
Proceedings of the 2004 Winter Simulation Conference
R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, eds.

SPREADSHEET SIMULATION

Andrew F. Seila

Terry College of Business
The University of Georgia

Athens, GA, U.S.A.
ABSTRACT

“Spreadsheet simulation” refers to the use of a spreadsheet
as a platform for representing simulation models and per-
forming simulation experiments. This tutorial explains the
reasons for using this platform for simulation, discusses
why this is frequently an efficient way to build simulation
models and execute them, describes how to setup a spread-
sheet simulation, and finally examines some limitations on
the use of spreadsheets for simulation.

1 INTRODUCTION

A simulation is a sampling experiment that is done on
the computer (Fishman 1996). At the core of any sim-
ulation is a model that involves quantities whose values
are unpredictable and therefore must be sampled from an
appropriate population. The model is represented using a
computer program, and the program actually samples the
random variables, performs the computations of the model
and reports the outcome, usually in the form of one or more
numerical values. All simulation models fit this description.
Spreadsheet simulation simply involves the use of a spread-
sheet to represent the model, do the sampling, perform the
model computations and report the results.

The idea of an electronic spreadsheet for storing
information and performing calculations dates back to
Mattesich (1961) when computers were mainframes, but
spreadsheets as we know them are a product of the mi-
crocomputer age. The earliest spreadsheet, VisiCalc, had
limited functionality but introduced the world to the concept
of the interactive electronic spreadsheet, i.e., a program that
stores data and computations in a rectangular array of cells
and allows the user to manipulate the values and formulas
interactively. Later spreadsheets such as Lotus 1-2-3™,
Microsoft Excel™and Quattro Pro™greatly expanded the
features and developed the spreadsheet into an effective
modeling, prototyping, analysis and presentation tool.

Today, spreadsheets are available for all of the major
desktop operating systems: Windows, Unix/Linux and Mac
OS. Since Mac OS X is a derivative of BSD Unix, all of
the Unix spreadsheets (as well as other software) will even-
tually be available for this platform. The most prevalent
spreadsheet today is Microsoft Excel™, which is part of Mi-
crosoft Office™. Most other spreadsheets operate similarly
and have similar features as Excel™. In this paper, we will
refer to Excel™menus and other features. However, the
concepts and techniques to be discussed apply to virtually
all other spreadsheets.

Spreadsheets are used by many people. Since the idea
of the spreadsheet started in the context of accounting, it is
natural that they are widely used in business. Most business
users, however, employ a very small subset of the available
features. Engineers have been slow to adopt spreadsheets
as a computation and analysis platform, perhaps because
they have been trained to use other software tools such as
MATLAB™that were written specifically for mathematical
modeling. These tools are very powerful and can certainly
be used to develop a broad range of simulation models, but
in many cases a spreadsheet is simpler and more intuitive
to use.

2 WHY USE A SPREADSHEET FOR SIMULATION
MODELING?

We will use the term simulation platform to refer to the soft-
ware environment used to develop, test and run a simulation
experiment. First, let’s examine what features a simulation
platform needs. Following is a list of the capabilities that
must be available:

1. A way to represent mathematical and logical rela-
tionships between variables in the form of compu-
tations and assignment of values, and algorithms
that describe how to do a series of computations.

2. A way to generate uniformly distributed pseudoran-
dom numbers and use them to sample observations
from various distributions.

3. A means to repeat a series of computations, thus
implementing replications.

Seila
This list is minimal. Each of these features is necessary
for the platform to be used for simulation. Most popular
spreadsheets have these features. The following additional
features are available in most spreadsheets to make the
process quick and reliable:

1. A large number of functions to do mathematical,
statistical, database, date/time, financial and other
calculations.

2. Database representations and database access.
3. Charting and graphing.
4. Display and documentation features such as fonts,

colors and geometric shapes to improve presenta-
tion.

5. Automation through scripting languages such as
VBA (in the case of Excel™).

The table structure of spreadsheets allows the developer
to organize the computations and results in a natural and
intuitive manner. Spreadsheets are ubiquitous - almost
everybody has one - and file formats are standardized,
so files written by one spreadsheet can be imported by
others. As a result, developers and users can easily pass
simulation models from one to another. For these reasons,
the spreadsheet is an attractive platform for simulation.

