
CCCG 2018, Winnipeg, Canada, August 8–10, 2018

Compatible Paths on Labelled Point Sets

Elena Arseneva∗ Yeganeh Bahoo† Ahmad Biniaz‡ Pilar Cano§ Farah Chanchary§ John Iacono¶

Kshitij Jain‡ Anna Lubiw‡ Debajyoti Mondal‖ Khadijeh Sheikhan∗∗ Csaba D. Tóth††

Abstract

Let P and Q be finite point sets of the same cardinal-
ity in R2, each labelled from 1 to n. Two noncrossing
geometric graphs GP and GQ spanning P and Q, re-
spectively, are called compatible if for every face f in
GP , there exists a corresponding face in GQ with the
same clockwise ordering of the vertices on its boundary
as in f . In particular, GP and GQ must be straight-
line embeddings of the same connected n-vertex graph
G. No polynomial-time algorithm is known for deciding
whether two labelled point sets admit compatible geo-
metric graphs. The complexity of the problem is open,
even when the graphs are constrained to be triangula-
tions, trees, or simple paths.

We give polynomial-time algorithms to find compat-
ible paths or report that none exist in three scenarios:
O(n) time for points in convex position; O(n2) time for
two simple polygons, where the paths are restricted to
remain inside the closed polygons; and O(n2 log n) time
for points in general position if the paths are restricted
to be monotone.

1 Introduction

Computing noncrossing geometric graphs on finite point
sets that are in some sense ‘compatible’ is an active area
of research in computational geometry. The study of
compatible graphs is motivated by applications to shape
animation and simultaneous graph drawing [4, 12].

Let P and Q be finite point sets, each containing n
points in the plane labelled from 1 to n. Let GP and GQ

∗Université libre de Bruxelles (ULB), Belgium.
ea.arseneva@gmail.com
†Department of Computer Science, University of Manitoba,

Canada. bahoo@cs.umanitoba.ca
‡Cheriton School of Computer Science, Univer-

sity of Waterloo, Canada. ahmad.biniaz@gmail.com,

{k22jain,alubiw}@uwaterloo.ca
§Department of Computer Science, Carleton University,

Canada. pilukno@gmail.com, farah.chanchary@carleton.ca
¶Université libre de Bruxelles, Belgium & NYU, USA.

jiacono@ac.ulb.be
‖Department of Computer Science, University of

Saskatchewan, Canada. dmondal@cs.usask.ca
∗∗NYU Tandon School of Engineering, Brooklyn, USA.

khadijeh@nyu.edu
††Department of Mathematics, California State University

Northridge, Los Angeles, CA, USA. csaba.toth@csun.edu

be two noncrossing geometric graphs spanning P and Q,
respectively. GP and GQ are called compatible, if for ev-
ery face f in GP , there exists a corresponding face in
GQ with the same clockwise ordering of the vertices on
its boundary as in f . It is necessary, but not sufficient,
that GP and GQ represent the same connected n-vertex
graph G. Given a pair of labelled point sets, it is nat-
ural to ask whether they have compatible graphs, and
if so, to produce one such pair, GP , GQ. The question
can also be restricted to specific graph classes such as
paths, trees, triangulations, and so on; previous work
(described below) has concentrated on compatible tri-
angulations. Compatible triangulations of polygons are
also of interest, which motivated us to examine compat-
ible paths inside simple polygons.

In this paper we examine the problem of computing
compatible paths on labelled point sets. Equivalently,
we seek a permutation of the labels 1, 2, . . . , n that cor-
responds to a noncrossing (plane) path in P and in Q.
Figures 1(a)–(b) show a positive instance of this prob-
lem, and Figures 1(c)–(d) depict an affirmative answer.

Our results. We describe a quadratic-time dynamic
programming algorithm that either finds compatible
paths for two simple polygons, where the paths are re-
stricted to remain inside the closed polygons, or reports
that no such path exists. For the more limited case of
two point sets in convex position, we give a linear time
algorithm to find compatible paths (if they exist). For
two general point sets, we give an O(n2 log n)-time al-
gorithm to find compatible monotone paths (if they ex-
ist). Finding (unrestricted) compatible paths of point
sets remains open.

