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Packing Plane Spanning Trees into a Point Set
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Abstract

Let P be a set of n points in the plane in general posi-
tion. We show that at least bn/3c plane spanning trees
can be packed into the complete geometric graph on
P . This improves the previous best known lower bound
Ω (
√
n). Towards our proof of this lower bound we show

that the center of a set of points, in the d-dimensional
space in general position, is of dimension either 0 or d.

1 Introduction

In the two-dimensional space, a geometric graph G is a
graph whose vertices are points in the plane and whose
edges are straight-line segments connecting the points.
A subgraph S of G is plane if no pair of its edges cross
each other. Two subgraphs S1 and S2 of G are edge-
disjoint if they do not share any edge.

Let P be a set of n points in the plane. The com-
plete geometric graph K(P ) is the geometric graph
with vertex set P that has a straight-line edge be-
tween every pair of points in P . We say that a se-
quence S1, S2, S3, . . . of subgraphs of K(P ) is packed
into K(P ), if the subgraphs in this sequence are pair-
wise edge-disjoint. In a packing problem, we ask for the
largest number of subgraphs of a given type that can be
packed into K(P ). Among all subgraphs, plane span-
ning trees, plane Hamiltonian paths, and plane perfect
matchings are of interest. Since K(P ) has n(n− 1)/2
edges, at most bn/2c spanning trees, at most bn/2c
Hamiltonian paths, and at most n−1 perfect matchings
can be packed into it.

A long-standing open question is to determine
whether or not it is possible to pack bn/2c plane span-
ning trees into K(P ). If P is in convex position, the
answer in the affirmative follows from the result of Bern-
hart and Kanien [3], and a characterization of such plane
spanning trees is given by Bose et al. [5]. In CCCG
2014, Aichholzer et al. [1] showed that if P is in general
position (no three points on a line), then Ω(

√
n) plane

spanning trees can be packed into K(P ); this bound
is obtained by a clever combination of crossing family
(a set of pairwise crossing edges) [2] and double-stars
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(trees with only two interior nodes) [5]. Schnider [12]
showed that it is not always possible to pack bn/2c plane
spanning double stars into K(P ), and gave a neces-
sary and sufficient condition for the existence of such a
packing. As for packing other spanning structures into
K(P ), Aichholzer et al. [1] and Biniaz et al. [4] showed
a packing of 2 plane Hamiltonian cycles and a packing
of dlog2 ne − 2 plane perfect matchings, respectively.

The problem of packing spanning trees into (ab-
stract) graphs is studied by Nash-Williams [11] and
Tutte [13] who independently obtained necessary and
sufficient conditions to pack k spanning trees into a
graph. Kundu [10] showed that at least d(k − 1)/2e
spanning trees can be packed into any k-edge-connected
graph.

In this paper we show how to pack bn/3c plane span-
ning trees into K(P ) when P is in general position. This
improves the previous Ω(

√
n) lower bound.

2 Packing Plane Spanning Trees

In this section we show how to pack bn/3c plane span-
ning tree into K(P ), where P is a set of n > 3 points
in the plane in general position (no three points on a
line). If n ∈ {3, 4, 5} then one can easily find a plane
spanning tree on P . Thus, we may assume that n > 6.

The center of P is a subset C of the plane such that
any closed halfplane intersecting C contains at least
dn/3e points of P . A centerpoint of P is a member
of C, which does not necessarily belong to P . Thus,
any halfplane that contains a centerpoint, has at least
dn/3e points of P . It is well known that every point
set in the plane has a centerpoint; see e.g. [7, Chapter
4]. We use the following corollary and lemma in our
proof of the bn/3c lower bound; the corollary follows
from Theorem 4 that we will prove later in Section 3.

Corollary 1 Let P be a set of n > 6 points in the plane
in general position, and let C be the center of P . Then,
C is either 2-dimensional or 0-dimensional. If C is 0-
dimensional, then it consists of one point that belongs
to P , moreover n is of the form 3k+ 1 for some integer
k > 2.

Lemma 1 Let P be a set of n points in the plane in
general position, and let c be a centerpoint of P . Then,
for every point p ∈ P , each of the two closed halfplanes,
that are determined by the line through c and p, contains
at least dn/3e+ 1 points of P .
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Figure 1: Illustration of the proof of Lemma 1.