There are a number of publications that dis-
cuss spreadsheet simulation. See Winston (1996) and
Seila, Ceric, and Tadikamalla (2003), Chapters 2 through
4 for very readable tutorials.

3 WHEN IS SIMULATION USING A
SPREADSHEET APPROPRIATE?

Certain modeling situations lend themselves well to imple-
mentation in a spreadsheet. Indeed, any set of calculations
in a spreadsheet can be considered a model. Usually, these
models have parameters or variables whose true values are
unknown and thus assumed values are used.

3.1 Stochastic models

In some cases, the unknown parameters are actually ran-
dom variables whose value cannot be predicted, i.e., the
models are stochastic models. Many stochastic models in
finance (including real estate and insurance), logistics and
engineering can be conveniently setup in a spreadsheet for
simulation. Spreadsheets are frequently used by actuaries,
for example, to evaluate insurance rating methods. Con-
sider, for example, an inventory model in which the demand
for the product is stochastic. In order to evaluate a particu-
lar replenishment policy, this value must be sampled when
the simulation experiment is run. An experiment would
consist of sampling demand for the product and applying
the inventory policy over a long period of time to compute
observations of the periodic costs resulting from excess
inventory and shortages associated with the policy. These
observations would then be used to estimate the mean cost
for the policy. The experiment would be repeated for sev-
eral policies to find the inventory policy that produces the
minimum mean cost. This is a typical stochastic model
that can be analyzed using simulation and will be used
as an example later in this paper. Interesting spreadsheet
implementations of queueing simulations have also been
developed (Grossman 1999).

3.2 Sensitivity analysis for spreadsheet models

Another situation where spreadsheet simulation is useful in-
volves doing a “what-if” or sensitivity analysis for models
having unknown parameters that are not necessarily random.
It is often the case in spreadsheet models that modelers fre-
quently want to determine how sensitive the performance
measure is to variations in these parameters. For example,
in a model that concerns the leasing or purchase of a piece
of real estate, the mortgage interest rate at the time the
contract is signed is an unknown parameter. The present
value of each decision (lease vs. buy) will depend upon
this parameter value and the decision maker would like to
know how sensitive the present value of a policy is to it.
If only one or two parameters are involved, modelers can
use the “Table” command of the “Data” menu to evaluate
the performance measure when each parameter value in a
collection of possible values is substituted into the model.
Excel™and other spreadsheets will support this calculation
with one unknown parameter and many performance mea-
sures, or with two unknown parameters and one performance
measure. For example, one could vary the interest rate from
5.5% to 11.0% in steps of .5% and, for each value, compute
the present value of the lease decision and the present value
of the buy decision. Or, one could vary the interest rate
and also vary the value of the property over a discrete set
of values, and for each combination of these two values,
compute the difference between the present values of the
two decisions.

In real spreadsheet models, there are normally many
unknown parameters, as well as multiple performance mea-
sures. This type of what-if analysis can become unwieldy
when the model has more than a few parameters. For exam-
ple, suppose that the number of unknown parameters in the
model is 10, and the number of possible values for each of
these parameters is 3, denoting the minimum, most likely
and maximum values. Then, the number of recalculations
that must be performed in order to assess all combinations
of these possible values is 310 = 59, 049. Clearly, this is
possible only if the process of recalculation is automated,
and then it is rather time-consuming. If the number of pa-
rameters increases to just 15, the number of recalculations
grows to about 14 million, an infeasible computational task

Seila
on most desktop systems. The solution to this conundrum
is simulation. By sampling these unknown values from ap-
propriate distributions, one can do a “what-if” analysis on a
model with a large number of unknown parameters. In fact,
1000 replications generally produces enough observations
to assess the variation in the output measures, regardless
of the number of combinations of values of unknown pa-
rameters. Thus, simulation is a useful technique when the
number of unknown parameters is moderate or large.

The mechanics of setting up and running a spreadsheet
simulation are very much the same in both of these cases,
but there is one important difference in the way the output
data are analyzed: When simulating a stochastic model, you
are usually interested in using the output data to estimate an
unknown performance measure for the model; when doing
sensitivity analysis, you are interested in using the output
data to assess the amount of variation in one or more output
quantities.

