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Scene Detection in Videos Using Shot
Clustering and Sequence Alignment

Vasileios T. Chasanis, Aristidis C. Likas, and Nikolaos P. Galatsanos

Abstract—Video indexing requires the efficient segmentation of
video into scenes. The video is first segmented into shots and a set
of key-frames is extracted for each shot. Typical scene detection al-
gorithms incorporate time distance in a shot similarity metric. In
the method we propose, to overcome the difficulty of having prior
knowledge of the scene duration, the shots are clustered into groups
based only on their visual similarity and a label is assigned to each
shot according to the group that it belongs to. Then, a sequence
alignment algorithm is applied to detect when the pattern of shot
labels changes, providing the final scene segmentation result. In
this way shot similarity is computed based only on visual features,
while ordering of shots is taken into account during sequence align-
ment. To cluster the shots into groups we propose an improved
spectral clustering method that both estimates the number of clus-
ters and employs the fast global k-means algorithm in the clus-
tering stage after the eigenvector computation of the similarity ma-
trix. The same spectral clustering method is applied to extract the
key-frames of each shot and numerical experiments indicate that
the content of each shot is efficiently summarized using the method
we propose herein. Experiments on TV-series and movies also in-
dicate that the proposed scene detection method accurately detects
most of the scene boundaries while preserving a good tradeoff be-
tween recall and precision.

Index Terms—Global k-means, key-frames, scene detection, se-
quence alignment.

I. INTRODUCTION

I N recent years the extended use of videos in several appli-
cations such as internet-TV and video on demand, as well

as the thousand TV-series and movies produced every year has
led to a significant increase in the availability and the amount of
video information. Video indexing, retrieval and analysis seem
quite difficult due to this huge amount of data constantly pro-
duced. Video scene segmentation provides the most efficient so-
lution so far. However, to proceed with scene segmentation, low
level segmentation of the video must be first applied.

The smallest physical segment of a video is the shot and is
defined as an unbroken sequence of frames recorded from the
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same camera. The visual content of each shot of the video can
be represented by one or multiple frames, called key-frames.
The number of key-frames cannot be predetermined because
due to content variation it may be different for each shot. For
example for a static shot where there is little object motion,
one key-frame may represent the shot quite adequately, whereas
when there is high camera and object motion, more key-frames
are needed for a good representation. Several approaches have
been proposed for key-frame extraction. In [22] the authors de-
tect multiple frames using unsupervised clustering based on the
visual variations in shots. A main drawback of this algorithm is
the determination of the appropriate number of key-frames to
represent each shot which depends on the threshold parameter
that controls the density of the clusters. A variant of this algo-
rithm is presented in [11] where the final number of key-frames
depends on a threshold parameter which defines two frames to
be similar.

Proceeding further towards the goal of video indexing and
retrieval requires the grouping of shots into scenes. A scene can
be regarded as a series of semantically correlated shots. The
term scene usually refers to a group of shots taken in the same
physical location describing objects or events. A more compact
representation of a video could be the merging of scenes into
logical story units that correspond to chapters describing the
different subthemes of a movie.

Several approaches have been proposed for the scene seg-
mentation problem. In [11] the authors transform this task into
a graph partitioning problem. A shot similarity graph is con-
structed, where each node represents a shot and the edges be-
tween shots depict their similarity based on color and motion
information. Then the normalized cuts [13] method is applied
to partition the graph. In [4], a method is proposed for detecting
boundaries of the logical story units by linking similar shots and
connecting overlapping links. For each shot, all key frames are
merged into a larger image and the similarity between shots
is computed by comparing these shot images. A similar ap-
proach is presented in [17], where a scene transition graph is
constructed to represent the video and the connectivity between
shots. Then, this transition graph is divided into connected sub-
graphs representing the scenes. A different approach is pre-
sented in [10] where a two-pass algorithm is proposed. In the
first pass shots are clustered by computing backward shot co-
herence, a similarity measure of a given shot with respect to the
previously seen shots, while in the second pass oversegmented
scenes are merged based on the computation of motion con-
tent in scenes. Another method that uses Markov chain Monte
Carlo to determine scene boundaries is proposed in [20]. Two
processes, diffusions and jumps, are used to update the scene
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Fig. 1. Main steps of our method.

boundaries that are initialized at random positions. Diffusions
are the operations that adjust the boundaries between adjacent
scenes, while jump operations merge or split existing scenes.

Most of the above approaches, calculate shot similarity based
on visual similarity. Furthermore, they consider the temporal
distance of shots as an extra feature that is taken into account
when computing the similarity between two shots for shot clus-
tering into scenes. Due to the absence of prior knowledge con-
cerning the video content and the duration of scenes, it is diffi-
cult to determine an appropriate weight parameter that will ac-
count for the contribution of the temporal distance in the com-
putation of the overall similarity between shots.