1.1 Background

Saalfeld [11] first introduced compatible triangulations
of labelled point sets, which he called “joint” triangula-
tions. In Saalfeld’s problem, each point set is enclosed
inside an axis-aligned rectangle, and the goal is to com-
pute compatible triangulations (possibly using Steiner
points). Although not every pair of labelled point sets
admit compatible triangulations, Saalfeld showed that
one can always construct compatible triangulations us-
ing (possibly an exponential number of) Steiner points.

Aronov et al. [2] proved that O(n2) Steiner points are
always sufficient and sometimes necessary to compatibly

30th Canadian Conference on Computational Geometry, 2018

v1

v2

v5

v4

v6

v7
v1

v2

v3
v3

v4

v5

v6

v7

(a) (b)

v1

v2

v5

v4

v6

v7
v1

v2

v3
v3

v4

v5

v6

v7

(c) (d)

P Q

Figure 1: (a)–(b) A pair of labelled point sets P and Q. (c)–(d) A pair of compatible paths.

triangulate two polygons when the vertices of the poly-
gons are labelled 1, 2, . . . , n in clockwise order. Babikov
et al. [3] extended the O(n2) bound to polygonal regions
(i.e., polygons with holes), where the holes are also la-
belled ‘compatibly’ (with the same clockwise ordering
of labels). The holes may be single points, so this in-
cludes Saalfeld’s “joint triangulation” problem. Pach et
al. [10] gave an Ω(n2) lower bound on the number of
Steiner points in such scenarios.

Lubiw and Mondal [9] proved that finding the mini-
mum number of Steiner points is NP-hard for the case
of polygonal regions. The complexity status is open
for the case of polygons, and also for point sets. Test-
ing for compatible triangulations without Steiner points
may be an easier problem. Aronov et al. [2] gave
a polynomial-time dynamic programming algorithm to
test whether two polygons admit compatible triangula-
tions without Steiner points. But testing whether there
are compatible triangulations without Steiner points is
open for polygonal regions, as well as for point sets.

The compatible triangulation problem seems chal-
lenging even for unlabelled point sets (i.e., when a bi-
jection between P and Q can be chosen arbitrarily).
Aichholzer et al. [1] conjectured that every pair of unla-
belled point sets (with the same number of points on the
convex hull) admit compatible triangulations without
Steiner points. So far, the conjecture has been verified
only for point sets with at most three interior points.

Let GS be a complete geometric graph on a point
set S. Let H(S) be the intersection graph of the edges
of GS , i.e., each edge of GS corresponds to a vertex in
H(S), and two vertices are adjacent in H(S) if and only
if the corresponding edges in GS properly cross (i.e., the
open line segments intersect). Every plane triangulation
on S has 3n−3−h edges, where h is the number of points
on the convex hull of S, and thus corresponds to a max-
imum independent set in H(S). In fact, H(S) belongs
to the class of well-covered graphs. (A graph is well cov-
ered if every maximal independent set of the graph has
the same cardinality). A rich body of research attempts
to characterize well-covered graphs [6, 13]. Deciding
whether two point sets, P and Q, admit compatible tri-
angulations is equivalent to testing whether H(P) and
H(Q) have a common independent set of size 3n−3−h.

2 Paths in Polygons and Convex Point Sets

In this section we describe algorithms to find compat-
ible paths on simple polygons and convex point sets.
By compatible paths on polygons, we mean: given two
polygons, find two compatible paths on the vertices of
the polygons that are constrained to be non-exterior to
the polygons. (See Figures 2(a)–(b).) Note that convex
point sets correspond to a special case, where the poly-
gons are the convex hulls. Not every two convex point
sets admit compatible paths, e.g., 5-point sets where the
points are labelled (1,2,3,4,5) and (1,3,5,2,4), resp., in
counterclockwise order (Appendix A).

We first give a quadratic-time dynamic programming
algorithm for simple polygons, and then a linear time
algorithm for convex point sets.

We begin with two properties of any noncrossing path
that visits all vertices of a simple polygon. Let P be a
simple polygon with vertices p1, p2, . . . , pn in some or-
der (so the vertices have labels 1, 2, . . . , n). Let σ be
a label sequence corresponding to a noncrossing path
that lies inside P and visits all vertices of P . Define
an interval on P to be a sequence of labels that appear
consecutively around the boundary of P (in clockwise
or counterclockwise order). For example, in Figure 2(a),
one interval is (2, 1, 7, 6). Define an interval set on P to
be the unordered set of elements of an interval.