4 HOW DOES ONE SETUP A SPREADSHEET
SIMULATION?

The cells in a spreadsheet model can be classified by their
contents:

• Inputs to the model. These cells can contain pa-
rameters that are part of the model, such as unit
costs or mean demand. The contents can also be
sampled values of the random variables that rep-
resent uncertain quantities in the model such as
demand or price paid, or they can be assumed
values of unknown parameters when one is doing
a sensitivity analysis.

• Intermediate computations. These cells contain
formulas that define the calculations that are in-
volved in the model. For example, in an inventory
model, they might compute the inventory levels or
backlogs at the end of each period. These compu-
tations define the transformations that convert the
model’s inputs to the outputs.

• Outputs from the model. These cells contain the
observations on quantities of interest one seeks
from the model. For example, in an inventory
model, these observations could be the costs in-
curred during each period.

Most models that can be organized in this way
can be simulated in a spreadsheet. The following
steps are described in more detail in Chapter 2 of
Seila, Ceric, and Tadikamalla (2003). A simple inventory
model will be used to illustrate the process.
4.1 An inventory model

Consider a single period inventory model where a quantity
of a good will be purchased to satisfy a stochastic demand
whose distribution is known. As an example, we could be
placing an order for the number of hot dogs for a baseball
game. Demand will be determined by many unpredictable
factors, but data from past games shows that it has an Erlang
distribution with parameters 4.0 and 2. This random variable
has mean 8.0. We experience costs of ce = $60 per case for
an excess (if the amount ordered is greater than demand)
and cs = $160 per case for a shortage (if the amount on
hand is less than the demand). Let D represent the demand
and x represent the number of cases ordered. We can order
cases in fractional amounts. Then, the realized cost, after
we have attempted to satisfy demand, is

Y = ce(x − D) if x > D,

cs(D − x) if x ≤ D.

We want to simulate this model in order to estimate the
expected cost, given a specific order amount, x. If we do
this for several values of x, we can select the order amount
that provides the minimum cost.

4.2 Setup the model

The first step is to build the model in the spreadsheet
using fixed values for all parameters and other inputs,
including those that will be sampled. This lets us check
the computations and assure the correctness of the model
transformations before the simulation-specific components
are added. In our example, we would create the model with
a specific value for demand, which is the only stochastic
quantity in the model. Figure 1 shows a portion of the
spreadsheet containing the model at this stage. Cells D4
and D5 contain the cost parameters, ce and cs , respectively.
Cell D7 has the order amount, which is 9 in this case. Cells
D9 and E9 have the two parameters for the distribution of
demand - the mean and “stages” parameter for the Erlang
distribution. The value in cell E9 is not used at the moment,
but we entered it now so it all parameters will be available
at the next step. Cell D12 contains the (assumed) demand,
which we set to the value in cell D9 for the moment.
Then, the cost is computed in cell D11 using the formula
=IF(D12<D7,D4*(D7-D12),D5*(D12-
D7)).

We can put values in cell D7 that are greater than and
less than the values in cell D9 to check the computations
and assure that they are correct.

Second, replace the values in the cells that represent
sampled quantities with formulas that sample these values
from appropriate distributions. Appropriate formulas can
be found in any reference on random variate generation.

Seila
Figure 1: Basic Inventory Model

See Cheng (1998) for example. Spreadsheet add-ins for
simulation, which we will discuss in a later section, also
include formulas for sampling from various distributions.
At this point, all random variates can be resampled when
the spreadsheet is recalculated. In the inventory example
in Figure 1, the formula in cell D12, which contains the
demand, is replaced by the formula
=D9/2*dGammaDev(E9)
to sample demand from an Erlang distribution. The spe-
cific function used here, dGammaDev(), comes from the
PopTools add-in, which will be discussed later. Each time
the spreadsheet is recalculated by pressing the F9 key, the
contents of cell D12, the demand, is resampled and thus
changes. The new value of demand is then used to compute
the cost in cell E12. Thus, each press of the F9 key produces
a new replication for the simulation, and therefore, a new
observation of the cost in cell E12.