One of the novelties of our approach is that shots are clus-
tered into groups using an improved version of the typical spec-
tral clustering method [8] that uses the fast global k-means al-
gorithm [6] in the clustering stage after the eigenvector com-
putation. In addition, we employ a criterion for estimating the
number of groups based on the magnitude of the eigenvalues of
the similarity matrix. The resulted groups of shots are not the
final scene boundaries, but this clustering procedure is a pre-
processing step towards the final detection of scene boundaries.
Another novelty of our method is that shot similarity is com-
puted based only on visual features, because incorporating time
distance in a shot similarity metric requires a priori knowledge
of the scene duration. Thus, it is a quite difficult task to deter-
mine a distance parameter that defines whether two shots are
related or not. In our method cluster labels are assigned to shots
according to their visual content and then, sequences of shot la-
bels are compared to identify changes in the patterns of succes-
sive labels. In that way time distance between shots is not taken
into account since our method locally searches for changes in
patterns of shot labels ignoring the relation between shots with
respect to time distance.

Typically the sequence of shots in a video follows specific
production rules. The most common is known as the 180 rule,
where the director draws a line in the physical setting of a scene
and all cameras are placed on the same side of this line [14].

This production rule produces repeating shots of one person, a
group of persons or the same setting which is commonly seen in
movies, documentaries and TV-series. The most common pat-
terns of repetitive shots are two. The first one is a dialogue be-
tween two or more persons, where the camera switches from
one person to another, thus producing a sequence of shots like

, where and are the shot labels
for three different persons. Another common pattern is a se-
quence of shots like where and are
captions of three different cameras providing views of the same
physical setting from different angles. When a scene changes it
is expected that a change in such patterns will occur. For ex-
ample, if two dialogues take place in different scene, it is ex-
pected that a sequence of shots like
is produced where corresponds to the first scene and

corresponds to the second scene. To identify
the change in pattern, a comparison of successive non-overlap-
ping windows of shot labels is performed. Thus, we need to de-
fine a proper measure to define whether two sequences are re-
lated (share the same patterns of shots) or not. A very efficient
category of algorithms that compare sequences in order to de-
fine whether two sequences are related or not are the sequence
alignment algorithms that are successfully used in biological ap-
plications [5].

In our approach, to compare sequences we use the
Needleman–Wunsch global sequence alignment algorithm
[7], which performs global alignment on two sequences and
is guaranteed to find the alignment with the maximum score.
This algorithm requires the definition of a substitution matrix
in order to implement the alignment. This matrix represents the
rate at which one character in a sequence changes to another
character over time. In our method the substitution matrix is
formulated based on criteria that are adapted to the problem
of scene detection. Color similarity between clusters of shot
labels and probability of existence of a pair of successive shot
labels are the two components that contribute to the substitution
matrix. The score of each alignment is given through a scoring
function which takes into account matches, mismatches and
gaps of shot labels. When an alignment gives a low score, a
change in the patterns of shot labels is implied and suggests
a scene boundary. The proposed two-stage approach (shot
clustering, sequence alignment) achieves high correct detection
rates while preserving a good trade off between the number of
missed scenes and the number of false detected scenes.

Another novelty of the proposed method is that the key-frame
extraction problem is treated using an improved spectral clus-
tering algorithm (also employed for shot clustering) which es-
timates the number of key-frames using the eigenvalues of the
similarity matrix corresponding to pairs of shot frames.

In Fig. 1 we summarize the main steps of our approach and
the algorithms employed in these steps. The video is segmented
into shots and the spectral clustering algorithm is employed to
extract the key-frames of the corresponding shots. Next, shots
are grouped with respect to their visual similarity and labeled
according to the group they are assigned. Finally, a sequence
alignment algorithm is implemented to identify high dissimilar-
ities between successive windows of shot labels. Scene bound-
aries are considered to be the points of high dissimilarity.
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The rest of the paper is organized as follows: In Section II, the
procedure for extracting key-frames of shots and for computing
shot similarity is described. In Section III, the proposed scene
detection algorithm is presented. In Section IV, we present nu-
merical experiments and compare our method with two other
methods proposed in [11] and [17]. Finally, in Section V, we
conclude our work and provide suggestions for further study.

II. KEY-FRAME EXTRACTION AND SHOT SIMILARITY

The first level of video segmentation is shot detection. We
implemented the most widely used method for shot detection
[21] that is based on color histograms. For each frame a 16-bin
HSV normalized histogram is used [11], with eight bins for hue
and four bins for each of saturation and value.