Claim 1 The set of labels of every prefix of σ is an
interval set on P . Furthermore, if the prefix does not
contain all the labels, then the last label of the prefix
corresponds to an endpoint of the interval.

Proof. We proceed by induction on t, the length of
the prefix, with the base case t = 1 being obvious. So
assume the first t − 1 labels form an interval set corre-
sponding to interval I. Let ` be the t-th element of σ.
Suppose vertex p` is not contiguous with the interval I
on P . Let u and v be the two neighbors of p` around
the polygon P . Then u and v do not belong to I, and so
the path must visit both of them after p`. But then the
subpath between u and v crosses the edge of the path
that arrives at p`, contradicting the assumption that the
path is noncrossing. Thus vertex p` must appear just

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

p7

p1

p2 p3

p4

p5

p6

(a)

q7

q1q1

q6

q2

q3

q5

q4

(b)

p4

pj = p5

p6

(c)

pi = p7

pk = p3

qk

qi

(e)

pi

pi+1

pi+t

(d)

qj

p`

Figure 2: (a)–(b) Compatible paths on a pair of labelled polygons. The paths are drawn with dotted lines. (c)
Illustration for Claim 2, where I = (p7, p6, p5, p4, p3). (d)–(e) Illustration for the dynamic programming algorithm.

before or after I, forming a longer interval with p` as an
endpoint of the interval. �

Claim 2 If I is an interval on P and σ does not start or
end in I, then the labels of I appear in the same order in
σ and in I (either clockwise or counterclockwise). Note
that the labels need not appear consecutively in σ.

Proof. Consider three labels i, j, k that appear in this
order in I. Assume, for a contradiction, that these labels
appear in a different order in σ and suppose, without
loss of generality, that they appear in the order i, k, j
in σ. Let ` be the last label of σ. Because ` does not
lie in I, the order of vertices around P is pi, pj , pk, p`.
See, e.g., Figure 2(c) where i, j, k = 7, 5, 3. Then the
subpath of σ from pi to pk crosses the subpath from pk
to p`, a contradiction. �

2.1 An O(n2)-time dynamic programming algorithm

Let P , Q be two n-vertex simple polygons with labelled
vertices. Let pi (resp., qi) be the vertex of P (resp., Q)
with the label i.

Two vertices of a polygon are visible if the straight
line segment connecting the vertices lies entirely inside
the polygon. We precompute the visibility graph of each
polygon in O(n2) time [8] such that later we can answer
any visibility query in constant time.

Notation for our dynamic programming algorithm
will be eased if we relabel so that polygon P has labels
1, 2, . . . , n in clockwise order. For each label i = 1, . . . , n
and each length t = 1, . . . , n let IQ(i, t, cw) denote the
interval on Q of t vertices that starts at qi and pro-
ceeds clockwise. Define IQ(i, t, ccw) similarly, but pro-
ceed counterclockwise from qi. Define IP (i, t, cw) and
IP (i, t, ccw) similarly. Note that IP (i, t, cw) goes from
pi to pi+t−1 (index addition modulo n).

We say that a path traverses interval IQ(i, t, d) (where
d = cw or ccw), if the path is noncrossing, lies inside
Q, visits exactly the vertices of IQ(i, t, d) and ends at
qi. We make a similar definition for a path to traverse
an interval IP (i, t, d).

Our algorithm will solve subproblems A(i, t, dP , dQ)
where i is a label from 1 to n, t is a length from 1 to n,

and dP and dQ take on the values cw or ccw . This sub-
problem records whether there is a path that traverses
IQ(i, t, dQ) and a path with the same sequence of labels
that traverses IP (i, t, dP). If this is the case, we say that
the two intervals are compatible. Observe that P and
Q have compatible paths if and only if A(i, n, dP , dQ) is
true for some i, dP , dQ.

