int1 x
Int2 x ... x Intn = Π i=1..n Inti , where Inti is an interval
of values in Bandi (some of which may be the full
value range 0~255). A 1-itemset is an itemset with
(n-1) full value range intervals, while a 2-itemset is
an itemset with (n-2) full value range intervals, where
n is the total number of bands.

Figure 5. P-ARM Algorithm

Basic Ptrees
(P11, P12, …, P18, P21,…, P28, . . . , P88)

Value Ptrees
(i.e., P1, 001 = P11’ AND P12’ AND P13)

Tuple Ptrees
(i.e., P001, 010, 111 = P1, 001 AND P2, 010 AND P3, 111, 011)

AND

AND

Procedure P-ARM
{

Data Partition;
F1 = {frequent 1-Itemsets};
For (k=2; F k-1 ≠∅) do begin

Ck = p-gen(F k-1);
Forall candidate Itemsets c ∈ Ck do

c.count = AND_rootcount(c);
Fk = {c∈ Ck | c.count >= minsup}
end

Answer = ∪ k Fk

}

The P-ARM algorithm is given in Figure 5. The p-
gen function in P-ARM differs from the apriori-gen
function in Apriori ([9]) in the way pruning is done.
Since any itemsets consisting of two or more
intervals from the same band will have zero support
(no value can be in both intervals simultaneously),
the kind of joining done in [9] is unnecessary. The
AND_rootcount function is used to calculate itemset
counts directly by ANDing the appropriate basic-
Ptrees. For example, in the itemset {B1[0,64),
B2[64,127)}, where B1 and B2 are two bands, the
support count is the root count of P1, 00 AND P2, 01.

P-ARM is applicable equally to any kind of data
partition. Since whether partitioning is equi-length,
equi-depth or user-customized, it can be
characterized as follows. For each band, choose
partition-points, v0 = 0, v1, ..., vn+1 = 256, then the
partitions are, { [vi, vi+1) : i = 0..n} and are identified
as values, { vi : i = 0..n}. The items to be used in the
data mining algorithms are then pairs, (bi, vj), where
bi is band i and vj is partition point value.

3.2 P-Classifier – Classification on RSI data
Using Ptrees

Classification is another basic data mining task.
The aim of the classification task is to discover some
kind of relationship between the goal attribute and
other attributes, so that the discovered knowledge can
be used to predict the class label of a new, unknown-
class tuple.

A classification task typically involves three
phases, a learning phase, a testing phase and an
application phase. In the learning phase, training data
are analyzed by a classification algorithm. Each tuple
in a training dataset is a training sample, randomly
selected from the sample population. A class label
attribute is identified, whose values are used to label
the classes. The learning model or classifier resulting
from this learning phase, may be in the form of
classification rules or a decision tree or a
mathematical formulae. Since the class label of each
training sample is provided, this approach is known
as supervised learning. In unsupervised learning
(clustering), the class labels are not known in
advance. In the testing phase test data are used to
assess the accuracy of classifier. If the classifier is
accurate enough, it can be used to predict the class
label for a new data tuple, which is the application
phase.

In this paper, we consider the classification of RSI
data in which the resulting classifier is a decision
tree, a commonly used format for discovered
classification knowledge.

Classification can be performed within one single
image or a series of images for the same location.

The mining process is quite similar except the
partition between training data set and testing data set
is different. For the single-image classification, some
pixels in the image form the training set and the rest
pixels form the testing set. For the multi-image
classification, we can choose the images in the
consecutive two years as training set and testing set.
In both cases, the new data samples are remotely
sensed image values taken during a "current"
growing season prior to harvest. The goal is to
classify the previous year's data using yield as the
class label attribute and then to use the resulting
classifier to predict yield levels for the current year
(e.g., to determine where additional nitrogen should
be applied to raise yield levels).

Our explanation is based on basic ID3 algorithm,
however, Ptrees can be applied to other classification
algorithms in a very similar way. The basic algorithm
for inducing a decision tree from the learning or
training sample set is as follows ([2] [7]):

• Initially the decision tree is a single node
representing the entire training set.

• If all samples are in the same class, this node
becomes a leaf and is labeled with that class
label.

• Otherwise, an entropy-based measure,
"information gain", is used as a heuristic for
selecting the attribute (the “decision attribute”),
which best separates the samples into individual
classes.

• A branch is created for each value of the test
attribute and samples are partitioned accordingly.

• The algorithm advances recursively to form the
decision tree for the sub-sample set at each
partition. Once an attribute has been used, it is
not considered in descendent nodes.

• The algorithm stops when all samples are of the
same class or there are no remaining attributes.

The attribute selected at each decision tree level is
the one with the highest information gain. The
information gain of an attribute is computed as
follows. Let S be a set of data samples in the learning
dataset and let s by its cardinality. Let the class label
attribute have m values or classes, Ci, i=1..m. Let si

be number of samples from S in class Ci. The
expected information needed to classify a given
sample is computed as follows: I(s1..sm) = -∑i=1..m

pi*log2 pi , where pi = si/s (the probability that a
sample belongs to Ci).

Let attribute, A, have v distinct values, {a1..av}.
Attribute A could be used to classify S into {S1..Sv},
where Sj is the set of samples having value, aj. Let sij

be the number of samples of class, Ci, in a subset, Sj.

The entropy or expected information based on the
partition by A is E(A) = ∑j=1..v ∑i=1..m (sij / s) *
I(s1j..smj). The information gained by using Attribute
A as a decision attribute is gain(A) = I(s1..sm) - E(A).

We propose a new classifier, called P-classifier, to
construct decision tree quickly by using the count
information recorded in Ptrees. To calculate the
information gain, sij is calculated for each i, j. Using
Ptree structure, we can provide a fast way of
calculating sij.

Suppose B1 (Band 1) is the class attribute. Start
with A = B2 (Band 2) to classify S into {A1..Av},
where Aj = {t| t(B2)=aj} and aj ranges over those B2-
values, v’, such that the root count of P2,v' is non-
zero. The symbol, sij, counts the number of samples
of class, Ci, in subset, Aj, that is, the root count of P1,v

AND P2,v', where v ranges over those B1-values such
that the root count of P1,v is non-zero.

It is unnecessary to rescan the learning set to form
these sub-sample sets, since the Ptrees for those
samples have been computed. So, P-Classifier saves
the cost of sub-sample set creation.

Any attribute, which has one single value in each
candidate decision attribute over the entire sample,
need not be considered, since the information gain
will be zero. If all candidate decision attributes are of
this type, the algorithm stops for this subsample.

3.3 Other applications of Ptrees to RSI data
mining

Ptrees can be successfully applied to clustering as
well as other classification techniques, including
Bayesian Classification and k-Nearest Neighbor
classification. We won’t be able to detail these
algorithms due to length limitations on this paper.

4. Performance Analysis

4.1 Performance Analysis on P-ARM Algorithm

For association rule mining, we compare our work
with the classical frequent itemsets generation
algorithm, Apriori [9], and a recently proposed
efficient algorithm, FP-growth [12], in which no
candidate generation step is needed. The experiments
are performed on a 900-MHz PC with 256 megabytes
main memory, running Windows 2000. We
generalized our algorithm to find all the frequent
itemsets, not limited to those of-interest (e.g.,
containing Yield) for the fairness, so that the
association rules we got using Apriori, FP-growth
and P-ARM algorithms are completely identical. The
images we used are actual aerial TIFF images with a

synchronized yield band and can be found at [14]. So,
each dataset has 4 bands {Blue, Green, Red, Yield}.
We use different image sizes up to 1320×1320 pixels
(the total number of transactions will be ~
1,700,000). We only store the basic Ptrees for each
dataset. In this paper, we gave the performance
results based on one typical TIFF-Yield dataset, and
the performance on other TIFF-Yield datasets are
quite similar as we tested.

4.1.1 Comparison of the P-ARM Algorithm
with Apriori algorithm

We implemented the Apriori algorithm [9] for the
TIFF-Yield datasets using Equi-length partitioning.
P-ARM is more scalable than Apriori in two ways.
First, P-ARM is more scalable for lower support
thresholds. The reason is, for low support thresholds,
the number of candidate itemsets will be extremely
large. Thus candidate itemset generation performance
degrades markedly. Figure 6 gives the results of the
comparison of the P-ARM algorithm using Ptree and
Apriori for different support thresholds.