A. Spectral Clustering of Video Frames

To perform key-frame extraction the video frames of a shot
are clustered into groups using an improved spectral clustering
algorithm. The medoid of each group, defined as the frame of a
group whose average similarity to all other frames of this group
is maximal, is characterized as a key-frame. The main steps of
the typical spectral clustering algorithm [8] are described next.
Suppose there is a set of objects to be parti-
tioned into groups.

1) Compute similarity matrix for the pairs of
objects of the data set .

2) Define to be the diagonal matrix whose element is
the sum of the elements of ’s -th row and construct the
Laplacian matrix .

3) Compute the principal eigenvectors of
matrix to build an matrix .

4) Renormalize each row of to have unit length and form
matrix so that:

(1)

5) Cluster the rows of into groups using k-means.
6) Finally, assign object to cluster if and only if row of

matrix has been assigned to cluster .
In what concerns our key-frame extraction problem, suppose

we are given a data set where is the fea-
ture vector (color histogram) of the -th frame. The distance
function we consider is the Euclidean distance between the his-
tograms of the frames. As a result each element of similarity
matrix is computed as follows:

(2)

In our method, in the fifth step of the spectral clustering al-
gorithm instead of using the typical k-means approach, we
have used the fast version of the very efficient global k-means
algorithm [6]. Global k-means in an incremental deterministic
clustering algorithm that overcomes the important initialization
problem of the typical k-means approach. This initialization
problem has been found to be severe in the case of frame

clustering, significantly affecting the quality of the key-frames.
Using the global k-means, the obtained key frames usually
provide a sensible representation of shot content. Next we
briefly review the global k-means algorithm. Suppose we are
given a data set to be partitioned
into disjoint clusters .

This algorithm is incremental in nature. It is based on the idea
that the optimal partition into groups can be obtained through
local search (using k-means) starting from an initial state with
i) the centers placed at the optimal positions for the

-clustering problem and ii) the remaining -th center
placed at an appropriate position within the dataset. Based on
this idea, the K-clustering problem is incrementally solved as
follows. Starting with , find the optimal solution which is
the centroid of the data set . To solve the problem with two
clusters, the k-means algorithm is executed times (where
is the size of the data set) from the following initial positions
of the cluster centers: the first cluster center is always placed at
the optimal position for the problem with , whereas the
second center at execution is initially placed at the position
of data . The best solution obtained after the executions
of k-means is considered as the solution for . In general
if we want to solve the problem with clusters, runs of the
k-means algorithm are performed, where each run n starts with
the centers initially placed at the positions corresponding
to the the solution obtained for the -clustering problem,
while the -th center is initially placed at the position of data

. A great benefit of this algorithm is that it provides the solu-
tions for all -clustering problems with .

The computational cost of the global k-means algorithm can
be reduced without significant loss in the quality of the solu-
tion using the fast global k-means algorithm [6]. This method
computes an upper bound of the final clustering error ob-
tained by initializing a new cluster center at position . The
initial position of the new cluster center is selected as the point

that minimizes and k-means runs only once for each .
The application of fast global k-means requires a single execu-
tion of k-means for each value of the number of clusters:

.

B. Estimation of the Number of Clusters Using Spectral
Clustering

As already mentioned in the Introduction, the number of key-
frames cannot be predetermined due to the different content of
each shot. In our approach we attempt to estimate the number
of the key-frames using results from the spectral graph theory.

Assume we wish to partition dataset into disjoint subsets
, and let denote the

partition matrix, where is the binary indicator vector for set
such that:

(3)

This clustering problem can be defined as [18]:

(4)
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Fig. 2. Eigenvalues and selection of �.

where is the Laplacian matrix defined in Section II-A. The
spectral clustering algorithm (for clusters) provides solution
to the following relaxed optimization problem:

(5)

Relaxing into the continuous domain turns the discrete
problem into a continuous optimization problem. The optimal
solution is attained at , where the columns of

, are the eigenvectors corresponding to the
ordered top largest eigenvalues of . Since it holds that
[19]:

(6)

the optimization criterion that also quantifies the quality of the
solution for clusters and its corresponding difference for suc-
cessive values of are respectively given by:

(7)

When the improvement in this optimization criterion (i.e., the
value of the eigenvalue) is below a threshold, improve-
ment by the addition of cluster is considered negligible,
thus the estimate of the number of clusters is assumed to be .
The threshold value that is used in all our experiments was fixed
to with very good results. In Fig. 2 we provide an
example of the eigenvalues of a matrix for a key-frame ex-
traction problem with five clusters (key-frames).

Summarizing, to extract the appropriate key-frames for a
shot, we compute the corresponding Laplacian matrix and
analyze its eigenvalues to select the number of key-frames .
After we have determined , we proceed with the steps 4–6
of the spectral clustering algorithm. In our implementation the
fast global k-means is employed in step 5, instead of k-means.