Third, identify the “output data” for the model. Actu-
ally, the modeler should know these desired performance
measures when the model is created. For example, in an
inventory model, you might use the mean cost per period
as a performance measure, so the output data for the model
would be the costs incurred in each period. Here, you
want to identify those cells that contain the values of these
performance measures. At this point, you can watch the
values of these cells change (i.e., being sampled) each time
the spreadsheet is recalculated. Since our example is a
single-period inventory model and we want to estimate the
the mean cost, the output data is just the contents of cell
E12, the observed cost for the replication. Note that in
more elaborate models, there could be several performance
measures.

4.3 Create the simulation run

It is useful to distinguish two types of simulation exper-
iments: (1) static simulations that are run in a series of
Figure 2: Inventory Model with Replications

independent, identical replications and produce indepen-
dent, identically distributed output observations, and (2)
dynamic simulations that are run in one long replication
and produce a time series of dependent observations. The
setup is different for each of these.

Where independent replications are performed, the
model computations are usually contained in some region
or group of regions of the spreadsheet. Since a recalcu-
lation produces a replication, we need to do a series of
recalculations of the spreadsheet and save the outputs after
each recalculation to perform the replications. There are
several ways to accomplish this. If the model computations
can be placed in a single row, we can just copy this row
the appropriate number of times and all replications are
displayed at once.

Figure 2 shows a portion of the inventory model with
replications added in columns C, D and E. These were created
by simply entering the first replication number in cell C12,
then copying the range C12:E12 down an additional 199
rows to create 200 replications.

If the computations in the model are more involved
and cannot be placed on a single row, we can use the
Table command in the Data menu to tell the spreadsheet
to go through an iterative recalculation, storing the values
of the outputs after each recalculation. To use the Data-
Table command, you must frst create a rectangular range
of cells to hold the model outputs. Start by creating a
column of numbers having values from 1 to the number
of replications you will perform. Excel™and most other
spreadsheets have an easy way to create a column or row
of consecutive numbers. Above each adjacent column to
the right, place a formula that will produce the value of a
specific output. The design is for each row of this table to
contain the replication number in the first column and the
outputs, i.e., observations on each performance measure,
for that replication in the adjacent columns.

Seila
To actually run the replications, select the Data menu,
then select the Table option. This command was originally
created to perform “what-if” scenarios as described above by
substituting each value in the first column into a specific cell,
recalculating the spreadsheet, and recording the values of
other cells that depend upon the substituted value adjacent to
the substituted value. In our case, the contents of each cell in
the first column of the data table is just a replication number,
and since the replications are independent and identically
distributed, the replication number is not actually used in
recalculation. However, the recalculation will cause all
random variate sampling formulas to re-execute, producing
a new observation for each random variate and thus new
observations for all outputs that are statistically independent
of those for all other replications. The Data-Table command
presents a dialog asking where you want to put the input
value. Click in the field labelled “Column Input Cell” and
select any unused cell, then click “OK”. The data table
containing the replications will fill quickly. When it is
finished, each column of this table except the left-most will
contain all of the observations on a specific performance
measure. It is not difficult to do thousands, or even tens of
thousands, of replications in this way.

In a dynamic simulation, the output values are observed
periodically over time or in sequence. For example, in an
inventory model, the costs incurred might be observed at
the end of each week. In addition, each output observation
will depend in some way on the previous outputs. If each
period’s computations can be placed in a single row, then the
next period’s computations are constructed from the contents
of the cells in the previous row. Once the computations
for a representative set of periods are setup, i.e., once a
representative row is entered, the row(s) can be copied, thus
extending the time span of the model and producing the
desired number of periodic observations. As a result, the
sequence of dependent output observations in the simulation
will be contained in one or more columns of the spreadsheet.
Chapter 3 of Seila, Ceric, and Tadikamalla (2003) has some
examples of dynamic models implemented in a spreadsheet.

4.4 Analyze the data

Each simulation has its own data analysis requirements
(Alexopoulos and Seila 1998). For stochastic models, anal-
ysis normally involves applying statistical procedures to
compute estimates of population parameters as well as
confidence intervals for these estimates. When sensitiv-
ity analysis is the objective, data analysis is concerned with
evaluating the likely range of values of the output data. This
can involve computing extreme values of the data such as
quantiles and graphically displaying the distribution of the
data. Most spreadsheets have formulas for computing the
sample mean, sample variance and quantiles of well known
distributions such as the normal distribution, so the usual
confidence interval formulas can be applied. Spreadsheets
also have a rich selection of other statistical computations
such as regression analysis and quantile computation, which
can be applied too.

Figure 3 shows the inventory example with a simple
data analysis in the range G2:H9. In this case, we are just
computing a confidence interval for the mean. All formulas
used in H2:H9 are standard Excel statistical formulas.

Figure 3: Inventory Model with Data Analysis

For the single period inventory model which we are
using as an example, our objective is to find the order
quantity that minimizes the mean cost. Finding this value
will require that we repeat the entire simulation experiment
using a range of values for the order quantity, which is
in cell D7. This is a good place to use the Data-Table
command. The result is shown in Figure 4, in the range
G11:I25. First, we created the sequence of order amount
values in the range G13:G25. Then, we placed formulas
=H5 and =H7 in cells H12 and I12, respectively, to copy
the estimates of the mean and sampling error of the mean
to these cells. Finally, we selected the range G12:H25 and
invoked the Table command of the Data menu to produce the
Table dialog in Figure 4. In the field labelled “Column Input
Cell”, we entered D7 to indicate that each value in the range
G12:G25 should be placed into D7 before recalculating the
spreadsheet. Upon clicking OK in the Table dialog, we
get a table resembling that in Figure 4. Since this is a
simulation, each spreadsheet will show a slightly different
table. We can examine the values in this table, but they are
much easier to interpret if we display them graphically.

Presentation generally includes some tables and graphs.
Spreadsheets have extensive facilities that make it easy to
produce these types of presentations in high quality. The
types of graphs or other displays will, of course, depend
upon the data analysis and the objectives of the modeling
effort. Figure 5 shows a graph of the results in Figure 4.
From this graph, you can not only identify the order quantity
that minimizes cost, but also you can see that the cost is

Seila
Figure 4: Order Quantity Evaluation

Figure 5: Graph of Expected Cost Versus Order Quantity

not very sensitive to the order quantity when it is close to
the optimal value.

It is important to note that in this example, we have
implemented a simulation model, run replications, collected
output data, analyzed the output data to estimate the required
parameters of the model and used the model to automate
the evaluation of a series of decisions. With the exception
of the formula for generating random variates, the entire
process was done using built-in Excel™features.

This and some additional spreadsheet simulation models
can be found at <http://seila.terry.uga.edu/
spreadsheetSim>. These models illustrate the con-
cepts and techniques just discussed and demonstrate how to
implement and run dynamic simulations using a spreadsheet.

5 SIMULATION ADD-INS FOR SPREADSHEETS

The process of developing and running a simulation
in a spreadsheet can be simplified somewhat by us-
ing one of the available add-in packages for Excel™.
@RISK™<http://www.palisade.com> and Crys-
tal Ball™<http://www.decisioneering.com>
are commercial packages. PopTools
<http://www.cse.csiro.au/poptools/> is a
free Excel™add-in. Another free add-in for Excel™called
SIMTOOLS.XLA by Professor Roger Myerson is available
at <http://home.uchicago.edu/˜rmyerson>.
These packages provide several features that are not
included in the basic spreadsheet:

• Random number generation using documented and
tested algorithms.

• Extensive functions for generating random variates
from a variety of distributions.

• Features to automate the setup and running of the
simulation experiment.

• Features to automate analysis and presentation of
the output data from the simulation experiment.

• Optimization procedures for the model.

The random number function, which is called
“RAND()” in most spreadsheets, produces a pseudo ran-
dom sample from a uniform distribution between 0 and 1.
Unfortunately, many spreadsheet publishers do not docu-
ment the algorithm used in RAND(). Frequently, these are
just the functions that are distributed as part of the C or
C++ compiler. Research has shown that some algorithms
for generating random numbers have better statistical prop-
erties than others (Fishman 1996, L’Ecuyer 1998). Thus,
using the built-in RAND() function carries some risk that
the random numbers will not behave as truly independent,
random numbers. In @RISK™, Crystal Ball™and Pop-
Tools, the random number generators have been tested and
documented, and therefore are recommended over RAND().

It is easy to write functions that generate observations
from some distributions such as the triangular, exponential
and normal distributions, starting from independent uniform
random variates (Cheng 1998). However, observations from
some distributions such as the Gamma and Weibull are
difficult or impossible to generate using just the built-in
functions of the spreadsheet. These add-ins provide easy,
intuitive functions for all common distributions.

If you use the Data-Table method described above to
run replications, some effort is required to set it up and the
method uses space in the spreadsheet to store the results.
These packages implement their own iterative procedure to
run replications and store the resulting summary statistics
or raw data. Often, you do not need to store all of the raw
data. Only the summary statistics are needed. Thus, these
add-ins can simplify the problems of setting up and running
simulations, and analyzing the output. Examples of the use
of these add-ins can be found on their websites and examples
of the use of @RISK™for financial modeling can be found
in Chapter 3 of Seila, Ceric, and Tadikamalla (2003).

<http://seila.terry.uga.edu/
spreadsheetSim>
<http://www.palisade.com>
<http://www.decisioneering.com>
<http://www.cse.csiro.au/poptools/>
<http://home.uchicago.edu/~rmyerson>

Seila
6 WHEN IS SPREADSHEET SIMULATION NOT
ADVISED?

Spreadsheets are powerful, convenient tools for simulation
modeling, but they do have four important limitations.

(1) Only simple data structures are available in spread-
sheets. The spreadsheet consists of a group of pages, each
of which has a table consisting of rows and columns of cells.
Each cell can contain data or a formula. One can treat a
column or row of cells as a vector, and a two-dimensional
range of cells can be treated as a two-dimensional array,
or matrix. In some simulation models, more elaborate data
structures such as lists and trees are needed. One case in
point is that of discrete event simulation, where lists are
needed for the event list and waiting lines. These structures
can be built in a spreadsheet, but they are contrived and
inefficient.

(2) Complex algorithms are difficult to implement. For
the most part, formulas in spreadsheet cells are static compu-
tations that are executed once when the cell is recalculated.
Spreadsheets do not have convenient facilities to implement
a while-loop or a for-loop. These can also be implemented,
but the implementation is often inefficient and inflexible.
For example, if a computation needs to be done 10 times,
it can be implemented in a column or row of 10 cells.
But, what if it needs to be done 100,000 times? Most
spreadsheets do not allow a column this long. Moreover,
how would you implement a loop that must be executed
until a particular value is obtained? For example, in an
actuarial ruin model, the value of the firm is computed until
it becomes negative. Since you do not know the maximum
number of periods to guarantee ruin (it might even be infi-
nite), you do not know how many cells to include. VBA in
Excel™can be used to implement more complex logic, but
this is a more advanced tool that is seldom used by casual
spreadsheet users. So, models that require complex loops
and other conditional computations may not work well in
a spreadsheet.

(3) Spreadsheets are slower than some alternatives.
Consider what a spreadsheet must do to recalculate. For-
mulas are stored in “source code.” That is, the spreadsheet
must interpret the formula before it can be executed. This
interpretation action normally takes much longer than the
execution. Some spreadsheets are sophisiticated enough
to store the executable code so the interpretation does not
have to be repeated each time, but it is nevertheless a much
less efficient setup than one would have with a compiled
language. Moreover, spreadsheets use much more of the
computer’s resources to support the elaborate user interface
and provide all of the features. Thus, spreadsheets are
inefficient in their use of memory. A model that is very
large and/or requires long simulation runs would need to
be programmed in a compiled language in order to execute
in a feasible length of time or use a reasonable amount of
main memory.

(4) Data storage is limited. Since the output data
must be stored in the spreadsheet, usually in a column,
the length of the output series is limited by the maximum
column length. In many spreadsheets, column lengths can
be tens of thousands or even hundreds of thousands of
cells. However, some models such as those that evaluate
the reliability of highly reliable systems, require very large
sample sizes - in the millions of observations. There are
ways to circumvent this restriction. One could use multiple
columns to store output data for the same performance
measure, or one could accumulate sample statistics without
actually storing the raw data. All of these solutions require
a more complex approach to the simulation and result in
more inefficiency in the execution of the simulation. When
this is the case, it is appropriate to ask if another platform
would be a better solution.