We initialize by setting A(i, 1, dP , dQ) to TRUE for
all i, dP , dQ, and then solve subproblems in order of in-
creasing t. In order for intervals IQ(i, t + 1, dQ) and
IP (i, t+ 1, dP) to be compatible, the intervals of length
t formed by deleting the last label, i, must also be com-
patible, with an appropriate choice of direction (cw or
ccw) on those intervals. There are two choices in P and
two in Q. We try all four combinations. For a partic-
ular combination to ‘work’ (i.e., yield compatible paths
for the original length t+ 1 intervals), we need the last
labels of the length t intervals to match, and we need
appropriate visibility edges in the polygons for the last
edge of the paths.

We give complete details for A(i, t + 1, cw , cw). See
Figure 2(d)-(e). (The other four possibilities are simi-
lar.) Deleting label i from IP (i, t + 1, cw) gives IP (i +
1, t, cw) and IP (i + t, t, ccw). Let qj be the vertex fol-
lowing qi in clockwise order around Q and let qk be the
other endpoint of IQ(i, t + 1, cw) (in practice, for effi-
ciency, we would store k with the subproblem). Delet-
ing label i from IQ(i, t + 1, cw) gives IQ(j, t, cw) and
IQ(k, t, ccw). The two possibilities for P and Q are
shown by blue dash-dotted and red dotted lines in Fig-
ures 2(d) and (e), respectively. We set A(i, t+1, cw , cw)
TRUE if any of the following four sets of conditions
hold:

1. Conditions for IP (i+ 1, t, cw) and IQ(j, t, cw): i+
1 = j and A(i+ 1, t, cw , cw).

2. Conditions for IP (i + 1, t, cw) and IQ(k, t, ccw):
i+1 = k and qk sees qi in Q and A(i+1, t, cw , ccw).
Note that the last edge of the path in Q must be
(qk, qi) which is why we impose the visibility con-
dition.

3. Conditions for IP (i+ t, t, ccw) and IQ(j, t, cw): i+
t = j and pi+t sees pi in P and A(i+ t, t, ccw , cw).

30th Canadian Conference on Computational Geometry, 2018

4. Conditions for IP (i+t, t, ccw) and IQ(k, t, ccw): i+
t = k and pi+t sees pi in P and qk sees qi in Q and
A(i+ t, t, ccw , ccw).

Since there are a quadratic number of subproblems,
each taking constant time to solve, this algorithm runs
in time O(n2), which proves:

Theorem 1 Given two n-vertex polygons, each with
points labelled from 1 to n in some order, one can find
a pair of compatible paths or determine that none exist
in O(n2) time.

2.2 A linear-time algorithm for convex point sets

In this section we assume that the input is a pair of
convex point sets P,Q, along with their convex hulls.

Given a label x, we first define a greedy construction
to compute compatible paths starting at x. The output
of the construction is an ordered sequence σx of labels.
Using Claim 1 we keep track of the intervals in P and
Q corresponding to σx. Initially σx contains the label
x. Each subsequent step attempts to add a new label
to σx, maintaining intervals in P and Q. Suppose the
intervals corresponding to the current σx are IP and
IQ in P and Q respectively. Let a and b be the labels
of the vertices just before and just after interval IP on
the boundary of P . Similarly, let c and d be the labels
of the vertices just before and just after interval IQ on
the boundary of Q. If {a, b} = {c, d}, then we add a
and b to σx in arbitrary order. Otherwise, if there is
one label in common between the two sets, we add that
label to σx. Finally, if there are no common labels, then
the construction ends. Let σx be a maximal sequence
constructed as above.

Lemma 2 P and Q have compatible paths starting at
label x if and only if σx includes all n labels.

Proof. If P and Q have compatible paths with label
sequence σ starting at label x then by Claim 1 every
prefix of σ corresponds to an interval in P and in Q,
and we can build σx in exactly the same order as σ.

For the other direction, we claim to construct non-
crossing paths in P and Q corresponding to σx. Ob-
serve that when we add one or two labels to σx, we can
add the corresponding vertices to our paths because the
point sets are convex, so every edge is allowable. Fur-
thermore, the paths constructed in this way are non-
crossing because the greedy construction of σx always
maintains intervals in P and Q. Hence the new edges
are outside the convex hull of the paths so far. �

Lemma 2 allows us to find compatible paths (if they
exist) in O(n2) time by trying each label x as the initial
label of the path. In order to improve this to linear time,
we first argue that when σx does not provide compatible

paths, then we need not try any of its other labels as
the initial label.