C. Shot Similarity

As explained earlier, shots that belong to the same scene often
have similar color content. As suggested in [11] the visual sim-
ilarity between a pair of shots and can be computed as the
maximum color similarity (ColSim) among all possible pairs of
their key-frames:

(8)

where and are the sets of key-frames of shots and
respectively, and the color similarity (ColoSim) between two
frames is defined as the histogram intersection [15]:

(9)

where are the HSV normalized color histograms of
frames and respectively.

III. SCENE DETECTION

Scene detection is a quite difficult task, because a scene is a
group of shots that are i) semantically correlated and ii) con-
tinuous in time. The semantic correlation between two shots
cannot actually be described with low-level features. However
low-level features such as color, give useful information about
the connection between shots and the physical setting where
the scene takes place. On the other hand, taking into account
the contribution of temporal distance in the computation of the
overall similarity between shots is difficult, due to the absence
of prior knowledge about the scene duration.

A. Shots Clustering

In order to perform scene detection, clustering of shots into
groups, taking into account visual similarity (VisSim) and time
adjacency is required. Suppose there is a set
of shots, ordered in time, to be segmented. In order to im-
plement shot grouping, an similarity matrix must be
specified. In [9], [11] both visual similarity and time distance
are combined in a single similarity metric (see Section IV.C.3).
On the contrary, in our method we have considered only visual
similarity (8):

(10)

for shot clustering, while ordering of shots is taken into account
at a later processing stage.

After the similarity matrix has been computed, the mod-
ified spectral clustering algorithm is used to group shots into
clusters. The main steps of this algorithm have been presented
earlier. The selection of the number of shot clusters is done in
a way similar to the key-frame extraction problem. However
it is worth mentioning that the number of shot clusters is not
equal to the number of scenes in the video. Our aim is to esti-
mate the principal color distributions over the video shots and
group all shots according to that color distribution that they fit
most. Following the same approach used for key-frame extrac-
tion, the analysis of the eigenspectrum of the Laplacian matrix
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Fig. 3. Video sequence of labels.

provides an estimate of the number of clusters . Then shots
are clustered into groups with respect to their visual content
(color histogram similarity), while the final number of scenes
will be extracted at a later step of our algorithm.

Once the spectral clustering algorithm has provided a parti-
tion of the shots into clusters , a label is
assigned to each shot according to the cluster it belongs, thus
producing a symbolic sequence of labels. In this way, the se-
quence of shots is transformed into a new sequence of labels
that illustrates the visual similarity between shots. An illustra-
tive example is given in Fig. 3:

To each shot (the index implies time) a label from the set
is assigned to. Typically, during a scene

there exists a sequence of similar shot labels (different captions
of the same person/place) or a sequence of repetitive label pat-
terns (rotation of different camera captions, e.g., dialogue). We
consider that a scene change occurs when the pattern of symbols
changes. In our example, distinct scenes correspond to shots
with time indices 1–5, 6–9, 10–16 (repetitive pattern ) and
17–21. In practice, due to the presence of noise (shot with
label ), it is not trivial to discriminate patterns of symbols. In
the proposed approach we treat this problem using a sequence
alignment algorithm as it will be explained next.

B. Scene Segmentation Through Sequence Alignment

As already mentioned in the introduction, videos such as
movies, documentaries and TV-series, follow some production
rules. These rules result in the generation of patterns of shots
inside a scene. Different scenes share different patterns of
shots (different subsequences of labels). Thus, it is expected
to detect scene changes in cases where the pattern of shot
labels changes. In order to find the points in the sequence of
shot labels where the pattern of symbols changes, we compare
successive non-overlapping windows of shot labels using a
sequence alignment algorithm. More specifically, given the set

of shots, the subsequences of the original video sequence
to be compared at each iteration are formulated as:

(11)

where is the length of the window used and
are the shot labels. In Fig. 4 the first three subsequences of the
video sequence in Fig. 3 are shown, using a window of length
4. In iteration 1 the first subsequence containing shots
will be compared with subsequence containing shots . In
next iteration the two subsequences under comparison are those
containing shots and respectively.