0

100

200

300

400

500

600

700

800

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

Support threshold

R
u

n
ti

m
e

(S
ec

.)

P-ARM

Apriori

Figure 6. Scalablity with support threshold

0

200

400

600

800

1000

1200

10
0

50
0

90
0

13
00

17
00

Number of transactions(K)

T
im

e
(S

ec
.)

Apriori

P-ARM

Figure 7. Scalability with number of transaction

Secondly, P-ARM algorithm is more scalable to
large image datasets. The reason is, in the Apriori
algorithm we need to scan the entire database each
time a support is to be calculated. This is a very high

cost for large databases. However, in P-ARM, since
we calculate the count directly from the root count of
a basic-Ptree AND program, when we double the
dataset size, only one more level is added to each
basic-Ptree. The cost is relatively small compared to
the Apriori algorithm as shown in figure 7.

4.1.2 Comparison of the P-ARM algorithm and
the FP-growth algorithm

FP-growth is a very efficient algorithm for
association rule mining, using a data structure called
frequent pattern tree (FP-tree) to store compressed
information about frequent patterns. We use the FP-
growth object code and convert the image to the
required file format. For a dataset of 100K bytes, FP-
growth runs very fast. But when we run the FP-
growth algorithm on the TIFF image of size
1320×1320 pixels, the performance falls off. For
large sized datasets and low support thresholds, it
takes longer for FP-growth to run than P-ARM.
Figure 8 shows the experimental result of running the
P-ARM and the FP-growth algorithms on a
1320×1320 pixel TIFF dataset. In these experiments
we have used 2-bits precision.

0

100

200

300

400

500

600

700

800

Support threshold

R
u

n
ti

m
e

(S
ec

.)

P-ARM

FP-grow th

Figure 8. Scalability with support threshold

0

200

400

600

800

1000

1200

10
0

50
0

90
0

13
00

17
00

Number of transactions(K)

T
im

e
(S

ec
.)

FP-growth

P-ARM

Figure 9. Scalability with the number of transactions

Both P-ARM and FP-growth run faster than Apriori
algorithm. For large image datasets, the P-ARM
algorithm runs faster than FP-growth algorithm when
the support threshold is low. Also, the relative
performance of P-ARM (relative to FP-growth)
increases as the size of the data set increases (Figure
9).

4.2 Performance Analysis on P-Classifier

Usually prediction accuracy is used as a basis of
comparison for the different classification methods.
However in P-Classifier, we use ID3 with new data
structures, which are intended to improve the speed
of the algorithm, not the predictive accuracy.
Therefore the performance issue here is classification
time. We got identical decision trees by using ID3
and P-Classifier.

In P-Classifier, we only build and store basic
Ptrees. All the ANDings are performed on the fly
when the corresponding root count is needed. Our
experimental results show that in P-Classifier the
classification time decreases significantly than basic
ID3, especially for large data size (in Figure 10).

The reason lies in several aspects. First, in ID3, to
test if all the samples are in the same class, one scan
on the entire sample set is needed. While in P-
Classifier, we only need to check if the corresponding
quadrant is pure-1. Second, in P-Classifier, the
creation of sub-sample sets is not necessary when all
the samples are not in the same class. For example, if
the Ptree of the current sample set is P 2, 0100 ^ P 3, 0001,
and the current attribute is B1 (with, say, 2 bit
values), then P 2, 0100 ^ P 3, 0001 ^ P 1, 00, P 2, 0100 ^ P 3,

0001 ^ P 1, 01, P 2, 0100 ^ P 3, 0001 ^ P 1, 10 and P 2, 0100 ^ P 3,

0001 ^ P 1, 11 identifies the partition of the current
sample set. To generate Sij, only Ptree ANDings are
required.

Classification Time

0

100

200

300

400

500

600

700

0 20 40 60 80

Size of data (M)

T
o

ta
lc

o
st

(s
ec

o
n

d
)

ID3

P-Classifer

Figure 10. Classification cost with respect to the
dataset size

17,424,000 pixels (transactions)

Support threshold=10%

The additional cost of building and storing the
basic Ptrees are very small. For high order bit of
bands in TIFF image (1320×1320), the average size
of basic Ptree is 22K Bytes, while for other bits, the
average size is about 200K Bytes. The time to build
the basic Ptrees is about 30ms.

5. Related work

The P-tree structure is related to Quadtrees [15]
and its variants (such as point quadtree [15] and
region quadtree [15]), and HHcodes [16]. The
similarities among P-trees, quadtrees and HHCodes
are that they are quadrant based. The difference is
that P-trees focus on counts. P-trees are not only
beneficial for storing data, but also for fast data
mining, since they contain useful needed information
for data mining.

Wavelets provide a good way for compressing
data, but unlike Ptree, they do not facilitate pixel by
pixel mining.

6. Conclusion and Future Work

In this paper, we propose a new model of
performing various data mining approaches, such as
association rule mining and classification, on
remotely sensed imagery data. We use a new data
organization, bit Sequential organization (bSQ) and a
lossless, data-mining ready data structure, the Peano
Count tree (Ptree), to represent the information
needed for data mining in an efficient and ready-to-
use form. The rich and efficient Ptree storage
structure and fast Ptree algebra facilitate fast mining
algorithms, such as P-ARM and P-Classifier
proposed in this paper. Experiments show that the
new model improves performance obviously than
existing approaches on mining large sized images.

In this paper, Ptree structure provides a fast way to
calculate some measurements for mining task, such
as support and confidence in association rule mining
task and information gain in classification task.
Similarly, Ptree can facilitate the fast calculation for
other measurements, such as interest and
conviction[13] in association rule mining and Gini
index[4] in classification.

Two types of classification can be performed for
image data. One is the classification on one
individual image. The other is the classification on a
series of related images, such as time-series images in
the same location. Our future work includes
incremental classification on time series image data
using Ptrees.

Acknowledgements

We would like to express our thanks to Dr. Jiawei
Han for providing us the FP-growth object code.

References

[1] J.R. Quinlan, R.L. Riverst, “Inferring decision
trees using minimum description length principle”,
Information and Computation, 80, 227-248, 1989.
[2] Quinlan, J. R., “C4.5: Programs for Machine
Learning”, Morgan Kaufmann, 1993.
[3] R. Agrawal, S. et al, “An interval classifier for
database mining applications”, VLDB 1992.
[4] L. Breiman, et al, “Classfication and Regression
Trees”, Wadsworth, Belmont, 1984.
[5] J. Shafer, R. Agrawal, M. Mehta, “SPRINT: A
scalable parallel classifier for data mining”, VLDB
96.
[6] J. Gehrke, et all, “BOAT: Optimistic Decision
Tree Construction, SIGMOD 99.
[7] Jiawei Han, Micheline Kamber, “Data Mining:
Concepts and Techniques”, Morgan Kaufmann,
2001.
[8] R. Agrawal, T. Imielinski, A. Swami, “Mining
Association Rules in Large Database”, SIGMOD 93.
[9] R. Agrawal and R. Srikant, “Fast Algorithms for
Mining Association Rules,” VLDB 94.
[10] R.Srikant, R.Agrawal, "Mining Quantitative
Association Rules in Large Tables", SIGMOD 96.
[11] J. S. Park, M.S. Chen and P. S.Yu, “An effective
Hash-Based Algorithm for Mining Association
Rules,” SIGMOD 95.
[12] J. Han, J. Pei and Y. Yin, “Mining Frequent
Patterns without Candidate Generation”, SIGMOD
2000.
[13] S. Brin et al, “Dynamic Itemset Counting and
Implication Rules for Market Basket Data”,
SIGMOD 97.
[14] SMILEY Project. Available at
http://midas.cs.ndsu.nodak.edu/~smiley
[15] H. Samet, “The quadtree and related hierarchical
data structure”. ACM Computing Survey, 16, 2,
1984.
[16] HH-code. Available at
http://www.statkart.no/nlhdb/iveher/hhtext.htm