Proof. For the sake of contradiction assume that a
closed halfplane H, that is determined by the line
through c and p, contains less than dn/3e + 1 points
of P . By symmetry assume that H is to the left side
of this line oriented from c to p as depicted in Figure 1.
Since c is a centerpoint and H contains c, the definition
of centerpoint implies that H contains exactly dn/3e
points of P (including p and any other point of P that
may lie on the boundary of H). By slightly rotating
H counterclockwise around c, while keeping c on the
boundary of H, we obtain a new closed halfplane that
contains c but misses p. This new halfplane contains
less than dn/3e points of P ; this contradicts c being a
centerpoint of P . �

Now we proceed with our proof of the lower bound.
We distinguish between two cases depending on whether
the center C of P is 2-dimensional or 0-dimensional.
First suppose that C is 2-dimensional. Then, C con-
tains a centerpoint, say c, that does not belong to P .
Let p1, . . . , pn be a counter-clockwise radial ordering of
points in P around c. For two points p and q in the
plane, we denote by −→pq, the ray emanating from p that
passes through q.

Since every integer n > 3 has one of the forms 3k,
3k + 1, and 3k + 2, for some k > 1, we will consider
three cases. In each case, we show how to construct
k plane spanning directed graphs G1, . . . , Gk that are
edge-disjoint. Then, for every i ∈ {1, . . . , k}, we obtain
a plane spanning tree Ti from Gi. First assume that
n = 3k. To build Gi, connect pi by outgoing edges
to pi+1, pi+2, . . . , pi+k, then connect pi+k by outgoing
edges to pi+k+1, pi+k+2, . . . , pi+2k, and then connect
pi+2k by outgoing edges to pi+2k+1, pi+2k+2, . . . , pi+3k,
where all the indices are modulo n, and thus pi+3k = pi.
The graph Gi, that is obtained this way, has one cycle
(pi, pi+k, pi+2k, pi); see Figure 2. By Lemma 1, every
closed halfplane, that is determined by the line through
c and a point of P , contains at least k + 1 points of P .
Thus, all points pi, pi+1, . . . , pi+k lie in the closed half-
plane to the left of the line through c and pi that is ori-
ented from c to pi. Similarly, the points pi+k, . . . , pi+2k

lie in the closed halfplane to the left of the oriented
line from c to pi+k, and the points pi+2k, . . . , pi+3k lie
in the closed halfplane to the left of the oriented line

from c to pi+2k. Thus, all the k edges outgoing from pi
are in the convex wedge bounded by the rays −→cpi and
−−−→cpi+k, all the edges outgoing from pi+k are in the con-
vex wedge bounded by−−−→cpi+k and−−−→ci+2k, and all the edges
from pi+2k are in the convex wedge bounded by −−−−→cpi+2k

and −−−→ci+3k. Therefore, the spanning directed graph Gi

is plane. As depicted in Figure 2, by removing the
edge (pi+2k, pi) from Gi we obtain a plane spanning (di-
rected) tree Ti. This is the end of our construction of k
plane spanning trees.
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Figure 2: The plane spanning trees T1 (the top) and
T2 (the bottom) are obtained by removing the edges
(p1+2k, p1) and (p2+2k, p2) fromG1 andG2, respectively.

To verify that the k spanning trees obtained above are
edge-disjoint, we show that two trees Ti and Tj , with
i 6= j, do not share any edge. Notice that the tail of
every edge in Ti belongs to the set I = {pi, pi+k, pi+2k},
and the tail of every edge in Tj belongs to the set J =
{pj , pj+k, pj+2k}, and I ∩ J = ∅. For contrary, suppose
that some edge (pr, ps) belongs to both Ti and Tj , and
without loss of generality assume that in Ti this edge is
oriented from pr to ps while in Tj it is oriented from ps
to pr. Then pr ∈ I and ps ∈ J . Since (pr, ps) ∈ Ti and
the largest index of the head of every outgoing edge from
pr is r+ k, we have that s 6 (r+ k) mod n. Similarly,
since (ps, pr) ∈ Tj and the largest index of the head
of every outgoing edge from ps is s + k, we have that
r 6 (s + k) mod n. However, these two inequalities
cannot hold together; this contradicts our assumption
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Figure 3: The dimension of a point set in the plane, that is not in general position, can be any number in {0, 1, 2}.

that (pr, ps) belongs to both trees. Thus, our claim,
that T1, . . . , Tk are edge-disjoint, follows. This finishes
our proof for the case where n = 3k.

If n = 3k+1, then by Lemma 1, every closed halfplane
that is determined by the line through c and a point of
P contains at least k + 2 points of P . In this case,
we construct Gi by connecting pi to its following k + 1
points, i.e., pi+1, . . . , pi+k+1, and then connecting each
of pi+k+1 and pi+2k+1 to their following k points. If
n = 3k+ 2, then we construct Gi by connecting each of
pi and pi+k+1 to their following k + 1 points, and then
connecting pi+2k+2 to its following k points. This is the
end of our proof for the case where C is 2-dimensional.

Now we consider the case where C is 0-dimensional.
By Corollary 1, C consists of one point that belongs to
P , and moreover n = 3k + 1 for some k > 2. Let p ∈ P
be the only point of C, and let p1, . . . , pn−1 be a counter-
clockwise radial ordering of points in P \ {p} around p.
As in our first case (where C was 2-dimensional, c was
not in P , and n was of the form 3k) we construct k edge-
disjoint plane spanning trees T1, . . . , Tk on P \{p} where
p playing the role of c. Then, for every i ∈ {1, . . . , k}, by
connecting p to pi, we obtain a plane spanning tree for
P . These plane spanning trees are edge-disjoint. This
is the end of our proof. In this section we have proved
the following theorem.

Theorem 2 Every complete geometric graph, on a set
of n points in the plane in general position, contains at
least bn/3c edge-disjoint plane spanning trees.

3 The Dimension of the Center of a Point Set

The center of a set P of n > d + 1 points in Rd is a
subset C of Rd such that any closed halfspace intersect-
ing C contains at least α = dn/(d+ 1)e points of P .
Based on this definition, one can characterize C as the
intersection of all closed halfspaces such that their com-
plementary open halfspaces contain less than α points of
P . More precisely (see [7, Chapter 4]) C is the intersec-
tion of a finite set of closed halfspaces H1, H2, . . . ,Hm

such that for each Hi

1. the boundary of Hi contains at least d affinely in-
dependent points of P , and

2. the complementary open halfspace Hi contains at

most α− 1 points of P , and the closure of Hi con-
tains at least α points of P .

Being the intersection of closed halfspaces, C is a con-
vex polyhedron. A centerpoint of P is a member of C,
which does not necessarily belong to P . It follows, from
the definition of the center, that any halfspace contain-
ing a centerpoint has at least α points of P . It is well
known that every point set in the plane has a center-
point [7, Chapter 4]. In dimensions 2 and 3, a center-
point can be computed in O(n) time [9] and in O(n2)
expected time [6], respectively.

A set of points in Rd, with d > 2, is said to be in
general position if no k+2 of them lie in a k-dimensional
flat for every k ∈ {1, . . . , d − 1}.1 Alternatively, for a
set of points in Rd to be in general position, it suffices
that no d + 1 of them lie on the same hyperplane. In
this section we prove that if a point set P in Rd is in
general position, then the center of P is of dimension
either 0 or d. Our proof of this claim uses the following
result of Grünbaum.

Theorem 3 (Grünbaum, 1962 [8]) Let F be a finite
family of convex polyhedra in Rd, let I be their inter-
section, and let s be an integer in {1, . . . , d}. If every
intersection of s members of F is of dimension d, but I
is (d − s)-dimensional, then there exist s + 1 members
of F such that their intersection is (d− s)-dimensional.

Before proceeding to our proof, we note that if P is
not in general position, then the dimension of C can be
any number in {0, 1, . . . , d}; see e.g. Figure 3 for the
case where d = 2.

Observation 1 For every k ∈ {1, . . . , d+1} the dimen-
sion of the intersection of every k closed halfspaces in
Rd is in the range [d− k + 1, d].

Theorem 4 Let P be a set of n > d + 1 points in
Rd, and let C be the center of P . Then, C is either
d-dimensional, or contained in a (d − s)-dimensional
polyhedron that has at least n− (s+ 1)(α− 1) points of
P for some s ∈ {1, . . . , d} and α = dn/(d+ 1)e. In the
latter case if P is in general position and n > d + 3,
then C consists of one point that belongs to P , and n is
of the form k(d+ 1) + 1 for some integer k > 2.

1A flat is a subset of d-dimensional space that is congruent to
a Euclidean space of lower dimension. The flats in 2-dimensional
space are points and lines, which have dimensions 0 and 1.
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Proof. The center C is a convex polyhedron that is
the intersection of a finite family H of closed halfspaces
such that each of their complementary open halfspaces
contains at most α−1 points of P [7, Chapter 4]. Since
C is a convex polyhedron in Rd, its dimension is in the
range [0, d]. For the rest of the proof we consider the
following two cases.

(a) The intersection of every d+ 1 members of H is of
dimension d.

(b) The intersection of some d+ 1 members of H is of
dimension less than d.

First assume that we are in case (a). We prove that
C is d-dimensional. Our proof follows from Theorem 3
and a contrary argument. Assume that C is not d-
dimensional. Then, C is (d − s)-dimensional for some
s ∈ {1, . . . , d}. Since the intersection of every s mem-
bers of H is d-dimensional, by Theorem 3 there ex-
ist s + 1 members of H whose intersection is (d − s)-
dimensional. This contradicts the assumption of case
(a) that the intersection of every d + 1 members of H
is d-dimensional. Therefore, C is d-dimensional in this
case.

Now assume that we are in case (b). Let s be the
largest integer in {1, . . . , d} such that every intersection
of s members of H is d-dimensional; notice that such
an integer exists because every single halfspace in H is
d-dimensional. Our choice of s implies the existence of a
subfamilyH′ of s+1 members ofH whose intersection is
d′-dimensional for some d′ < d. Let s′ be an integer such
that d′ = d − s′. By Observation 1, we have that d′ >
d−s, and equivalently d−s′ > d−s; this implies s′ 6 s.
To this end we have a family H′ with s+ 1 members for
which every intersection of s′ members is d-dimensional
(because s′ 6 s and H′ ⊆ H), but the intersection of
all members of H′ is (d − s′)-dimensional. Applying
Theorem 3 on H′ implies the existence of s′+1 members
of H′ whose intersection is (d− s′)-dimensional. If s′ <
s, then this implies the existence of s′ + 1 6 s members
of H′ ⊆ H, whose intersection is of dimension d − s′ <
d. This contradicts the fact that the intersection of
every s members of H is d-dimensional. Thus, s′ = s,
and consequently, d′ = d − s′ = d − s. Therefore C is
contained in a (d−s)-dimensional polyhedron I which is
the intersection of the s+ 1 closed halfspaces of H′. Let
H1, . . . ,Hs+1 be the complementary open halfspaces of
members ofH′, and recall that each Hi contains at most
α−1 points of P . Let I be the complement of I. Then,

n = |I ∪ I| = |I ∪H1 ∪ · · · ∪Hs+1|
6 |I|+ |H1|+ · · ·+ |Hs+1| 6 |I|+ (s+ 1)(α− 1),

where we abuse the notations I, I, and Hi to refer to the
subset of points of P that they contain. This inequality
implies that I contains at least n− (s+ 1)(α−1) points

of P . This finishes the proof of the theorem except for
the part that P is in general position.

Now, assume that P is in general position and n >
d+ 3. By the definition of general position, the number
of points of P in a (d− s)-dimensional flat is not more
than d−s+1. Since I is (d−s)-dimensional, this implies
that

n− (s+ 1)(α− 1) 6 d− s+ 1.

Notice that n is of the form k(d + 1) + i for some
integer k > 1 and some i ∈ {0, 1, . . . , d}. Moreover, if
i is 0 or 1, then k > 2 because n > d + 3. Now we
consider two cases depending on whether or not i is 0.
If i = 0, then α = k. In this case, the above inequality
simplifies to k(d − s) 6 d − 2s, which is not possible
because k > 2 and d > s > 1. If i ∈ {1, . . . , d}, then
α = k + 1. In this case, the above inequality simplifies
to (k − 1)(d − s) + i 6 1, which is not possible unless
d = s and i = 1. Thus, for the above inequality to hold
we should have d = s and i = 1. These two assertions
imply that n = k(d+1)+1, and that I is 0-dimensional
and consists of one point of P . Since C ⊆ I and C is
not empty, C also consists of one point of P . �
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