Lemma 3 If σx has length less than n, then no label
in σx can be the starting label for compatible paths of P
and Q.

Proof. Suppose that there are compatible paths with
label sequence sy starting at a label y in σx. Let z be
the first label that appears in sy but not in σx. Let
IP and IQ be the intervals corresponding to σx in P
and Q respectively. By Claim 1 the prefix of sy before
z corresponds to intervals, say I ′P and I ′Q on P and
Q, respectively. Then I ′P ⊆ IP and I ′Q ⊆ IQ (by our
assumption that z is the first label of sy not in σx).
Since the vertex with label z must be adjacent to I ′P on
the boundary of P and to I ′Q on the boundary of Q, and
z does not appear in σx, therefore the vertex with label
z must be adjacent to IP on the boundary of P and to
IQ on the boundary of Q. But then our construction
would add label z to σx. �

We will use Lemma 3 to show that we can eliminate
some labels entirely when σx is found to have length
less than n. Suppose σx does not include all labels. Let
IP and IQ be the intervals on P and Q, respectively,
corresponding to the set of labels of σx. Let a and b be
the labels that appear at the endpoints of IP .

Suppose P and Q have compatible paths (of length
n) with label sequence σ. Then by Lemma 2 the initial
and final label of σ lie outside of σx. Furthermore, by
Claim 2, the set of labels of σx must appear consecu-
tively and in the same order around P and around Q
(either clockwise or counterclockwise). Our algorithm
checks whether IP and IQ have the same ordered lists
of labels. If not, then there are no compatible paths.

So suppose that IP and IQ have the same ordered lists
of labels. Then the endpoints of IQ must have labels
a and b. We will now reduce to a smaller problem by
discarding all internal vertices of IP and IQ. Let P ′ and
Q′ be the point sets formed from P and Q, respectively,
by deleting the vertices with labels in σx − {a, b}.

Lemma 4 Suppose z is a label appearing in P ′. P and
Q have compatible paths with initial label z if and only
if P ′ and Q′ have compatible paths with initial label z.

Proof. If P and Q have compatible paths (of length n)
with initial label z, then we claim that deleting from
those paths the vertices with labels in σx−{a, b} yields
compatible paths of P ′ and Q′ with initial label z. It
suffices to show that if we delete one vertex from a non-
crossing path on points in convex position then the re-
sulting path is still noncrossing. The two edges incident
to the point to be deleted form a triangle, and the new
path will use the third side of the triangle. Since the
points are in convex position, the triangle is empty of

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

pi
pa

pb

pc

pd

qi
qa

qb

qc

qd

qj

pi
pa

pb

pc

pd

qi
qa

qb

qc

qd

pj
qjpj

(a) (b) (c) (d)

Figure 3: (a)–(b) Compatible paths on the point sets P \ {pa, pb, pc, pd} and Q \ {qa, qb, qc, qd}. (c)–(d) Insertion of
the deleted points keeps the paths compatible.

other points, and so the new edge does not cross any
other edge of the path.

For the other direction, suppose that σ′ is a label
sequence of compatible paths of P ′ and Q′ with initial
label z. Suppose without loss of generality that label
a comes before label b in σ′. Construct a sequence σ
by adding the labels of σx − {a, b} after a in σ′ in the
order that they appear in IP . It remains to show that
the corresponding paths in P and Q are noncrossing.
This follows from the fact that in both P and Q the
added points appear consecutively around the convex
hull following the point with label a. �

We can now prove the main result of this section.

Theorem 5 Given two sets of n points in convex po-
sition (along with their convex hulls) each with points
labelled from 1 to n, one can find a pair of compatible
paths or determine that none exist in linear time.

Proof. The algorithm is as described above. At each
stage we try some label x to be the initial label of com-
patible paths, by computing σx using the greedy con-
struction. If σx has length n we are done. Otherwise if
σx has length 1 or 2, then we have ruled out the labels
in σx as initial labels. Finally, if σx has length less than
n and at least 3 then we test whether the intervals cor-
responding to σx in P and Q have the same ordering,
and if they do, then we apply the reduction described
above and recurse on the smaller instance as justified
by Lemma 4.

