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The ability to recognize humans and their activities by vision
is key for a machine to interact intelligently and effortlessly with a
human-inhabited environment. Because of many potentially impor-
tant applications, “looking at people™ is currently one of the most

humans in the environment and what are their activities. Her
computer vision can play an important role. An added benefit ¢
such a capability is that it makes communication with machine
easier for humans, allowing input modalities such as gesture:

Traditionally, there has been keen interest in human mov

active application domains in computer vision. This survey identi-
fies a number of promising applications and provides an overview
of recent developments in this domain. The scope of this survey is
limited to work on whole-body or hand motion; it does not include
work on human faces. The emphasis is on discussing the various
methodologies; they are grouped in 2-D approaches with or without
explicit shape models and 3-D approaches. Where appropriate, sys-
tems are reviewed. We conclude with some thoughts about future
directions.  © 1999 Academic Press

ment from a wide variety of disciplines. In psychology, there
have been the classic studies on human perception by Johans
[39]. His experiments with moving light displays (MLD) at-
tached to body parts showed that human observers can alm
instantly recognize biological motion patterns even when pre
sented with only few of these moving dots. This raised the que
tion whether recognition of moving parts could be achieve
directly from motion, without structure recovery. In the hanc
gesture area, there have been many studies on how humans
and interpret gestures; see for example work by McNeill [52]
Quek [66] has put this in the context of vision-based humar
computer interfaces.

In kinesiology (i.e., biomechanics) the goal has been to d

A new application domain of computer vision has emergeghiop models of the human body that explain how it function
over the past few years dealing with the analysis of images ifechanically and how one might increase its movement ef
volving humans. This domain (sometimes called *looking qlency. A typical procedure involves obtaining 3-D joint data
people”) covers, among others, face recognition, hand gestygorming kinematic analysis, and computing the correspon
recognition, and whole-body tracking. The strong interestin thﬁg forces and torques for a movement of interest [12]. 3-D da

domain has been motivated by the desire for improved mag—ypically obtained in an intrusive manner, e.g., by placin
machine interaction for which there are many promising applisarkers on the human body.

cations. In choreography, there has been long-term interest in devi

One of the general goals of artificial intelligence has beggy nhigh-level descriptions of human movement for the notatio
to design machines which act_ more intelligently or human-likgy dance, ballet, and theatre. Some of the more popular no
Natural language understanding, large knowledge bases, anqgis have been the Labanotation, the Ekshol-Wachmann,
phisticated reasoning have all made contributions toward reaghs effort—shape notation. Across the variety of notation sy
ing this goal, as embodied by the Turing test. Yet, they prgsms there has been little consensus, though, what these gene

vide only a partial solution; for a machine to be truly inte"ige”burpose descriptions should be. Badler and Smoliar [6] provic
and useful, it requires the ability to perceive the environment Ygood discussion of these issues.

which it is embedded. It needs to be able to extract information(:omputer graphics has dealt with the synthesis of hums

from its environmentindependently, rather than rely on inform@;gvement. This has involved devising realistic models of ht
tion supplied to it externally by keyboard input (as in the originghan podies for applications in crash simultations, workplac
conception of the Turing test). Perhaps the most relevant infaissessment, and entertainment. Some of the issues have
mation to be retrieved for interaction is where and who are thg,y to specify spatial interactions and high-level tasks for th
human models; see [5, 6, 50].

* The majority of this work was done while at the Computer Vision Labo- The r nt interest in vision in the looking at le domai
ratory at the University of Maryland at College Park; it was supported by the e rece eres Sio € l00KIng at people domal

Advanced Research Projects Agency (ARPA Order No. C635) and the Office!%fh_ardly surprising. _From atechnical point of view, this doma?'
Naval Research under Grant NO0014-95-1-0521. is rich and challenging because of the need to segment rapit

“

1. INTRODUCTION
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VISUAL ANALYSIS OF HUMAN MOVEMENT

changing scenes in natural environments involving nonrigid mo-
tion and (self) occlusion. A number of potentially important ap-
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TABLE 1
Applications of “Looking at People”

plications exist; see the next section. Additional momentum has

been provided by recent technological advances, chief among ©eneral domain

Specific area

them the introduction of real-time capture, transfer, and prqz ., reality

cessing of images on standard hardware systems (e.g., PCs).

The extensive coverage in the vision literature is apparent from

the many special workshops devoted to this topic: the Looking

at People workshop in Chambery (1994), the Motion of Non-

Rigid and Articulated Objects workshop in Austin (1994), and X _

the two Automatic Face and Gesture Recognition workshops iRt surveillance systems
Zirich (1995) and Killington (1996). Some of the material has

now also reached the popular scientific press [63].

—Interactive virtual worlds
—Games
—Virtual studios
—Character animation
—Teleconferencing
(e.g., film, advertising, home-use)
—Access control
—~Parking lots
—Supermarkets, department stores
—\Vending machines, ATMs

This paper surveys the work on visual analysis of gestures and —Traffic
whole-body movement. These are discussed together becanseanced user interfaces
of obvious similarities (i.e., both involve articulated structures).

Section 2 discusses promising application scenarios of the look-

ing at people domain in some detail. Many criteria could be used

to classify previous work; for example, the type of models use,\qoﬁon analvsis

(e.g., stick figure-based, volumetric, statistical), the dimension- Y

ality of the tracking space (2-D vs 3-D), sensor modality (e.g.,

visible light, infra-red, range), sensor multiplicity (monocular vs

stereo), sensor placement (centralized vs distributed), and sen-

sor mobility (stationary vs moving). This survey is based on thidodel-based coding
first two criteria; it distinguishes

* 2-D approaches without explicit shape models (Section 3), o important application domain is smart surveillance. Here

* 2-Dapproacheswith explicitshape models (Section 4), amadmart" describes a system that does more than motion dete
* 3-D approaches (Section 5). tion, a straightforward task prone to false alarms (there migt

These classes do have some overlap. For example, some Reanimals wandering around, wind blowing, etc.). A first ca-
approaches use explicit shape models but also contain someP@pility would be to sense if a human is indeed present. Thi
ements of learning or self-adaptation. Nevertheless, this gendréght be followed by face recognition for the purpose of ac-
classification provides a good framework for discussion througess control and person tracking across multiple cameras.
out this survey. other applications, one needs to determine what a person in tl

Section 6 provides an overview of techniques for human agcene is doing, rather than simply signaling human presence.
tion recognition; it takes a bottom-up view which assumes thatparking lot setting, one might want to signal suspicious be
all relevant features have been extracted from the images at thagior such as wandering around and repeatedly looking int
point, i.e., using one of the approaches of the last three sectick@y's. Other surveillance settings involve supermarket or depal
A general discussion of past work is given in Section 7 togeth@ent stores, vending machines, ATMs, and traffic. The benefit
with some thoughts about future directions. The conclusions desuch surveillance applications need in some cases to be b:
listed in Section 8. anced with possible drawbacks, e.g., regarding privacy.