These four limitations seem to restrict considerably the
range of models that can be implemented in a spreadsheet.
However, many models are not subject to these restrictions,
and they are often done to get “quick and dirty” results. This
can be the case in many business models where a manager
or system engineer wants to estimate a parameter to plus-
or-minus 10 percent, for example. This is the place where a
spreadsheet really earns its bars. Prototypes can be quickly
built and run in a spreadsheet. If the prototype shows that
the simulation does not work well in the spreadsheet, then
it can be moved to a more appropriate platform.

7 CONCLUSIONS

Simulation modeling is used in only a very small percentage
of situations where it can provide valuable information for
decision making. The reasons for this underutilization are
many. Sometimes, the managers or analysts are not familiar
with specialized simulation software. Spreadsheets provide
an easily-used platform for simulation that is already on the
desktop of all analysts, engineers, managers, administrators
and others who need to model and simulate problems. Since
spreadsheets have powerful functions for doing sophisticated
computations and excellent graphing features for displaying
the results, they can be used in the entire process from
analyzing input data to developing the model to analyzing
and presenting the simulation results.

If the model is already implemented in a spreadsheet,
managers can experiment with the model and evaluate al-
ternative without having to involve simulation specialists.
Many simulations do not need to be extensive. They are
designed to provide ball-park estimates and to show gen-
eral system behavior. This is often true of financial models.
These models can usually be implemented most efficiently
in a spreadsheet. Simulation problems for which spread-
sheets are a useful platform also include prototype models

eila
S

which are relatively small and designed to provide a proof of
concept. Simulation is also a useful tool to do a sensitivity
analysis for any spreadsheet model that has parameters that
are unknown or whose vaues can change.

Commercial and free spreadsheets are continuing to be
developed. Future versions will undoubtedly allow larger
worksheets and perform computations more efficiently. As
computing power continues to grow, the limitations to
spreadsheet simulation will be removed and this platform
will be even more attractive. Excel™comes bundled with
an optimization tool (solver). Perhaps there will be a time
when it also comes bundled with a simulation tool!

REFERENCES

Alexopoulos, C., and A. F. Seila. 1998. Output data analysis.
In Handbook of Simulation: Principles, Methodology,
Advances, Applications, and Practice, ed. J. Banks.
New York: John Wiley.

Cheng, R. C. H. 1998. Random variate generation. In
Handbook of Simulation: Principles, Methodology, Ad-
vances, Applications, and Practice, ed. J. Banks. New
York: John Wiley.

Fishman, G. S. 1996. Monte carlo concepts, algorithms and
applications. New York: Springer.

Grossman, T. A. 1999. Spreadsheet modeling and simulation
improves understanding of queues. Interfaces 29 (3):
99–103.

L’Ecuyer, P. 1998. Random number generation. In Handbook
of Simulation: Principles, Methodology, Advances, Ap-
plications, and Practice, ed. J. Banks. New York: John
Wiley.

Mattesich, R. 1961. Budgeting models and system simula-
tion. The Accounting Review 36:384–397.

Seila, A. F., V. Ceric, and P. Tadikamalla. 2003. Applied sim-
ulation modeling. Belmont, California: Brooks-Cole.

Winston, W. L. 1996. Simulation modeling using @risk.
Belmont, California: Duxbury.

AUTHOR BIOGRAPHY

ANDREW F. SEILA is a Professor in the Department of
Management Information Systems in the Terry College of
Business at the University of Georgia. He has been in-
volved with simulation teaching and research for more than
30 years, and has attended the Winter Simulation Confer-
ence since 1977, serving as Program Chair for the 1994
meeting in Orlando. Dr. Seila is a Fulbright Fellow and
recognized authority on the use of spreadsheets for model
representation and simulation. His professional interests
include statistical methodology for simulation, modeling
methodology and simulation applications, especially those
in healthcare and finance. He is the author of over 50 refer-
eed papers and co-authored the chapter on output analysis
in the Handbook of Simulation. He has been a consultant
to numerous businesses, consulting firms and public institu-
tions. In recent years, Dr. Seila has expanded his interests
to Internet Technology. He is currently Director of the
Internet Technology Program at the University of Georgia.
His e-mail address is <andy@ms.terry.uga.edu>.

<andy@ms.terry.uga.edu>

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 41
	02: 42
	03: 43
	04: 44
	05: 45
	06: 46
	07: 47
	08: 48