The running time of the algorithm is determined by
the length of all the σ-sequences we compute. Define a
σ-sequence to be ‘long’ or ‘short’ depending on whether
it contains at least three labels or not. Every long se-
quence of length ` reduces the number of points by (`−2)
and requires O(`) time. Thus, long sequences take O(n)
time in total. Computing any short sequence takes O(1)
time. Since for each label, we compute σ at most once,
the short sequences also take O(n) time in total. �

3 Monotone Paths in General Point Sets

In this section we examine arbitrary point sets in general
position, but we restrict the type of path.

Let P be a point set in general position. An ordering
σ of the points of P is called monotone if there exists
some line ` such that the orthogonal projection of the
points on ` yields the order σ. A monotone path is a
path that corresponds to a monotone ordering. Note
that every monotone path is noncrossing.

Two points sets P and Q each labelled 1, 2, . . . , n have
compatible monotone paths if there is an ordering of the
labels that corresponds to a monotone path in P and
a monotone path in Q. To decide whether compatible
monotone paths exist, we can enumerate all the mono-
tone orderings of P , and for each of them check in linear
time whether it determines a monotone path in Q.

A method for enumerating all the monotone orderings
of a point set P was developed by Goodman and Pollack:

Theorem 6 (Goodman and Pollack [7]) Let `0 be
a line not orthogonal to any line determined by two
points of P . Starting with ` = `0, rotate the line `
through 360◦ counter-clockwise about a fixed point. Pro-
jecting the points onto ` as it rotates gives all the possible
monotone orderings of P . There are 2

(
n
2

)
= n(n − 1)

orderings, and each successive ordering differs from the
previous one by a swap of two elements adjacent in the
ordering.

Furthermore, the sequence of swaps that change each
ordering to the next one can be found in O(n2 log n)
time by sorting the O(n2) lines (determined by all pairs
of points) by their slopes.

This gives a straight-forward O(n3) time algorithm to
find compatible monotone paths, since we can generate
the O(n2) monotone orderings of P in constant time per
ordering, and check each one for monotonicity in Q in
linear time.

We now present a more efficient O(n2 log n) time al-
gorithm. For ease of notation, relabel the points so that
the order of points P along `0 is 1, 2, . . . , n. As the line
` rotates, let LP

0 , L
P
1 , . . . L

P
t−1, where t = n(n − 1), be

the monotone orderings of P , and let SP be the corre-
sponding swap sequence. Similarly, let LQ

0 , L
Q
1 , . . . L

Q
t−1

be the monotone orderings of Q and let SQ be the cor-
responding swap sequence (Figure 4). We need to find

whether there exist some i and j such that LP
i = LQ

j .

30th Canadian Conference on Computational Geometry, 2018

1

2
3

4

23

1

4

(a)

1234
1243
1423
1432
4132
4312
4321
3421

LP

3 421

(b)

3124
1324
1234
2134
2143
2413
4213
4231

LQP Q

1 2 3 4

Figure 4: Illustration for computing compatible mono-
tone paths.

As noted above, SP and SQ have size O(n2) and can be
computed in time O(n2 log n).

Recall that the inversion number, I(L) of a permu-
tation L is the number of pairs that are out of order.
It is easy to see that the inversion numbers of the LP

i ’s
progress from 0 to

(
n
2

)
and back again. In particular,

I(LP
i) = i for 0 ≤ i ≤

(
n
2

)
. Our algorithm will compute

the inversion numbers of the LQ
j ’s, which also have some

structure. Let Ij be the inversion number of LQ
j . Note

that we can compute I0 in O(n log n) time—sorting al-
gorithms can be modified to do this [5].

Claim 3 For all j, 1≤j≤n(n− 1), Ij differs from Ij−1
by ±1, and can be computed from Ij−1 in constant time.

Proof. LQ
j is formed by swapping one pair of adjacent

elements in LQ
j−1. If this swap moves a smaller ele-

ment after a larger one then Ij=Ij−1+1. Otherwise, it
is Ij−1−1. �

The main idea of our algorithm is as follows. If LQ
j =

LP
i , then they must have the same inversion number,

Ij . There is one value of i in the range 0 ≤ i <
(
n
2

)
that gives this inversion number, namely i = Ij . There
is also one value of i in the second half of the range
that gives this inversion number, but we can ignore the
second half of the range based on the following:

Remark 1 If there exist i, j such that LP
i = LQ

j , then
there is such a pair with i in the first half of the index
range, i.e., 0 ≤ i <

(
n
2

)
.