Face analysis (head pose estimation, face recognition, faciaf\nother application domain is virtual reality. In order to cre-
expressions, lip reading) is not covered by this survey; see i€ a presence in a virtual space one needs to first recover t
stead [83]. Earlier reviews on nonrigid motion, motion-basdePdy pose in the physical space. Application areas lie in inter
recognition, and gesture interpretation were given by Aggarv\mtive virtual worlds, with the internet as a possible medium
et al. [1], Cedras and Shah [14], and Pavlovic, Sharma, arldne development of interactive spaces on the internet is still i
Huang [61], respectively. its infancy; it is in the form of “chat rooms” where users nav-
igate with icons in 2-D spaces while communicating by text.
A more enriched form of interaction with other participants or
objects will be possible by adding gestures, head pose, and f

There are a number of promising applications in the lookingjal expressions as cues. Other applications in this domain a
at people area in computer vision in addition to the general g@gimes, virtual studios, motion capture for character animatio
of designing a machine capable of interacting intelligently ar{dynthetic actors), and teleconferencing.
effortlessly with a human-inhabited environment; fora summary In the user-interface application domain, vision is useful tc
see Table 1. complement speech recognition and natural language unde

—Social interfaces
—Sign-language translation
—Gesture driven control
—Signaling in high-noise environments
(airports, factories)

—Content-based indexing of sports video
footage
—Personalized training in golf, tennis, etc.
—Choreography of dance and ballet
—Clinical studies of orthopedic patients

—Very low bit-rate video compression

2. APPLICATIONS
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standing for a natural and intelligent dialogue between humhbndy) tracking application has not been solved satisfactori
and machine. The contribution of vision to a speech-guided diet. See Aizawa and Huang [2] for a good overview.
alogue can be manifold. One can simply determine if a user isIn all the applications discussed above, a nonintrusive sensc
present to decide whether to initiate a dialogue or not. Momethod based on vision is preferable over a (in some cases a
detailed cues can be obtained by recognizing who the useregen feasible) method that relies on markers attached to t
observing facial expressions and gestures as the dialogue fradies of the human subjects or a method which is based
gresses, and perhaps recalling some of the past interactionsactive sensing.
would certainly be useful to determine who is talking to whom
in case of multiple participants. Vision can also provide speech 3. 2-D APPROACHES WITHOUT EXPLICIT
recognition with amore accurate input in a noisy environment by SHAPE MODELS
focusing the attention to the spatial location of the user [80]. This
is achieved either by a postfiltering step when using a phasedne general approach to the analysis of human movementt
array of microphones or, more actively, by directing a parabolizen to bypass a pose recovery step altogether and to describe
microphone to the intended source. Finally, vision can also prov&an movement in terms of simple low-level, 2-D features fron
helpful for phoneme disambiguation, i.e., lip reading. a region of interest. Polana and Nelson [65] refered to “gettin
An important application area in the user interface domajyour man without finding his body parts.” Models for humar
involves social interfaces. Social interfaces deal with computexretion are then described in statistical terms derived from the
generated characters, with human-like behaviors, who atterfgat-level features or by simple heuristics. The approach withot
to interact with users in a more personable way [80]. Alternativexplicit shape models has been especially popular for applic
application areas in the user interface domain are sign-langugigas of hand pose estimation in sign language recognition al
translation, gesture driven control of graphical objects or apptiesture-based dialogue management.
cances, and signaling in high-noise environments such as factoFor applications involving the human hand, the region of in
ries or airports. terest is typically obtained by background image subtractic
In the motion analysis domain, a possible application is coor skin color detection. This is followed by morphological op-
tent-based indexing of sports video footage; in a tennis contegtations to remove noise. The extracted features are based
one may want to query a large video archive with “give me afland shape, movement, and/or location of the interest regic
the cases where playet came to the net and volleyed.” ThisFor shape, Freemaet al. [24] usedx—y image moments and
would eliminate the need for a human to browse through a larggentation histograms and Huntet al. [38] used rotationally
data set. Other applications lie in personalized training systemsgariant Zernike moments. Others [16, 20, 77, 79] considere
for various sports; these systems would observe the skills tbé motion trajectories of the hand centroids. Quek [66] propost
the pupils and make suggestions for improvement. Vision-basaging shape and motion features alternatively for the interpret
human motion analysis is also useful for choreography of danien of hand gestures. According to Quek, when the hand is
and ballet, and furthermore, for clinical studies in orthopedy. gross motion, the movements of the individual fingers are unin
One final application domain is that of model-based imagmrtant for gesture interpretation. On the other hand, gestures
coding, with activity centered around the forthcoming MPEG-#hich fingers move with respect to each other will be performe
standard. In a video phone setting, one can track faces in imagéth little hand motion.
and code them in more detail than the background. More ambi-A similar technique to derive low-level features is to superim
tiously, one might try to recover a 3-D head model initially angose a grid on the interest region, after a possible normalizati
code only the pose and deformation parameters subsequentlyf its extent. In each tile of the grid a simple feature is compute«
is unclear whether these applications will materialize; the 2-8nd these features are combined to forkh & K feature vector
head tracking application provides modest compression gainglescribe the state of movement at tim@olana and Nelson
and is specific to scenes with human faces; the 3-D head [65] used the sum of the normal flow (see Fig. 1), Yamamot

FIG. 1. Detection of periodic activity using low-level motion features (from Polana and Nelson¢65994 |IEEE).
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FIG. 2. Detecting frontal and rear views of pedestrians. (a) The features: vertical, horizontal, and corner wavelet coefficients; (b) the detectisimgethglts
SVM classifier (from Orert al.[59], © 1997 IEEE).

et al.[86] used the number of foreground pixels, and Takahashily those deformations which are consistent with the training
et al. [78] defined an average edge vector for each tile. Bofiet. Cootegt al. showed some examples of tracking hands. The
Darell and Pentland [19] and Kjeldsen and Kender [44] used tf@lowed method also has some drawbacks. Features need
image pixels directly as input. The work by Darell and Pentlartak present at all times (no occlusions). At initialization, a gooc
[19] aims to build view models automatically by adding viewsnitial estimate must be available for the method to converge
to the model set whenever correlation with the existing viewsoperly. And finally, the chosen parameterization mightinclude
falls below a certain threshold. states which have implausible physical interpretations.

For the above systems, action classification is based on hardBaumberg and Hogg [8] applied active shape models to th
coded decision trees [16, 20, 79], nearest neighbor criteria [3&cking of pedestrians. They used a somewhat different shaj
65], or on general pattern matching techniques for time-varyimgpresentation, based on B-splines; see Fig. 3. By assuming
data, as described in Section 6. Some additional constraintsstationary camera, tracking is initialized on the foreground re
actions can be imposed using a dialogue structure where then; the latter is obtained by background subtraction. Spatic
current state limits the possible actions that can be expected nextporal control is achieved using a Kalman filter formulation,

Orenet al. [59] performed object detection in static imagessimilar to work by Blakeet al. [9].