A well established approach to compare sequences of sym-
bols is the sequence alignment algorithm. Significant similarity
between sequences may imply that the sequences belong to the

Fig. 4. Subsequences to be compared.

same scene. Our interest however, focuses on cases of high dis-
similarity that is a strong indication of a scene boundary. The
sequence alignment algorithm we used in our approach is the
Needleman–Wunsch algorithm [7] which is commonly used in
bioinformatics to align protein or nucleotide sequences. This
algorithm performs global alignment on two sequences and is
guaranteed to find the alignment with the maximum score. The
input consists of two sequences of length as described in (12).
Let us denote

(12)

The labels belong to some alphabet of
symbols, where is the number of cluster labels generated

from the spectral clustering of shots. To align these sequences
a matrix is constructed where the value is
the score of the best alignment between the segment
and the segment [5]. There are three possible ways
to obtain the best score of an alignment up to : a)

could be aligned to , b) could be aligned to a
gap and c) could be aligned to a gap. The best score will
be the largest of these three options:

(13)

where is a substitution matrix and is a gap penalty. The def-
inition and calculation of these quantities are given below. The
traceback from to defines the optimal align-
ment of and . The time complexity for aligning two se-
quences of length is . A typical example of a sequence
alignment over an alphabet is given in Fig. 5.
The output of the alignment algorithm is an alignment matrix.
The columns of this matrix that contain the same label in both
rows are called matches (M), while columns containing different
letters are called mismatches (m). The columns of the alignment
containing one space are called gaps (G). A gap in an alignment
is defined as a contiguous sequence of spaces in one of the rows
of the alignment matrix [5]. By inserting one or more gaps, the
algorithm succeeds in aligning symbols that occur in different
positions.

The sequence alignment algorithm requires a substitution ma-
trix and a gap cost function . In our problem, the elements

of the substitution matrix express how similar are shot
labels and in terms of color and position. The color sim-
ilarity between shot labels can be defined from the similarity
of their respective clusters. In what concerns position, it can be
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Fig. 5. Alignment matrix of a sequence alignment example.

Fig. 6. Scoring function of the sequence alignment example.

observed that during a scene, repetitive patterns of labels fre-
quently occur. This increases the possibility that a shot label
can be aligned with a shot label and the opposite with high
score, when shot labels and belong to the same pattern,
thus the similarity between shot labels, as far as position is con-
cerned, can be expressed through the possibility that a shot label

precedes or follows a shot label . As a result, the substitution
matrix is defined as the combination of two different simi-
larity metrics. Next, we define these similarity metrics, one for
color similarity and one for position similarity, and how they are
combined to formulate matrix .

For color similarity, for each cluster we compute the medoid
, defined as the shot of a cluster, whose average similarity

to all the other shots of this cluster is maximal. Then, the vi-
sual similarity between shot clusters can be computed from the
visual similarity between the corresponding medoids, thus pro-
ducing a cluster similarity matrix (CSM):

(14)

where VisSim is given from (8) and is the set of the medoids
of the clusters. Next we compute a pair probability matrix
(PPM) which represents the probability (frequency) of exis-
tence of a pair of sequential labels in the video. There are
pairs of successive labels in a video containing shots and the
PPM matrix is given from the following equation:

# (15)

where are the first and the second label of a pair respec-
tively and . The final substitution matrix is
computed as follows:

(16)

where and are the CSM and PPM matrices respectively
and with , are weights controlling the con-
tribution of each matrix element. Each entry of the ma-
trix represents the score of alignment of the th and th sym-
bols in the alphabet. The diagonal elements of matrix account

for match operations, while the non-diagonal elements account
for the mismatch operations during the alignment procedure. To
represent the cost of having a gap of length we consider the
linear gap model , where is a nonnegative constant
called the linear gap penalty and is set to 1.

After the formulation of the substitution matrix, the sequence
alignment algorithm computes the score for the best alignment
in each iteration (Fig. 4). The evaluation of the alignment is
based on the number of matches, mismatches and gaps between
the sequences. A scoring function [5] is defined as:

(17)

In Fig. 8 we illustrate the computation of this scoring function
for the previous sequence alignment example using a similarity
matrix with score for matches (M), for mismatches (m)
and a linear gap (G) function with .

We apply the above sequence alignment procedure to all pairs
of subsequences . The values of
the scoring function are stored in a score sequence SC. In Fig. 7
an example of the score sequence values is shown. At the scene
boundaries a change in the pattern of labels occurs, thus it is ex-
pected to observe a low score value. In other words, low score
values are considered as indicators of the possibility for scene
change. The global minimum of the score sequence corresponds
to the most dissimilar subsequences in the video, thus to the
most certain scene boundary. Since there are many local minima
in the score sequence, it is expected that those with value close
to the global minimum to correspond to the most probable scene
boundaries. To locate these boundaries we first find the global
minimum value in sequence SC. Then, the local minima of the
sequence SC that are less than a percentage of the global min-
imum value are characterized as scene boundaries. In our ex-
periments, a percentage equal to 80% was used providing very
good results.

IV. EXPERIMENTS

In this section we present numerical experiments for the key-
frame extraction problem and the scene detection problem, and
we compare our methods with existing approaches.

A. Data

To evaluate the performance of our key-frame extraction al-
gorithm we use seven frame sequences (Dataset A) taken from
TV-series and sports (Table I), which contain high camera and
object motion. The first frame sequence describes an action of
a comedy movie that takes place in an office. The next three se-
quences describe three attempts in a NBA Slam Dunk Contest
and the other three a goal attempt in a football match taken from
three individual cameras.

For the scene detection problem, the video sequences
(Dataset B) used for our data set were taken from TV-series
and movies. The majority of the videos are drama and comedy
films, while the rest are action films. Ten videos were used
consisting of 5051 shots and 177 scenes (Table II). On average
there were 505 shots and 18 scenes per video and the total
duration of the videos of the test set was approximately 5 h
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Fig. 7. Scoring function of a sequence alignment example.

Fig. 8. Comparative results of the tested key-frame extraction algorithms using
Average Video Fidelity measure on dataset B.

TABLE I
DATASET A CHARACTERISTICS

(293 min). The ground truth for this data set was manually
defined by a human observer of our research team. Each scene
was as a group of shots taken in the same physical location
describing objects or events.

B. Key-Frame Extraction Experiments

A difficult issue of the key-frame extraction problem is re-
lated to the evaluation of the extracted key-frames, since it is
rather subjective which frames are the best representatives of
the content of a shot. There are several quality measures that
can be used to evaluate the efficiency of the algorithms. In [3],
two quality measures are used. The first is the Fidelity measure
proposed in [2] and the second is the Shot Reconstruction De-
gree measure proposed in [16].

TABLE II
DATASET B CHARACTERISTICS

1) Average Shot Fidelity: The Fidelity measure compares
each key-frame with other frames in the shot. Given the frame
sequence and the set of key-frames

the distance between the set
of key-frames KF and a frame is defined as

(18)

where is the number of key-frames and a dis-
tance measure between two frames and .

The Average Shot Fidelity (ASF) measure is computed using
the average of the minimal distances between the key frame set
and the video shot and is given from the following equation:

(19)

2) Shot Reconstruction Degree: Given the set of key-frames,
the whole frame sequence of a shot can be reconstructed using
an interpolation algorithm. The better the reconstructed video
sequence approximates the original sequence, the better the set
of key-frames summarizes the video content. More specifically,
given the frame sequence , the set of key-frames KF and
a frame interpolation algorithm IA(), we can reconstruct any
frame from a pair of key-frames in KF [16]:

(20)

The Shot Reconstruction Degree (SRD) measure is defined as
follows:

(21)

where is given from the following equation:

(22)

where is a distance measure between two frames
and and MaxDiff the largest possible value that the frame

difference measure can assume.
3) Comparison: We compare the proposed approach to three

other methods. The first one is the simple k-means algorithm
applied on the histogram vectors. For each shot we perform
20 runs of the k-means algorithm keeping as final solution one
with the minimum clustering error. The number of clusters in
k-means algorithm is assumed to be the same as selected using
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TABLE III
COMPARATIVE RESULTS OF THE TESTED KEY-FRAME EXTRACTION

ALGORITHMS USING AVERAGE SHOT FIDELITY MEASURE ON DATASET A

TABLE IV
COMPARATIVE RESULTS OF THE TESTED KEY-FRAME EXTRACTION

ALGORITHMS USING SRD MEASURE ON DATASET A

the proposed estimation algorithm (Section II-B). The second
technique used for comparison is presented in [11], as a variant
of the method proposed in [22]. Initially, the middle frame of the
video sequence is selected as the first key-frame and added to
the empty set of key-frames KF. Next, each frame in the video
sequence is compared with the current set of key-frames. If it
differs from every key-frame in the current set, then it is added
into the set as a new key-frame. This algorithm uses a threshold
to discriminate whether two frames are similar or not. In our ex-
periments this threshold parameter is set to such a value that the
number of key-frames extracted is the same as in our algorithm.
Finally, the third technique is the typical spectral clustering al-
gorithm [8], described in Section II-A and employing the simple
k-means algorithm.

To evaluate the results of the extracted key-frames we use the
metrics mentioned above. More specifically in Tables III–IV we
present the performance results for the ASF and SRD measures,
respectively. To compute the SRD we use a simple linear in-
terpolation algorithm on the frame’s features [3]. The dataset
A, which contains high camera and object motion, is used to
show the effectiveness of our algorithm in cases where many
key-frames are required to represent the shot. It is clear that our
approach provides the best summarization of each shot com-
pared to the other methods and the best reconstruction of the
original video sequence from the extracted key-frames.

We also tested our key-frame extraction algorithm and com-
pared it with the other methods using dataset B (Tv-series and
movies). The measures we used are : i) Average Video Fidelity,
which is the mean of Average Shot Fidelities of each video and
ii) Average SRD, which is the mean of the SRD of the shots of
each video. In Figs. 8 and 9, we present the Average Video Fi-
delity and the Average SRD respectively. It is obvious that our
key-frame extraction algorithm provides better shot reconstruc-
tion and representation than the other three methods.

Fig. 9. Comparative results of the tested key-frame extraction algorithms using
Average SRD measure on dataset B.

Fig. 10. Key-frame extraction using the proposed approach of a shot with ob-
ject and camera motion �� � ��.

4) Representation: As already mentioned (Section II-A), a
great benefit of the fast global k-means algorithm is that it pro-
vides the solutions for all intermediate -clustering problems
with . In Fig. 10 we give an example of the extracted key-
frames of a video shot with object and camera motion. Moving
from the top to the bottom of this figure we show all interme-
diate solutions until the selected number of key-frames
is reached. The shot that we used contains 633 frames (frame se-
quence ). It shows a woman in an office setup. This shot can
be semantically divided into five subshots. a) The woman stands
against a door eavesdropping and then rushes to her office to
pick up the phone that is ringing; b) she talks on the phone, c)
lays the receiver of the phone down with a visible effort not to
make any noise, d) she rushes back to the door, and e) she con-
tinues eavesdropping.

In Fig. 11 we provide the key-frames extracted performing
the simple k-means algorithm, the algorithm in [11] and the typ-
ical spectral clustering algorithm. All algorithms fail to provide
a solution adequately describing the visual content of the shot,
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Fig. 11. Results for the key-frame extraction algorithms used for comparison
with �� � ��. (a) K-means. (b) Method in [11]. (c) Spectral Clustering em-
ploying simple k-means.

Fig. 12. Key-frame extraction algorithms in comparison in basketball se-
quence. (a) Our method. (b) K-means. (c) Method in [11]. (d) Spectral
Clustering employing simple k-means.

whereas our approach provides a sensible solution. More specif-
ically, they do not produce any frames for subshots (c), (d), and
(e) and instead produce multiple frames for subshot (a). In con-
trast the proposed approach produces key frames for all sub-
shots.

In Fig. 12 we provide the key-frames for these four algorithms
for a video shot describing a slam dunk attempt (frame sequence

). It becomes clear that our algorithm summarizes the attempt
from the beginning to the end, whereas the other three fail to
describe the end of the action.

C. Scene Detection Experiments

1) Performance Criteria: To evaluate the performance of our
method we used the following criteria [1]:

(23)

Fig. 13. Average performance results for different values of the window pa-
rameter.

where stands for the number of correct detected scene
boundaries, for the number of missed ones and the
number of false detections.

2) Results: In Fig. 13, the average performance of our al-
gorithm on all videos is presented, varying the length of the
window , (which defines the length of the sequences to be
aligned) from 2 to 8. It can be observed that even for , the
algorithm yields very good results. We believe that the choice of

is preferable because, apart from reducing the possibility
of missing a scene with a small number of shots, it is sufficiently
large for a reliable comparison during the sequence alignment
algorithm.

To detect the final scene boundaries, as already mentioned in
Section III-B, we select the local minima of the SC sequence
that are less than a percentage of its global minimum. In
Fig. 14, the average values (for ) for all videos are pre-
sented, for varying from 0.7 to 0.95. It can be observed that
for any from 0.7 to 0.85 our algorithm provides very good
result achieving the best performance for . In Fig. 15
we present the values for and varying
the weight parameter , which controls the contribution of the
matrices CSM and PPM, from 0 to 1. The best performance is
achieved for . It can be observed that for the per-
formance is very low, thus indicating that the use of the PPM
matrix is beneficial. In Table V we present the recall, precision
and values for and . It can be
observed that our approach achieves high correct detection rate
while keeping small the number of false detections.

To demonstrate the efficiency of the string comparison
method, we also implemented another approach where sub-
sequences are simply considered as sets of labels and their
similarity is measured using the similarity of the corresponding
histograms of labels. In Fig. 16 we present the values com-
paring the set comparison and our method (string comparison
using sequence alignment). It is clear that the structure of the
label sequence assists in the scene detection problem.

3) Comparison: To compare the effectiveness of our ap-
proach, we have also implemented two other methods. The first
one is proposed in [11]. This method computes both color and
motion similarity between shots and the final similarity value is
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TABLE V
COMPARATIVE RESULTS OF THE TESTED SCENE DETECTION ALGORITHMS USING RECALL, PRECISION AND � MEASURES

Fig. 14. Average performance results for different values of the �� parameter
and � � �.

Fig. 15. Average performance results for different values of the � parameter
and � � �� �� � ���.

weighted by a decreasing function of the temporal distance be-
tween shots given by the following equation:

(24)

where and are the time indices of the middle frames of
the two shots under consideration and the standard deviation
of the shots duration in the entire video. The parameter plays
a critical role in the final number of scenes produced by the
algorithm. The final shot similarity matrix defines a weighted

Fig. 16. Scene detection results (using � measure) when subsequences are
considered as i) strings (compared using sequence alignment) and ii) sets of
labels (compared using histogram similarity).

undirected graph where each node represents a shot and the
edges are the elements of the matrix. To partition the video into
scenes, an iterative application of Normalized cuts method [13]
was used that divides the graph into subgraphs. It must be noted
that the implementation of the Normalized cuts method in this
approach does not require the computation of eigenvectors, be-
cause scenes are composed of shots which are time continuous.
Thus a cut can be made along the diagonal of the shot similarity
matrix. The Ncut algorithm is applied recursively as long as the
Ncut value is below some stopping threshold . We have im-
plemented and tested this method using the same video set for
different values of the threshold parameter and the parameter

(24). Determination of optimal values for these parameters
is a tedious task. In our comparisons we found distinct values
for each video that provide the best performance. The recall,
precision and the values of the experiments are presented in
Table V.

The second method has been proposed in [17]. This method
clusters shots into groups taking into account the visual charac-
teristics and temporal dynamics of video. Then, a scene tran-
sition graph which is a graphical representation of the video is
constructed. The nodes of this graph represent the shots and the
edges the transitions between the shots. To find the scenes, this
graph is partitioned into connected subgraphs. The above algo-
rithm depends on two parameters. The first one is the parameter
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Fig. 17. Scene detection results (using � measure) comparing three scene de-
tection algorithms.

Fig. 18. Scene detection results (using � measure) comparing four key-frame
extraction algorithms.

which defines the minimum separation between any two re-
sulting clusters and controls the final number of clusters. The
second parameter is that defines two shots to belong in dif-
ferent clusters if they are not close to each other. After the ini-
tial segmentation, the segmented scenes are refined by adjusting
the threshold parameter to reflect the duration of scenes. De-
termination of optimal values for the parameters and is a
tedious task. To test the performance of this algorithm we ex-
ecuted multiple runs using different values for the parameters

and . In our comparisons we used distinct values for each
video that provide the best performance. The recall, precision
and the values of the experiments are presented in Table V.

In Fig. 17, the values of the three examined methods are
graphically presented. It is clear that our algorithm provides the
best value for all videos, and in general our method outper-
forms the other approaches.

Finally, to show that a sensible representation of a shot by its
key-frames contributes to the scene detection problem, we car-
ried out the following experiment. We implemented our scene
detection algorithm using as key-frames for the shots those ex-
tracted from our method and the other three methods mentioned
in Section IV-B. The values of the four examined methods
are presented in Fig. 18. It is obvious that the better the shot is

represented by its key-frames, the better our algorithm detects
scene boundaries.

All three algorithms were implemented in Matlab. Consid-
ering the scene detection problem for the first video sequence,
our algorithm and the method in [11] took approximately the
same time to identify the scene boundaries, whereas the method
in [17] took approximately five times more than the first two.

V. CONCLUSION

In this paper a new method for video scene segmentation
has been proposed. First key-frames are extracted using a spec-
tral clustering method employing the fast global k-means al-
gorithm in the clustering phase and also providing an estimate
for the number of the key-frames. Then shots are clustered into
groups using only visual similarity as a feature and they are la-
beled according to the group they are assigned. Shot grouping
is achieved using the same spectral clustering method proposed
for key-frame extraction.

After shot grouping, shots are labeled according to the cluster
they are assigned. Since a typical scene contains a sequence of
similar shot labels or a sequence of repetitive label patterns of
two or more different groups of shots, when a change in the
pattern occurs, we consider that a scene boundary also occurs.
To identify such changes, we considered windows of shot se-
quences which are compared using the “Needleman-Wunsch”
sequence alignment algorithm [7]. Thus our approach treats
time adjacency in a distinct processing phase while existing
methods use temporal distance between shots in the definition
of the similarity matrix that is subsequently used as input to
the clustering procedure. The presented experimental results
on several videos indicate that the proposed method accurately
detects most scene boundaries, while providing a good trade
off between recall and precision.

A drawback of most algorithms including our own is the over-
segmentation that occurs in cases where there is a continuous
change in the visual content of shots in a scene. In future work,
we will try to improve the performance of our method in order
to treat more effectively the case of videos where the shot visual
content changes continuously.
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