Proof. The second half of each list of orderings con-
tains the reversals of the orderings in the first half [7].

Thus if there is a match LP
i = LQ

j then the rever-
sals of the two orderings also provide a match, say
LP
i′ = LQ

j′ , and either i or i′ is in the first half of the
index range. �

Our plan is to iterate through the orderings LQ
j for

0 ≤ j < n(n − 1). Since each ordering differs from the
previous one by a single swap, we can update from one
to the next in constant time. For each j, we will check

if LQ
j is equal to LP

Ij
, i.e., for each j, 0 ≤ j < n(n − 1)

we will compute the following four things:

• LQ
j , Ij , L

P
Ij

, and

• Hj , which is the Hamming distance—i.e., the num-

ber of mismatches—between LQ
j and LP

Ij

If we find a j with Hj = 0 then we output LQ
j and LP

Ij
as compatible monotone paths. Otherwise, we declare
that no compatible monotone paths exist. Correctness
of this algorithm follows from Remark 1 and the discus-
sion above:

Claim 4 P and Q have compatible monotone paths if
and only if Hj = 0 for some j, 0 ≤ j < n(n− 1).

We now give the details of how to perform the above
computations. For j = 0 we will compute everything
directly, and for each successive j, we will show how to
update efficiently. We initialize the algorithm at j =
0 by computing LQ

0 and Ij in O(n log n) time, LP
Ij

in

O(n2) time, and Hj in linear time.
Now consider an update from j − 1 to j. As already

mentioned, LQ
j differs from LQ

j−1 by one swap of adja-
cent elements, so we can update in constant time. By
Lemma 3, Ij differs from Ij−1 by ±1 and we can com-
pute it in constant time. This also means that LP

Ij
differs

from LP
Ij−1

by one swap of adjacent elements, so we can
update it in constant time.

Finally, we can update the Hamming distance in a
two-step process as the two orderings change. When
we update from LQ

j−1 to LQ
j , two positions in the list

change, and we can compare them to the same positions
in LP

Ij−1
to update from Hj−1 to obtain the number of

mismatches between LQ
j and LP

Ij−1
. When we update

to LP
Ij

, two positions in this list change, and we can

compare them to the same positions in LQ
Ij

to update
to Hj . This two-step process takes constant time.

In total, we spend O(n2) time on initialization and
constant time on each of O(n2) updates, for a total of
O(n2) time. We thus obtain the following theorem.

Theorem 7 Given two point sets, each containing n
points labelled from 1 to n, one can find a pair of com-
patible monotone paths or determine that none exist in
O(n2 log n) time.

Acknowledgement: We thank the organizers of the
Fields Workshop on Discrete and Computational Geom-
etry, held in July 2017 at Carleton University. E. Ar-
seneva is supported in part by the SNF Early Postdoc
Mobility grant P2TIP2-168563 and by F.R.S.-FNRS;
A. Biniaz, K. Jain, A. Lubiw, and D. Mondal are sup-
ported in part by NSERC.

CCCG 2018, Winnipeg, Canada, August 8–10, 2018

References

[1] O. Aichholzer, F. Aurenhammer, F. Hurtado, and
H. Krasser. Towards compatible triangulations. Theo-
retical Computer Science, 296(1):3–13, 2003.

[2] B. Aronov, R. Seidel, and D. L. Souvaine. On compat-
ible triangulations of simple polygons. Computational
Geometry, 3:27–35, 1993.

[3] M. Babikov, D. L. Souvaine, and R. Wenger. Construct-
ing piecewise linear homeomorphisms of polygons with
holes. In Proceedings of the 9th Canadian Conference
on Computational Geometry (CCCG), 1997.

[4] W. V. Baxter III, P. Barla, and K. Anjyo. Compatible
embedding for 2D shape animation. IEEE Transactions
on Visualization and Computer Graphics, 15(5):867–
879, 2009.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms, 3rd Edition. MIT
Press, 2009.

[6] A. S. Finbow, B. L. Hartnell, and M. D. Plummer. On
well-covered pentagonalizations of the plane. Discrete
Applied Mathematics, 224:91–105, 2017.