They used (Haar) wavelet coefficients as low-level intensity fea-Recent work by Franket al. [23] applied principal com-
tures; these coefficients are obtained by applying a different@nent analysis on a grid representation of pedestrians. Tt
operator at various locations, scales, and orientations on the inaining set is obtained by blurring binary images which cor-
age grid of interest. Many coefficients can be part of this repespond to pedestrian silhouettes. Principal component analys
resentation. In a training stage, however, one selects a smefiults, as before, in a compact representation of the trainir
subset of coefficients to represent a desired object, basedsehin terms of various eigenvectors which span a linear sul
considerations regarding relative strength and positional spresgdice. See Fig. 4: the main variation is captured by the first fe
over the images of the training set. Once it has been establisk@knvectors (corresponding to the largest eigenvalues), the 25
which wavelet coefficients to use as features, a support vectigenvector already contains mostly noise. Pedestrian detecti
machine (SVM) classifier is applied to the training set. Durinigivolves shifting windows of various sizes over the image, nor-
the detection stage, one shifts windows of various sizes owvaalizing for gradient energy within the window, and determining
the image, extracts the selected features, and applies the SVM
classifier to verify whether the desired object is present or not.
Orenet al. applied this technique to detecting frontal and rear
views of pedestrians; see Fig. 2.

Another line of research involves statistical shape models to
detect and track the contours of hands or persons. The work by
Cooteset al. [18] uses active shape models for this purpose;
these are models derived from a training stage where example
shapes are described in terms of known feature point locations.
Cooteset al. performed principal component analysis on the
feature locations to describe the example shapes using a reduced
parameter set. With this compact representation one obtains,

in addition to efficiency, some degree of generallzatlon OVETG.s. Principal component analysis on a data set of pedestrians represent

the training set. This can be useful when tracking deformahi@g.spiines; shown is the shape variation along the principal component (fror
shapes; using the new representation one allows, in essemBaemnberg and Hogg [8lp 1994 IEEE).
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4. 2-D APPROACHES WITH EXPLICIT
SHAPE MODELS

This section discusses work which uses explicit a priori know
edge of how the human body (or hand) appears in 2-D, takir
essentially a model- and view-based approach to segment, tra
and label body parts. Since self-occlusion makes the proble
quite hard for arbitrary movements, many systems assume a |
ori knowledge of the type of movement or the viewpoint unde
FIG.4. Principal component analysis on a data set of pedestrians represeMédCh it is observed. The human figure is typically segmente
by images of size 30 by 50 pixels; shown are eigenvectors 0 (mean), 1, 2, ingbackground subtraction, assuming a slowly changing or st
25, in order of decreasing eigenvalues (from Fraeikal. [23]). tionary background and a fixed camera. The models used ¢

usually stick figures, wrapped around with ribbons or “blobs.
the “distance” between the normalized (gradient) data enclos&d example of a ribbon-based 2-D model is illustrated in Fig. €
by the window and the linear subspace corresponding to thie type of the model strongly influences what features are us
training set. One of the advantages of using grid representatidmstracking; one can distinguish systems using edges or ribbot
(e.g., [23, 59]) is that dealing with partial occlusion is relativelyblobs,” and points.
straightforward. A number of researchers have analyzed scenes involving t

General-purpose motion-based segmentation and trackingn gait parallel to the image plane. Geurtz [27] performe
techniques have also been used for applications such as pebpearchical and articulated curve fitting with 2-D ellipsoids
tracking. Shio and Sklansky [75] aimed to recover the averajgyogi and Adelson [56, 57] advocated segmentation over tinr
2-Dimage velocity of pedestrians in a traffic setting. They obtalvecause of robustness; their procedure involves finding hum
a motion field based on correlation techniques over successibouettes with deformable contoursXaT space [56] or de-
frames. The motion field is smoothed both spatially and tempimrmable surfaces iXX-Y-T space [57]. See Fig. 7. Guet al.
rally to reduce the effects of nonrigid motion and measurem¢0] proposed obtaining a 2-D stick figure by obtaining the skele
errors. A quantization of the field is then followed by an iteraton of the silhouette of the walking human and matching it t
tive merging step which results in regions with similar motioa model stick figure. They use a combination of link orienta
direction. Segen and Pingali [73] group partially overlappintions and joint positions of the obtained stick figure as feature
feature tracks over time in a real-time implementation. Heisdler a subsequent action recognition step. Chang and Huang [
et al. [32] used groups of pixels as basic units for trackingletected ribbons corresponding to the arms and feett il
Pixels are grouped by clustering techniques in combined co[d0] used a parameterized motion model to analyze gait co
(R, G, B) and spatialX, y) dimensions; the motivation for this strained to a plane. The legs are modeled a set of connec
is that adding spatial information makes clustering more stalgkanar patches.
than using only color information. The obtained pixel groups An early attempt to segment and track body parts under mo
are adapted iteratively from one image to the next image usiggneral conditions was made by Akita [3]. The assumption mas
ak-means clustering algorithm. Because of the fixed numberisfthat the movement of the human is known a priori in the forr
pixel groups and the enforced one-to-one correspondence avker set of representative stick figure poses or “key frames
time, tracking these units is straightforward. Of course, thefdese would be of help when the tracking of body parts fail:
is no guarantee that units will remained locked onto the sanfibe foreground figure and its silhouette are easily obtained giv
physical entity during tracking, but initial results on trackinghe large dark-light differences. The recognition of body part
pedestrians appear promising; see Fig. 5. proceeds in the order legs, head, arms, and trunk following tl

FIG.5. Tracking pedestrians with the color cluster flow (from Heisele, Kressel, and Ritterg32997 IEEE).
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model used in [32]). The blobs typically correspond to the per
son’s hands, head, feet, shirt, and pants. A statistical model

also constructed for the background region; here each pixel

described by a Gaussian distribution in terms of color values. A
initialization, the background model is used to identify a fore-
ground region with pixel values other than expected given th
background model. A model-building process follows where
blobs are placed over the foreground region. This process

guided by a 2-D contour shape analysis that attempts to identif
various body parts using heuristics. Tracking involves a loop o
predicting the appearance of the person in the new image, d
termining for each pixel the likelihood that it is part of one of
FIG.6. A 2-D stick-figure model fleshed out with ribbons (from Leung andhe blob models or background model, assigning it to one of th
Yang [48],© 1995 IEEE). models, and updating the statistical models. See Fig. 9.

Cai and Aggarwal [11] described a system with a simplifiec

assumption that legs are the most stable to detect and the trUﬁEd_trunk model to track humans across multiple cameras.

the least. Unfortunately, a number of unstated simpliﬁcatiOIIll«s”_S work, tracking uses point featqres derived from the_medla
and procedures make evaluation of this approach difficult. XIS of the foreground region. Attributes used for tracking are

Without a priori knowledge of the type of movement bein osition and velocity of the points, together with the average in

performed, Long and Yang [49] tracked the limbs of a hum ﬁnsity of the local neighborhood of the points. The use o_f poin
silhouette by tracking antiparallel lines (apars). They develop&tfures has the advantage that the features can be relatively e
methods to deal with the effects of occlusion, i.e., the appe y_brought into correspondence across multiple cameras, give

ance, disappearance, merging, and splitting of apars. The Wgﬂgstraints on epipolar geometry. It remains difficult, though, tc

by Kurakake and Nevatia [47] is similar. Leung and Yang [4g bustly track points in long sequences when the points do ne
R[respond to stable features on the human body.

reported progress on the general problem of segmenting, track-. ; . ,
ing, and labeling of body parts from a silhouette of the human. Finally, Kahn and Swain [41] described a system which use

Their basic body model consists of five U-shaped ribbons anltip!e cues (intensity, .edge, depth, .motion).to d.etect peo
a body trunk, various joint and mid points, plus a number &Je pointing Iaterally. Thelrsygtem ar_chltecFure IS quite generi
structural constraints, such as support. In addition to the ba8td could be described as being “object-oriented”; a number
2-D model, view-based knowledge is defined for a number generc objects are defmgd forapart_lcular appllcatlon (e.g.,_pe
generic human postures (e.g., “side view kneeling model,” “si 2N, background_, floor,.hghts) and visual _rout|ne§ are p“’"'d‘?‘
horse motion”), to aid the interpretation process. The segmentl%\—detect these in the images. Once various object properti

tion of the human silhouette is done by detecting moving edgd@Ve been extracted from the image, the objects become i
See Fig. 8. stantiated” and specialized visual routines apply afterward.

Wrenet al.[84] took a region-based approach. Their real-time
person finder system “Pfinder” models and tracks the human 5. 3-D APPROACHES
body using a set of “blobs”; each blob is described in statistical
terms by a spatialx; y) and color ¥, U, V) Gaussian distribu-  In this section we discuss work that aims to recover 3-D ar
tion over the pixels it consists of (compare with the shape—colidculated pose over time, i.e., joint angles with respect to a

FIG. 7. (a) One image of a sequence with walking people (b) various slices iK Yh€ volume reveal characteristic patterns (from Niyogi and Adelson [57],
© 1994 |EEE).
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FIG. 8. Original images, ribbon detection, and body part labeling using the first sight system (from Leung and Yamg188} |IEEE).

5
L

object-centered [51] coordinate system. We will not considézatures. Finally, the state-estimation component computes t
intrusive techniques for motion capture, e.g., techniques whiobw state using the segmented image. This framework can
use markers or active sensing. applied to any model-based tracking problem, whether invol
The general problem of 3-D motion recovery from 2-D imageag a 2-D or 3-D tracking space. Many of the tracking system
is quite difficult. In the case of 3-D human tracking, howevediscussed in this section follow this general framework.
one can take advantage of the large available a priori knowledgeOnce 3-D tracking is successfully implemented, one has tt
about the kinematic and shape properties of the human bodytmefit of being able to use the 3-D joint angles as featur
make the problem tractable. Tracking also is well supported byr subsequent action matching; these have the advantage
the use of a 3-D shape model which can predict events suctbaing viewpoint independent and directly linked to the bod
(self) occlusion and (self) collision. pose. Compared to 3-D joint coordinates, joint angles are le
A general framework for model-based tracking is illustratesensitive to variations in the size of humans.
in Fig. 10, based on the early work of O’'Rourke and Badl .
[60]. Four main components are involved: prediction, synth :1. 3-D Body Modeling
sis, image analysis, and state estimation. The prediction com3-D graphical models for the human body generally consist ¢
ponent takes into account previous states up to tineemake two components: a representation for the skeletal structure (t
a prediction for time + 1. It is deemed more stable to do thé'stick figure”) and a representation for the flesh surrounding i
prediction at a high level (in state space) than at a low level (irhe stick figure is simply a collection of segments and join
image space), allowing an easier way to incorporate semaraitgles with various degree of freedom at the articulation site
knowledge into the tracking process. The synthesis compon&alevant rotations are generally described by their three Eul
translates the prediction from the state level to the measuremangles [13, 76].
(image) level, which allows the image analysis component to The representation for the flesh can either be surface-bas
selectively focus on a subset of regions and look for a subset(efg., using polygons) or volumetric (e.g., using cylinders). Thel

FIG.9. Detecting and tracking human “blobs” with the Pfinder system (work by Vetexh.[84], © 1997 IEEE).
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subparts and verifies whether the parts satisfy the necessary c
straints. Shakunaga [74] identified such a set of primitive sub
parts for which he solves the pose recovery problem using th
angles between projected line features.

To avoid unfavorable combinatorics at the verification step, i
is beneficial to propagate constraints from partto part. The primi
tives of O’'Rourke and Badler [60] are box-shaped regions whicl
represent possible joint locations in 3-D. These regions are in
tially constrained by the measurement of joints in the image
(essentially given to the system) and the orthography assum
tion. A constraint propagation procedure is then applied base
on the known distances between connected joints. A furthe
verification procedure involves an iterative search procedure, i
which angular and collision constraints are verified using the 3-L
model. Each step results in a refinement of the 3-D uncertaint
[egions of joints; the final regions can be used for prediction a
he next time iteration.

Other work has used perspective projection models. The col
is a trade-off between the accuracy of representation and #tmint propagation scheme of Chen and Lee [17] starts at tF
number of parameters used in the model. Many highly accurd@man head and continues via the torso to the limbs. An intel
surface models have been used in the field of graphics to mopedtation tree is built to account for the spatial ambiguity which
the human body [5], often containing thousands of polygorsises from the fact that there are two possible poses of a link («
obtained from actual body scans. In vision, where the inverkrown length) in 3-D which result in the same 2-D projection.
problem of recovering the 3-D model from the images is muchhis interpretation tree is pruned later for physically implausible
harder and less accurate, the use of volumetric primitives hasses. Chen and Lee’s assumption of six known feature poin
been preferred to “flesh out” the segments because of the lowerthe head to start the procedure and the overhead of the inte
number of model parameters involved. After all, human modgigetation tree makes their approach somewhat unappealing f
used for computer vision do not have to meet the standardpshctical applications. Zhao [87] has a similar problem formu-
being highly realistic and natural looking as long as their shafation but did not maintain the interpretation tree, considering
approximates the real human shape well enough to support imstead only one pose at the time. He monitored when spati
age segmentation. ambiguities were encountered and disambiguated them by ter

An early example of human modeling is Badler’s “Bubbleporal coherence. Ho#it al.[37] provided a constraint propaga-
man” [60], where body parts consist of overlapping sphereion scheme for human gait, where one joint remains at a fixe
Another modeling choice has involved simple cylindrical primlocation. Motion constraints are also incorporated at the earlie:
itives (possibly with ellipticX Y-cross-sections) [22, 29, 36, 51, stages. The core of their system involves solving a polynomic
71]. More accurate modeling of body parts is obtained using
superquadrics [7]; these are generalizations of ellipsoids which
have additional “squareness” parameters along each axis. They
include such diverse shapes as cylinders, spheres, ellipsoids, and
hyper-rectangles. Superquadrics improve the modeling accuracy
for body parts such as the head and torso and for regions close
to articulation sites. Additional flexibility can be achieved by
allowing global deformations (e.g., tapering, bending) and/or
local deformations on the superquadrics [7, 26, 43, 53, 62].
Figure 11 shows an example of human modeling based on ta-
pered superquadrics that was used for 3-D model-based tracking
in [25, 26].

PREDICTION

STATE
ESTIMATION

SYNTHESIS

IMAGE
ANALYSIS

FIG. 10. Model-based tracking (adapted from O’Rourke and Badler [60
© 1980 IEEE).

5.2. 3-D Pose Recovery and Tracking

We first discuss approaches which use articulated models to
recover 3-D pose from a monocular image sequence. One pos-
sibility is to use a divide-and-conquer technique, where an ar-
ticulated object is decomposed into a number of primitive (rigighc. 11. 3-D human models “ELLEN” and “DARIU” using tapered super-
or articulated) subparts; one solves for motion and depth of tiedrics (from Gavrila and Davis [263) 1995 IEEE).
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system of equations. Other approaches have imposed genetable-body pose, necessitates in the latter work a decompositi
constraints on the articulated motion, such as the “fixed-axigchnique, in which pose-recovery is done successively for tor
[82] or “in-plane” [35] assumptions of rotations. (without twist), arms and torso twist, and legs. Some of the con
Hel-Or and Werman [33] described a technique for articulatdsihatoric pose-recovery approaches have also been applied to
pose recovery based on the fusion of constraints and measunediti-camera case, in simulations [58] and with real data [26]
ments using a Kalman filter framework. Kakadiaris and MetaxasComparing the above greedy gradient-based inverse kin
[42, 43] used a physics-based approach where various forcesmaatics approaches with the nongreedy combinatoric search
on the different parts to align them with the image data; coproaches, one notes that the former have the advantage that t
straint forces enforce point-to-point connectivity between thexploit gradient cues in the vicinity of a minimum and therefore
parts. They applied this approach to multi-camera tracking arade computationally more efficient; see for example [69]. O
additionally, dealt with the problem of active camera selectidhe other hand, concern is justified that a gradient-based sche
based on body-part visibility and motion observability. might get stuckin alocal minimum (i.e., to converge to a subopt
Other approachesto 3-D articulated motion use parameterizedl or undesired solution) because the measurement equatio
models where the articulation constraints are encoded in the rbghly nonlinear (composition of various nonlinear rotation ma
resentation itself. This has the advantage that each representaifiles and perspective mapping) and the sampling ratio at whi
state represents a physically valid pose (aside from joint-anglee obtains image measurement is relatively low for fast mowv
limitations and collisions); thus, the resulting approach takes adent such as locomotion and gesticulation. Furthermore, me
vantage as much as possible of prior 3-D knowledge and reliesasements are typically noisy and can be incorrect altogeth
little as possible on error-prone 2-D image segmentation. On thg., when corresponding features with the wrong body parts.
downside, by considering the (coupled) parameters simultam@ngreedy search method also promises to be more robust o
ously, one needs to work in a high-dimensional parameter spate; if it fails to find a good solution at timg there is still a
One approach using such parametrized models [21, 29, 6Bance that it may recover at tihe- 1 if the search area is suf-
70, 81, 85, 87] updated pose by inverse kinematics, a comnfariently wide. A combination of a nongreedy search followec
technique in robot control theory [76]. The state space mabyg a gradient-based technique is probably a good compromi
onto image space by a nonlinear measurement equation wHhigtween robustness and efficiency.
takes into account the coordinate transformations at various arThere has also been work on using depth data for articulat
ticulation sites and the 3-D to 2-D projection. Inverse kinematigrose recovery. Rather than requiring the typical point feature
involves inverting this mapping to obtain changes in state pazarbayejani and Pentland [4] “triangulated” using blob fea
rameters which minimize the residual between projected modetes [84]; a 3-D blob (shape, orientation) is recovered from
and image features. The procedure involves a linearization of {per of corresponding 2-D blob features using nonlinear est
measurement equation, as defined by the Jacobian matrix, aration techniques. In other work, Pentland [62] fit deformabl
a gradient-based optimization scheme. The inverse kinemascgperquadrics to range data. A maximume-likelihood techniqt
approach can also be taken with multiple cameras when no feasvides the initial part segmentation based on the object silho
ture correspondence between cameras is assumed. One siraft®; The subsequent fitting procedure deformes superquadi
concatenates the residual from the available camera views; asig modal dynamics.
for example [70]. Finally, work by Heap and Hogg [31] involved an example-
Another approach using parametrized models does not ba#ised approach to articulated pose recovery. Their method
tempt to invert a nonlinear measurement equation. Insteadyalves a principal component analysis of 3-D positional (hanc
uses the measurement equation directly to synthesize the matih and allows shape deformations of a tracked object. Tt
and uses afitting measure between synthesized and observedfedhod was mentioned earlier in the 2-D context; see Sectior
tures for feedback; see [22, 26, 36, 46, 58, 64, 71]. Pose-recovi@ly
canthen be formulated as a search problem which entails find
the pose parameters of a graphical human model whose synggi Feature Correspondence
sized appearance is most similar to the actual appearance of th& variety of features can be used to establish corresponder
real human. Because one need not invert a measurement efpeaween model and image remains, from low-level to higf
tion, one is quite flexible in choosing an appropriate evaluatioevel. Using high-level features (e.g., joint locations) simplifie:
measure between model and scene; typical measures are bpeed recovery but places a greater burden on segmentation. ,
on occluding contours or regions. No point correspondences pesaches [17, 37, 60, 74, 87] used joint locations as features a
tween model and scene are required. To find a good fit, Ohgssumed these are given make strong assumptions. In reality,
and Kishino [58] used a global search strategy based on gengiints are hard to detect; no characteristic intensity distributio
algorithms. Kuch and Huang [46] used a greedy search strategysts at their location; rather, joints are localized indirectly b
based on perturbation of individual state parameters. Gavrilagmenting the adjoining body parts. Moreover, relying exclt
and Davis [26] used local search based on best-first search. Sively on a few correspondences makes the resulting approe
high-dimensional search space, which results from recoverifiy, 69] quite sensitive to occlusion.



VISUAL ANALYSIS OF HUMAN MOVEMENT 91

FIG.12. Hand tracking with the DigitEyes system: (a) multi-camera setup, (b) motion estimate superimposed on one of the two camera views, (C) corresy
pose of 3-D hand model (from Rehg and Kanade [G9]1994 Springer-Verlag).

This hasled many researchersto consider low- or intermediatiethe system [70] does tolerate partial occlusion; a successfl
level features to establish correspondence between model tradking example is shown where one finger moves over th
image. Some use occluding contours, where the evaluation metier finger, with the rest of the hand fixed. Heap and Hogg [31
sure for the model-to-image fit is based on image regions in thlkowed preliminary tracking results on hand model and han
neighborhood of the projected model contours. Typical mepese recovery.
sures are correlation on a raw or smoothed LOG-filtered imageln terms of experimental results on whole (or upper body’
[29, 70], perpendicular- [31] and chamfer-distance [26] (frommovement using a single camera, Hogg [36] and Rohr [71] dea
projected model edges to image edges) and straight-line digth the restricted movement of gait (parallel to image plane)
tance metrics [71]. Others have used evaluation measures Tlee movement is essentially in 2-D with no significant torso-
rived from the regions corresponding to the projected bodiwist. Given that gait is modeled a priori, the resulting searct
parts, e.g., based on image intensities [46, 81] or optical fl@pace is one-dimensional. Downton and Drouet [22] attempte
[85]. A distinction between low and intermediate features cda track unconstrained upper-body motion but concluded the
be made, as before, based on the segmentation effort involetking gets lost due to propagation of errors. Goncabtes.
to extract the features. Image intensities and optical flow can[[29] tracked one arm while keeping the shoulder fixed at e
considered low-level, and features derived by thresholding kmown position. Other results use multiple cameras. Kakadiari
perceptual grouping, intermediate-level. and Metaxas [43] tracked one arm using three orthogonal can

The best trade-off between segmentation effort and easeeddis. See Fig. 13. Azarbayejani and Pentland [4] obtained tt
pose recovery is difficult to determine. For example, a meth@dD locations of the face and hands by essentially triangula
which matches model and image edges based on a distance mgpn blobs representing the skin regions in the stereo view:
approach (e.g., perpendicular or chamfer distance) has the Bdrales and Torres [64] described a multi-view camera syste
vantage that the evaluation measure tends to be smooth in tefonsvhole-body tracking which requires input from a human op-
of the pose parameters; the measure is well suited to guideeaator. Finally, Gavrila and Davis [25, 26] showed instances o
iterative estimation process. A correlation measure on the wahole-body tracking using four cameras placed in the corner
segmented image, on the other hand, typically provides strooiga room. See Fig. 14.
peak responses but rapidly declining off-peak responses. Butn the above approaches working with real data it has ofte
then, no edge segmentation is needed for the latter. What migken difficult to quantify how good the 3-D pose recovery result:
be worth considering is using intermediate-level features to prare; typically, no ground truth has been established. This proble
vide a rough correspondence between model and image, @&alleviated somewhatin approaches which use multiple came
guiding the fine-tuning with low-level features. views; here one can at least visually verify the recovered pos

along the depth dimension.
5.4. Experimental Results

This section reviews previous work on 3-D tracking in terms of 6. ACTION RECOGNITION

experimental results on real data. Dorner [21] tracked articulated

3-D hand motion (palm motion and finger bending/unbending) The prevalent view toward action recognition has beento cor
with a single camera. Her system requires colored markers on #figer it simply as a classification problem involving time-varying
joints and cannot handle occlusions. Rehg and Kanade [69] ¢k@ture data; the feature data is derived from an earlier segme
not require markers. Their “DigitEyes” system tracks an 8-DOf&ation stage, using techniques of the last three sections. Recc
partial hand model (movement of palm in a 2-D plane and thre&ion then consists of matching an unknown test sequence wit
fingers) with one camera and a full 27-DOF hand model with library of labeled sequences which represent the prototypic
two cameras in real-time from the hand silhouette. Occlusi@ttions. A complementary problem is how to learn the referenc
cannot be handled at this point. See Fig. 12. A later versisequences from training examples. Both learning and matchir
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nigue is effective here because a sufficiently strong normaliz
tion can be carried out on the region of interest with respect
spatial and time scale variations. For example, for the case
a stationary camera and a single object of interest, backgrou
subtraction and size normalization of the foreground region

sufficient to obtain spatial invariance, if perspective effects ai
small. Polana and Nelson also described a technique to d
with the more complex case of a moving camera and/or multip
(overlapping) objects, based on detecting and tracking indepe
dently moving objects. Size changes of the object are handl
by estimating the spatial scale parameters and compensat
for them, assuming the objects have a fixed height throughc
the sequence. Temporal scale variations are factored out by
tecting the frequency of an activity. After these normalization:
spatio-temporal templates are constructed to denote one gen:
cycle of activity; a cycle is divided into a fixed number of subin-
tervals for which motion features are computed. The featur:
of a generic cycle are obtained by averaging corresponding m
tion features over multiple cycles. Temporal translation is hat
dled in the matching stage in an exhaustive manner; the te
template is matched with the reference template at all possit
temporal translations. Matching uses a nearest centroid alc
rithm.

Rangarajaet al.[68] matched motion trajectories of selectec
feature points on a human body (tracked manually). Their tr:
FIG. 13. Multi-camera arm tracking: original images, recovered arm modgectories are described in terms of two one-dimensional signa
and application to a whole-body graphical model (from Kakadiaris and Metaxgﬁeed and direction. These one-dimensional signals are e
[43], © 1996 IEEE). converted into atwo-dimensional representation, the scale-spe

) , ) by computing the degree of zero-crossing of the original one
me_thqu ha\_/e _to b_e gble to deal with small spatial and time SCailﬁ\ensional signal. The resulting representation has the adv:
variations within similar classes of moven_1en_t patt_er_ns. tage of beingtranslation and rotation invariant. Using a Gaussi

Polana and Nelson [65] detected periodic activity such @Bnvoluted reference scale-image, one can account for a fix

persons walking lateral to the viewing direction using Spati%\'pgunt of time-offset between reference and test trajectory.

temporal templates. They argued that a template matching teche o 4 4arq [28] represented activities by scenarios: a sequer
of events with enabling conditions and time constraints betwe
successive events. Each possible scenario is matched and gi
a measure of appropriateness, depending on the cumulative ¢
fidence in the scenario, the likelihood that its “next” event ha
occurred, and the time constraints. No learning takes place
the previous two methods.

Campbell and Bobick [13] used a phase—space representat
in which the velocity dimensions are projected out, discardin
the time component of the data altogether. This makes the lea
ing and matching of patterns simpler and faster, at the potent
cost of an increase in false positives.

Other general techniques for matching time-varying data ha
been used as well. Dynamic time warping (DTW) [55] is a well:
known technique to match a test pattern with a reference patte
if their time scales are not perfectly aligned but when time ol
dering constraints do hold. If the sizes of the test pattern ar
reference pattern afd and M, an optimal match is found by
dynamic programming irO(N x M?) time (or in O(N x M)
time, if one introduces local continuity constraints, see [55])

FIG.14. Multi-camerawhole-bodytracking; the current pose of the 3-D mod@ec‘?‘us_e of conc_eptual Simp"City and rObU_St performance, d
is superimposed onto the four camera views (from Gavrila [25]). namic time warping was extensively used in the early days
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speech recognition and more recently in matching human moweent patterns [77, 86]. A less investigated but equally interestin
ment patterns [10, 19, 25, 78]. approach for matching time-varying data is given by neural net
More sophisticated matching of time-varing data is possibleorks (NN) [30, 72].
by employing hidden Markov models (HMMs) [67]. HMMs are  With all the emphasis on matching time-varying data, one
nondeterministic state machines which, given an input, moshould note that another aspect of human action recognition
from state to state according to various transition probabilitiestatic posture; sometimes it is not the actual movement that
In each state, HMMs generate output symbols probabilisticallgf interest but the final pose (for example, pointing). Hermar
these need to be related to image features in an applicatif®4] described a rule-based system to interpret body postur
dependent manner. The use of HMMs involves a training andyaven a 2-D stick figure. Although the actual system is appliec
classification stage. The training stage consists of specifying the a toy problem (in baseball), it does make the point of using
number of (hidden) states of a HMM and optimizing the corretualitative pose measures together with other attributes such
sponding state transition and output probabilities such that géaeing direction and contact. It also emphasizes the importanc
erated output symbols match the image features observed dunhgontextual information in action recognition.
examples of a particular motion class; a HMM is needed for eachFinally, work by Kollnig et al. [45] goes beyond the narrow
motion class. Matching involves the computation of the probaiterpretation of action recognition as a classification problem
bility that a particular HMM could have generated the test synthey investigated ways of describing scene motion in term
bol sequence which corresponds to the observed image featuoésatural language (“motion verbs”); this is achieved within
The ability to learn from training data and to develop interna logic-based framework. Their particular application is vehi-
representations under a sound mathematical framework make motion in traffic scenes. See also work by Mohnhaupt an
HMMs attractive when compared to DTW. Another advantagéeumann [54].
of HMMs are their ability to deal with unsegmented data, i.e.,
dealing with continuous data streams where the beginning of
a desired data segment is unknown (DTW could be adapted to
handle this as well; see continuous dynamic time warping [78]). Table 2 lists the previous work on the analysis of human move
Because of these benefits, HMMs are currently widespreadnment, which was discussed in this survey. Whether to pursue
speech recognition and more recently in matching human mo2eb or a 3-D approach is largely application-dependent. A 2-C

7. DISCUSSION

TABLE 2
A Selection of Previous Work on the Visual Analysis of Human Movement

2-D approaches without
explicit shape models

2-D approaches with
explicit shape models

3-D approaches

Baumberg and Hogg [8]
Bobick and Wilson [10]
Charayaphan and Marble [16]
Cooteset al.[18]

Darell and Pentland [19]
Davis and Shah [20]
Frankeet al.[23]
Freemaret al.[24]
Heiseleet al.[32]

Hunteret al.[38]
Johansson [39]

Kjeldsen and Kender [44]
Orenet al.[59]

Polana and Nelson [65]
Quek [66]

Rangarajaret al. [68]
Segen and Pingali [73]
Shio and Sklansky [75]
Starner and Pentland [77]
Takahashet al.[78]
Tamura and Kawasaki [79]
Turk [80]

Yamatoet al.[86]

Akita [3]
Cai and Aggarwal [11]
Chang and Huang [15]
Geurtz [27]
Goddard [28]
Guet al.[30]
Herman [34]
Juet al.[40]
Kurakake and Nevatia [47]
Leung and Yang [48]
Long and Yang [49]
Niyogi and Adelson [56] [57]
Wrenet al.[84]

Azarbayejani and Pentland [4]
Campbell and Bobick [13]
Chen and Lee [17]
Dorner [21]
Downton and Drouet [22]
Gavrila and Davis [25] [26]
Goncalvest al.[29]
Heap and Hogg [31]
Hel-Or and Werman [33]
Hoffman and Flinchbaugh [35]
Hogg [36]
Hettal. [37]
Kahn and Swain [41]

Kakadiaris and Metaxas [42] [43]

Kuch and Huang [46]
Ohya and Kishino [58]
O’Rourke and Badler [60]
Pentland [62]
Perales and Torres [64]
Rehg and Kanade [69] [70]
Rohr [71]
Shakunaga [74]
Wanget al.[81]
Webb and Aggarwal [82]
Yamamoto and Koshikawa [85]
Zhao [87]
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approach is effective for applications where precise pose re-There are a number of challenges that need to be resolved |
covery is not needed or possible due to low image resolutifore vision-based 3-D tracking systems can be deployed wide

(e.g., tracking pedestrians in a surveillance setting). A 2-D ap- o .
. ; . e The model acquisition issue. Almost all previous work as
proach also represents the easiest and best solution for applica-

: . . . . . stimes that the 3-D model is fully specified a priori and only ac
tions with a single human involving constrained movement an :
resses the pose recovery problem. In practice, the 3-D mot

single viewpoint (e.g., recognizing gait lateral to the camera, arameterized by various shape parameters that need to

o . IS
recognizing a vocabulary of distinct hand gestures made famg imated from the images. Some work has dealt with this iss|

the camera). by decoupling model acquisition and pose recovery, i.e., requi
A 3-D approach makes more sense for applications in indadf piing modet acq POSE Y. 1.€.. Teq
. . . iscriminatiand & separate initialization stage where either known poses [2
environments where one desires a high level of discriminatig Y -
or known movements [42] simplify the acquisition of the shap

between various unconstrained and complex (multiple) human .
: ; : rameters. Although work in [42] represents a step forwal
movements (e.g., humans wandering around, making differ&lt

. . . S . n this matter, no approach has been provided that can reco
gestures while walking and turning, social interactions su
. . 4 : ; oth shape and pose parameters from uncontrolled moveme
as shaking hands and dancing). It is unlikely that this can be L .
i } €.0., the case of a person walking into a room and moving free
achieved by a purely 2-D approach; a 3-D approach leads t%r und
more accurate, compact representation of physical space wHicR ne: oo .
D . . . ® The occlusion issue. Most systems cannot handle signi
allows a better prediction and handling of occlusion and colli-

. ; : o, . cant (self) occlusion and do not provide criteria when to sto
sion. Itleads to meaningful features for action recognltlon,whlcand restart tracking of bodv parts. There is no notion of Do
are directly linked to body pose. Furthermore, 3-D recovery is 9 y parts. POS

d : X L ambiguity either.
often required for virtual reality applications. S .
. e The modeling issue. Human models for vision have bee
2-D approaches have shown some early successes in the agéll—

. equately parameterized with respect to shape and articulati
ysis of human movement. In some cases these successes \yere . ; o L
. . o — but few have incorporated constraints such as joint angle limi
obtained relat_lv_ely _ea5|ly, for exa_mple_, some work on motlorgnd collision, and even less have considered dynamical prop
based recognition involved classification of a few, well separﬁés such as balance. In contrast to graphics applications, it
ble, motion classes for which a multitude of features and clas ) '

T : . ﬁ'éve made little or no use of color and texture cues to captu

fication methods could have been applied to obtain good results. . ) : . .
o . appearance. Lacking entirely is the ability to deal with loose

In other cases, the application involved seemingly complex

tivities [65, 77] with no straightforward recognition solution. A[

itting clothes. Finally, there is also a need to model the objec
main design choice for 2-D systems has been whether to ugg h“”?a” interacts with. o .
. 2 . ¢ Using ground truth. A quantitative comparison between e:
prior explicit models or to take a learning approach. It has been

. : . L mated and true pose is very important to evaluate and comp:s
especially important for systems without explicit shape mod- ; i L .
sr\(]stems. For simulations to be realistic, they have to incluc

els to be able to accurately determine the foreground region Ldeling. calibration. and seamentation errors. Even better
he image. Techniques based on background subtraction, cQJpr < 9" ' 9 . ' .
t g g 9 * “OBLainin d
X . . : g ground truth on real data using markers and acti
spotting, obstacle detection, and independent motion detectg(%ennsmg
have qll been employed to provide this initial segmentatlon: An.—. Using 3-D data. Few systems (e.g., [62]) have used ran:
other issue for these systems has been the proper normalizat on . y .
) . : ata so far, given sensor-related drawbacks (e.qg., high cost, |
of the features extracted from this foreground region, with re- . A .
spect to both the spatial and time dimension. Examoles ha[\‘?SOIUt'O”’ limited measuring range, safety concerns). Also, re
P P ) P .a(y_vely few systems (e.g., [4, 41]) have obtained 3-D data b

included the use of scaled image grids and detection of periog-_ . g ; . : ) . .
- : assive sensing techniques (i.e., triangulation) without relyir
icity. One of the challenges of 2-D systems on the topic of poge - .

. : on markers. Combining the use of 3-D data with some of th
recovery is to show that they scale up to unconstrained move- . . : . ) g
ment monocular techniques described in the previous sectionsiis like
It is fair to say that the results of vision-based 3-D trac 0 aIIewgte anumber of.p.r(')blems related t.o .f|gure—backgrour
. e . . separation, model acquisition and model fitting.
ing are still limited at this point. Few examples of 3-D posé
recovery on real data exist in the literature and most of theseFor both 2-D and 3-D approaches, the issue of tracking ve
introduce simplifications (e.g., constrained movement, segmesais initialization remains open. Most work only deals with in:
tation) or limitations (e.g., processing speed) that still requicgemental pose estimation and does not provide ways for bo
improvement with respect to robustness. Robust 3-D trackisggapping, either initially or when tracking gets lost. But it is
results have been particularly scarce for approaches using aily availability of an easy initialization procedure, which can b
one camera. The benefit of using multiple cameras to achiestarted up from a wide range of situations, that makes a syste
tighter 3-D pose recovery has been quite evident [26, 43, 689bust enough to be deployed in real world settings (e.g., [84]
body poses and movements that are ambiguous from one viewAnother desirable extension to past work is the ability to de
(by occlusion or depth) can be disambiguated from another vigect and track multiple humans in the scene (one might eve

The added calibration effort has been worthwhile. try crowds). Naive techniques which rely on backgroun
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TABLE 3
A Sample of Action Verbs

Stand-alone Interactions with Interactions with
actions objects people

Walking Grasping, carrying, Shaking hands
putting down

Running Examining

Jumping Transferring (from one Pushing
hand to another)

Turning around Throwing Hitting

Bending over Dropping

Looking around Pushing

Squatting Hitting

Falling Shaking

Sitting (down)
Standing (up)

Drinking, eating
Writing, typing

driven by the many interesting applications that lie ahead it
this area and the recent technological advances involving tf
real-time capture, transfer, and processing of images on wide
available low-cost hardware platforms (e.g., PCs).

A number of promising application scenarios were discussec
virtual reality, surveillance systems, advanced user interface
and motion analysis. The scope of this survey was limited t

Embracing, kissing the analysis of human gesture and whole-body movement; thre

main approaches were discussed: 2-D approaches without €
plicit shape models, 2-D approaches with explicit shape model.
and 3-D approaches. It was argued that which of the above a
proaches to pursue depends on the application; some gene
guidelines were given. Action recognition was considered in th
context of matching time-varying feature data.

Although one appreciates from this survey the large amour

Climbing of work that already has been done in this area, many issu
Pointing are still open, e.g., regarding image segmentation, use of mo
Waving els, tracking versus initialization, multiple persons, occlusion
Clapping

and computational cost. One of the challenges for 2-D systen
is to show that the approaches scale up to allow pose reco
subtraction to obtain a segmented human figure will no long@# for a large set of movements from different viewpoints. 3-D
be feasible here. Stronger models might be necessary to hayriems still have to resolve issues dealing with model acqu
occlusion and the correspondence problem between features$@n, detail of modeling, and obtaining ground truth. Scenes
body parts. such as Fig. 15, are far too complex currently. An interesting
Action recoghnition is also an area which could welcome fugtuestion is whether a set of generic human actions can be d
ther attention. Particularly interesting is the question of whethed which is useful across applications and if so, what the
a set of generic human actions can be defined which can be &g#tures of interest would be. Added functionality and perfor-
plied to a variety of applications. These generic actions might ifiance is likely to be gained by adding a symbolic componen
clude those given in Table 3; a distinction is made between stafd- top of the image processing to reason about the scene a
alone actions and interactions with objects or other people.c@ntrolimage tasks. Work on different sensor modalities (range
indeed such a useful set of generic actions can be defined, wdgfgared, sound) will furthermore lead to systems with combinec
it be possible to identify corresponding features and matchig§engths.
methods which are, to a large degree, application independent?
The classification of various actions also facilitates the intro-
duction of a symbolic component on top of the image processing
in order to reason about the scene. A variety of logic-based ap-
proaches come to mind forimplementing this (e.g., conventional
first-order logic, fuzzy logic, temporal logic). The connection
from the sensory to the symbolic level can be provided by action
recognizers such as those described in Section 6. The connec-
tion in the opposite direction, from symbolic to sensory level,
also seems very useful; this would allow controlling what vision
tasks are to be executed. For example in some person-tracking
application, one might want to alternate the tracking mode from
a fine-scale (with each body part tracked) to a coarse scale (with
human body considered as a whole), depending on context.
Finally, it will be important to test the robustness of any of
the resulting systems on large amounts of data, many different
users, and in a variety of environments.

—_—

8. CONCLUSIONS

The visual analysis of human movement has become a maj@s. 15 will the Argentine Tango be danced in virtual reality? (from Gavrila
application area in computer vision. This development has beeid Davis [26]© 1996 IEEE).
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By addressing the above issues, vision systems will have im8: T. Cootes, C. Taylor, D. Cooper, and J. Graham, Active shape models
proved capabilities to successfully deal with complex human
movement. This might transform the “looking at people” do-

main into the “understanding people” domain.
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