[7] J. E. Goodman and R. Pollack. On the combinato-
rial classification of nondegenerate configurations in the
plane. Journal of Combinatorial Theory, Series A,
29(2):220–235, 1980.

[8] J. Hershberger. An optimal visibility graph algorithm
for triangulated simple polygons. Algorithmica, 4(1-
4):141–155, 1989.

[9] A. Lubiw and D. Mondal. On compatible tri-
angulations with a minimum number of Steiner
points. In Proceedings Canadian Conference on Com-
putational Geometry (CCCG), pages 101–106, 2017.
http://arxiv.org/abs/1706.09086.

[10] J. Pach, F. Shahrokhi, and M. Szegedy. Applications
of the crossing number. Algorithmica, 16(1):111–117,
1996.

[11] A. Saalfeld. Joint triangulations and triangulation
maps. In Proceedings of the Third Annual Symposium
on Computational Geometry (SoCG), pages 195–204.
ACM, 1987.

[12] V. Surazhsky and C. Gotsman. High quality compatible
triangulations. Engineering with Computers, 20(2):147–
156, 2004.

[13] D. Tankus and M. Tarsi. The structure of well-covered
graphs and the complexity of their recognition prob-
lems. J. Comb. Theory, Ser. B, 69(2):230–233, 1997.

Appendix A

In this section we show that for every n ≥ 5, there exist two
convex labelled point sets, each containing n points, that do
not admit compatible trees. Note that this also rules out the
existence of compatible paths.

Claim 5 Let P and Q be point sets in convex position, each
containing n ≥ 2 points labelled by {1, 2, . . . , n}. If they

admit a compatible tree that is not a star, then there exists
a partition {1, 2, . . . , n} = A ∪ B such that 2 ≤ |A| ≤ |B| ≤
n− 2 such that A and B are interval sets for both P and Q.

Proof. Suppose that P and Q admit a compatible tree T ,
which is not a star. Then T has an edge e between two ver-
tices of degree two or higher. The deletion of e decomposes
T into two subtrees, say T1 and T2, each with at least two
vertices. The vertex sets of T1 and T2, resp., correspond to
an interval set in P and Q. �

(a) (b)

v1

v2

v3v4

v5

v1

v3

v5v2

v4

Figure 5: Illustration for Lemma 8.

Theorem 8 For every integer n ≥ 5, there exist two sets,
Pn and Qn, each of n labelled points in convex position, such
that Pn and Qn do not admit any compatible tree.

Proof. For n = 5, let P5 and Q5 be point sets labelled
(1, 2, 3, 4, 5) and (1, 3, 5, 2, 4), respectively, in counterclock-
wise order (Figure 5). If a compatible star exists, then the
four leaves would appear in the same counterclockwise or-
der in both P5 and Q5 (by the definition of compatibility).
However, the two convex sets have distinct counterclockwise
4-tuples. If there is a compatible tree that is not a star,
then by Claim 5, a 2-element set A ⊂ {1, 2, 3, 4, 5} is an in-
terval set for both P5 and Q5. However, all five consecutive
pairs along the convex hull of P5 are nonconsecutive in the
convex hull of Q5. Therefore, P5 and Q5 do not admit any
compatible tree.

For n > 5, we can construct Pn and Qn analogously.
Let Pn be labelled (1, 2 . . . , n) in counterclockwise order.
For i = 0, 1, 2, 3, 4, let Ni be the sequence of labels in
{1, 2, . . . , n} congruent to i modulo 5 in increasing order.
Now let Qn be labelled by the concatenation of the sequences
N1, N3, N0, N2, N4 in counterclockwise order.

If a compatible star exists, then the n − 1 leaves would
appear in the same counterclockwise order in both Pn and
Qn (by the definition of compatibility). However, the both
neighbors of a vertex in Pn are different from the two neigh-
bors in Qn, consequently Pn and Qn do not share any coun-
terclockwise (n − 1)-tuple. If there is a compatible tree
that is not a star, then by Claim 5, there is a partition
{1, 2, . . . , n} = A ∪ B into interval sets, where |A|, |B| ≥ 2.
However, A and B cannot partition any subset of 5 consec-
utive elements in sequence (1, 2, . . . , n), similarly to the case
when n = 5. Consequently, Pn and Qn do not admit any
compatible tree. �

