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ABSTRACT 

One of the most important but neglected aspects of a simula-
tion study is the proper design and analysis of simulation 
experiments.  In this tutorial we give a state-of-the-art pres-
entation of what the practitioner really needs to know to be 
successful.  We will discuss how to choose the simulation 
run length, the warmup-period duration (if any), and the re-
quired number of model replications (each using different 
random numbers).  The talk concludes with a discussion of 
three critical pitfalls in simulation output-data analysis. 

1 INTRODUCTION 

In many “simulation studies” a great amount of time and 
money is spent on model development and “program-
ming,” but little effort is made to analyze the simulation 
output data appropriately.  As a matter of fact, a very 
common mode of operation is to make a single simulation 
run of somewhat arbitrary length and then to treat the re-
sulting simulation estimates as the “true” model character-
istics.  Since random samples from probability distribu-
tions are typically used to drive a simulation model 
through time, these estimates are just particular realizations 
of random variables that may have large variances.  As a 
result, these estimates could, in a particular simulation run, 
differ greatly from the corresponding true characteristics 
for the model.  The net effect is, of course, that there could 
be a significant probability of making erroneous inferences 
about the system under study. 
 We now describe more precisely the random nature of 
simulation output.   Let 1 2, ,Y Y …  be an output stochastic 
process [see, for example, section 4.3 in Law and Kelton 
(2000)] from a single simulation run.  For example, iY  
might be the delay in queue for the ith job to arrive at a sin-
gle-server queueing system. Alternatively, iC  might  be 
the total cost of operating an inventory system in the ith 
month.  The 'iY s  are random variables that will not, in 
general, be independent or identically distributed (IID).  

 

Thus, many of the formulas from classical statistics (see 
Section 2) will not be directly applicable to the analysis of 
simulation output data. 

Example 1. For the queueing system mentioned 
above, the delays in queue will not be independent, since a 
large delay for one customer waiting in queue will tend to 
be followed by a large delay for the next customer waiting 
in queue.  Suppose that the simulation is started at time 
zero with no customers in the system, as is usually the 
case.  Then the delays in queue at the beginning of the 
simulation will tend to be smaller than later delays and, 
thus, the delays are not identically distributed. 
 Let 11 12 1, ,..., my y y  be a realization of the random vari-
ables 1 2, , , mY Y Y…  resulting from running the simulation 
with a particular set of random numbers 11 12, ,...u u .  If we 
run the simulation with a different set of random numbers 

21 22, ,...u u  , then we will obtain a different realization 

21 22 2, ,..., my y y  of the random variables 1 2, , , mY Y Y… .  (The 
two realizations are not the same since the different ran-
dom numbers used in the two runs produce different sam-
ples from the input probability distributions.)  In general,  
suppose that we make n independent replications (runs) of 
the simulation (i.e., different random numbers are used for 
each replication, each replication uses the same initial con-
ditions, and the statistical counters for the simulation are 
reset at the beginning of each replication) each of length m, 
resulting in the observations: 
 

11 1 1,..., ,...,i my y y  

21 2 2,..., ,...,i my y y  

                       
1, ..., ,...,n ni nmy y y  

 
The observations from a particular  replication (row) are 
clearly not IID.  However, note that 1 2, ,...,i i niy y y  (from 
the ith column) are IID observations of the random vari-
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able iY , for 1,2,..., .i m=   More generally, each entire rep-
lication is independent of any other replication, and each 
replication’s observations have the same (joint) distribu-
tion.  This independence across runs is the key to rela-
tively simple output-data analysis that is discussed in later 
sections of this paper.  Then, roughly speaking, the goal of 
output-data analysis is to use the observations jiy  (i = 1, 2, 
…, m; j = 1, 2, …, n) to draw inferences about characteris-
tics of the random variables 1 2, , , mY Y Y… . 

Example 2.  Consider a bank with five tellers and one 
queue, which opens its doors at 9 A.M., closes its doors at 5 
P.M., but stays open until all customers in the bank at 5 P.M. 
have been served.  Assume that customers arrive with IID 
exponential interarrival times with mean 1 minute, that ser-
vice times are IID exponential random variables with mean 
4 minutes, and that customers are served in a first-in, first-
out  (FIFO) manner.  Table 1 shows two typical output sta-
tistics from 5  independent  replications  of  the  bank, as-
suming that no customers are present initially.  Note that re-
sults from different replications can be quite different.  Thus, 
one run clearly does not produce the “answers.” 
 

Table 1: Results for 5 Independent Replications of  
the Bank Model 
Replication Average delay 

in queue 
Average number 

in queue 
1 1.53 1.52 
2 1.66 1.62 
3 1.24 1.23 
4 2.34 2.34 
5 2.86 2.83 

 
Our goal in this paper is to discuss methods for statis-

tical analysis of simulation output data and to present the 
material with a practical focus.  Section 2 of this paper re-
views formulas from classical statistics based on IID data, 
which we will find useful later in this paper.  In Section 3, 
we discuss the two main types of simulations with regard 
to output-data analysis, namely, terminating and nontermi-
nating.  Statistical methods for analyzing each type are 
given in Sections 4 and 5, respectively.  Finally, we give a 
summary of this tutorial and three fundamental pitfalls in 
output-data analysis in Section 6. 

Portions of this paper are based on Chapters 4 and 9 of 
Law and Kelton (2000).  Other references on output-data 
analysis are Alexopoulos  and Kim (2002), Banks et al. 
(2001), and Nakayama (2003). 

2 REVIEW OF CLASSICAL STATISTICS 

Suppose that 1 2, , , nX X X…  are IID random variables with 
population mean and variance 2 and µ σ , respectively.   
Then unbiased point estimators for 2 and µ σ  are given by 
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Furthermore, an approximate 100(1 ) percentα−  
(0 1)α< <  confidence interval for µ is given by  
 
 2

1,1 / 2( ) ( ) /nX n t S n nα− −±  (3) 
 
where 1,1 / 2nt α− −  is the upper 1 / 2α−  critical point for a t 
distribution with 1n −  degrees of freedom.  If the sample 
size n is “sufficiently large,” then the confidence interval 
given by Expression (3) will have a coverage probability 
arbitrarily close to 1 α− .  Alternatively, if the 'iX s  are 
normally distributed, then the coverage probability will be 
exactly 1 α− .  In practice, if the distribution of the 'iX s  
is reasonably symmetric, then the coverage probability will 
be close to 1 α−  [see Law and Kelton (2000, pp. 253-
257)].  If we increase the sample size from n to 4n, then the 
half-length of the confidence interval, 2

1,1 / 2 ( ) /nt S n nα− − , 
will decrease by a factor of approximately 2, since there is 
an n in the denominator under the square-root sign. 
 As stated above, the 'iY s from one simulation run are 
not IID and, thus, Expressions (1), (2), and (3) are not di-
rectly applicable to their analysis.  However, if we take 
comparable output statistics from different independent 
replications of a simulation model, then these observations 
are IID and the three expressions are applicable. 

Example 3. For the bank simulation of Example 2, the 
five average delays in queue from column 2 of Table 1 are 
IID and, thus, Expressions (1), (2), and (3) could legiti-
mately be used for their analysis. 

3 TYPES OF SIMULATIONS WITH  
REGARD TO OUTPUT ANALYSIS 

The options available for designing and analyzing simula-
tion experiments depend on whether the simulation of in-
terest is terminating or nonterminating, which depends on 
whether there is an obvious way for determining  the simu-
lation run length. 
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 A terminating simulation is one for which there is a 
“natural” event E that specifies the length of each run (repli-
cation).  Since different runs use independent random num-
bers and the same initialization rule, this implies that compa-
rable random variables are IID.  The event E often occurs at 
a time point that has one of the following properties: 
 

• The system is “cleaned out” 
• Beyond which no useful information is obtained 
• Specified by management. 

 
The event E is specified before any runs are made, and the 
time of occurrence of E for a particular run may be a ran-
dom variable.  Since the initial conditions for a terminating 
simulation generally affect the desired measures of per-
formance, these conditions should be representative of 
those for the actual system. 

Example 4. A retail/commercial establishment (e.g., a 
bank) closes each evening.  If the establishment is open 
from 9 to 5, the objective of a simulation might be to esti-
mate some measure of the quality of customer service over 
the period beginning at 9 A.M. and ending when the last 
customer who entered before the doors  closed  at 5 P.M. 
has  been served.  In  this case,  E = {8 hours of simulated 
time have elapsed and the system is empty}, and the initial 
conditions for the simulation are the number of customers 
present at time zero. 

Example 5. Consider a military ground confrontation 
between a blue force and a red force.  Relative to some ini-
tial force strengths, the goal of a simulation might be to de-
termine the (final) force strengths when the battle ends.  In 
this case, E = {either the blue force or the red force has 
“won” the battle}.  An example of a condition that would 
end the battle is one side losing 30 percent of its force, 
since this side would no longer be considered viable.  The 
choice of initial conditions, e.g., the number of troops and 
tanks for each force, for the simulation is generally not a 
problem here, since they are specified by the military sce-
nario under consideration. 
  A nonterminating simulation is one for which there is 
no natural event E to specify the length of a run.  This of-
ten occurs when we are designing a new system or modify-
ing an existing system, and we are interested in the behav-
ior of the system in the long run when it is operating 
”normally.”  Unfortunately, “in the long run” doesn’t  
naturally translate into a terminating event E.   
 Consider the output stochastic process 1 2, ,...Y Y  for a 
simulation model. Let ( ) ( )i iF y I P Y y I| = ≤ |  for 

1,2,...i = , where y is a real number and I represents the ini-
tial conditions used to start the simulation at time 0.  [The 
conditional probability ( )iP Y y I≤ | is the probability that 
the event { }iY y≤ occurs given the initial conditions I.]  
For a manufacturing system, I might specify the number of 
jobs present, and whether each machine is busy or idle, at 
time 0.  We call ( )iF y I|  the transient distribution of the 
output process at (discrete) time i for initial conditions I.  
Note that ( )iF y I|  will, in general, be different for each 
value of i and each set of initial conditions I.  For fixed y 
and I, the probabilities 1( )F y I| , 2 ( )F y I| , … are just a 
sequence of numbers.  If ( ) ( )iF y I F y| →  as i → ∞  for 
all y and any initial conditions I, then ( )F y is called the 
steady-state distribution of the output process 1 2, ,...Y Y .  
Note that the steady-state distribution ( )F y  does not de-
pend on the initial conditions I. 
 A measure of performance for a nonterminating simu-
lation is said to be a steady-state parameter if it is a char-
acteristic of the steady-state distribution of some output 
stochastic process 1 2, ,... .Y Y   If the random variable Y has 
the steady-state distribution, then we are typically inter-
ested in estimating the steady-state mean ( )E Yν = . 

Example 6. Consider a company that is going to build 
a new manufacturing system and would like to determine 
the long-run (steady-state) mean hourly throughput of their 
system after it has been running long enough for workers 
to know their jobs and for mechanical difficulties to have 
been worked out.  The system will operate continuously 24 
hours a day for 7 days a week.  Let iN be the number of 
parts manufactured in the ith hour.  If the stochastic proc-
ess 1 2, ,...N N  has a steady-state distribution with corre-
sponding  random variable N, then we are interested in es-
timating the steady-state mean ( )E Nν = . 

4 STATISTICAL ANALYSIS FOR  
TERMINATING SIMULATIONS 

Suppose that we make n independent replications of a 
terminating simulation each terminated by the event E.  
Let jX  be random variable defined over the jth replica-
tion, for 1, 2, ...,j n= ; it is assumed that the 'jX s  are 
comparable for different replications.  Then the 'jX s  are 
IID random variables.  For the bank of Example 4, jX  

might be the average delay 
1

/
N

i
i

D N
=
∑ over a day from the 

jth replication, where N (a random variable) is the num-
ber of customers served in a day and iD  is the delay in 
queue of the ith arriving customer.  For the combat model 
of Example 5, jX  might be the number of red tanks de-
stroyed on the jth replication. 
 Suppose that we would like to obtain a point estimate 
and confidence interval for the mean ( )E Xµ = , where X 
is a random variable defined on a replication as described 
above.  Make n independent replications of the simulation 
and let 1 2, , , nX X X…  be the resulting IID random vari-
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ables.  Then, by substituting the 'jX s  into Expressions (1), 

(2), and (3), we get that ( )X n  is an unbiased point estima-
tor for µ , and an approximate 100(1 ) percentα−  confi-
dence interval for µ  is given by  
 

2
1,1 / 2( ) ( ) /nX n t S n nα− −±  

 
Example 7. A small factory consists of a machine and 

an inspector, as shown in Figure 1.  Unfinished parts arrive 
to the factory with exponential interarrival times having a 
mean of 1 minute.  Processing times at the machine are uni-
formly distributed on the interval [0.65, 0.70] minute, and 
subsequent inspection times at the inspector are uniformly 
distributed on the interval [0.75, 0.80].  (The assumption of 
uniformity is for ease of exposition, and is not likely to be 
valid in a real-world application.)  Ninety percent of in-
spected parts are “good” and leave the system immediately; 
10 percent of the parts are “bad” and are sent back to the 
machine for rework.  (Both queues are assumed to be of in-
finity capacity.)  The machine is subject to ran-domly occur-
ring breakdowns.  In particular, a new (or freshly repaired) 
machine will break down after an ex-ponential amount of 
calendar time with a mean of 6 hours.  Repair times are uni-
form on the interval [8, 12] minutes.  If a part is being proc-
essed when the machine breaks down, then the machine con-
tinues where it left off upon the completion of repair.  
Assume that the factory is initially empty and idle. 

 

Machine Inspector 
0.9 Good

0.1 Bad  
Figure 1: Small Factory 

 
The factory gets an order to produce 2000 parts and, 

thus, a simulation of this system can be considered to be 
terminating with E = {2000 parts have been completed}.  
Let T be the time  required to complete the required 2000 
parts.  Then the company would like a point estimate and a 
95 percent confidence interval for the mean ( ).E Tµ =  
We made 10 independent replications of the simulation and 
obtained the following observed values for  T (in hours): 
 
 1 32.62T = , 2 32.57T = , 3 33.51T = , 4 33.29T = , 
 5 32.10T = , 6 34.24T = , 7 32.70T = , 8 33.49T = , 
 9 33.36T = , 10 34.61T =  
 
Substituting the 'jT s  into Expressions (1), (2), and (3), 
gives the following results: 
 

2(10) 33.25,  (10) 0.606T S= =  
and an (approximate) 95 percent confidence interval  for 
( )E Tµ =  is given by 

 
        33.25 0.56   or   [32.69,33.81]±  
 

Thus, we are approximately 95 percent confident that 
µ  is between 32.69 and 33.81 hours.  (If 100 people per-
formed this experiment independently, then we would ex-
pect that about 95 out of the 100 confidence intervals to 
contain the true µ .)  Note also that the interval is quite 
precise, with the half-length of the confidence being less 
than 2  percent of the point estimate.   

5 STATISTICAL ANALYSIS FOR 
NONTERMINATING SIMULATIONS 

Let 1 2, ,...Y Y  be an output stochastic process from a single 
run of a nonterminating simulating.  Suppose that we want 
to estimate the steady-state mean ( )E Yν = , which is also  
defined by  
 

lim ( )i
i
E Yν
→∞

=  

 
where ( )iE Y  is the transient mean at time i.  Thus, the 
transient means converge to the steady-state mean.  How-
ever, ( )iE Y ν≠  for “small” i because we generally don’t 
know to choose the initial conditions I to be representative 
of “steady-state behavior.”  This causes the sample mean 

( )Y m  to be a biased estimator of  ν  for all finite values of 
m.  The problem that we have just described is called the 
problem of the initial transient in the simulation literature. 
 The technique most often suggested for dealing with 
this problem is called warming up the model.  The idea is 
to delete some number of observations from the beginning 
of a run and to use only the remaining observations to es-
timate ν .  In particular, given the observations 

1 2, , , mY Y Y… , we would use  

1( , )

m

i
i l

Y
Y m l

m l
= +=

−

∑
 

 
(1 1)l m≤ ≤ −  rather than ( )Y m  as an estimator of ν .  In 
general, one would expect ( , )Y m l  to be less biased than 

( )Y m , since the observations near the “beginning” of the 
simulation may not be very representative of steady-state 
behavior due to the choice of initial conditions. 
 The question naturally arises as to how to choose the 
warmup period (or deletion amount) l.  We would like to 
pick l (and m) such that [ ( , )]E Y m l ν≈ .  If l and m are 
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chosen too small, then [ ( , )]E Y m l  may be significantly dif-
ferent than ν .  On the other hand, if l is chosen larger than 
necessary, then ( , )Y m l  will probably have an unnecessar-
ily large variance. 
 The simplest and most general technique for determin-
ing l is a graphical technique due to Welch (1983) [see also 
Law and Kelton (2000, pp. 520-523)].  Its specific goal is 
to determine l such that ( )iE Y ν≈  for i l> , where l is the 
warmup period.  This is equivalent to determining when 
the transient-mean curve ( )iE Y “flattens out” at level ν .  
In general, it is difficult to determine l from a single repli-
cation due to the inherent variability of the process 

1 2, ,...Y Y .  As a result, Welch’s procedure is based on mak-
ing multiple replications of the simulation in a pilot study. 

5.1 The Replication/Deletion Approach 

In this section, we discuss how to construct a point esti-
mate and confidence interval for ν .  Suppose that the 
warmup period has been determined by Welch’s procedure 
or by using “engineering judgment.”  Make n independent 
replications of the output process 1 2, ,...Y Y  each of length 
m, where m should be much larger than l.  (There is no de-
finitive way of picking the run length m here, as there was 
for terminating simulations.)  Let jiY  be the ith observation 
from the jth replication, for 1,2,...,j n=  and 1,2,...,i m= .   
Let 
 

   
1

/( - )   for 1,2,...,
m

j ji
i l

X Y m l j n
= +

= =∑  

 
Note that 1i l= +  is where we think that “steady state” be-
gins.  Then the 'jX s  are IID random variables .  Further-
more, ( )jE X ν≈  since , 1 , 2 ,, ,...,j l j l j mY Y Y+ +  each have ap-
proximate mean ν .  Then, by substituting the 'jX s  into 

Expressions (1), (2), and (3), we get that ( )X n  is an (ap-
proximately) unbiased point estimator for ν , and an ap-
proximate 100(1 ) percentα−  confidence interval for ν  is 
given by  
 
   2

1,1 / 2( ) ( ) /nX n t S n nα− −±  
 
We call the above method for constructing a point estimate 
and confidence interval for ν  the replication/deletion 
method.  One criticism that has been levied against this 
method historically is that l observations must be discarded 
from each of the n replications.  However, given the avail-
ability and speed of PCs, this is no longer an issue for 
many, if not most, steady-state analyses. 
Example 8. Consider a manufacturing system with a 
receiving/shipping station and five work stations, as de-
scribed in Law and Kelton (2000, pp. 684-695). Assume 
that there are 4, 2, 5, 3, and 2 machines in stations 1 
through 5, respectively.  The machines in a particular sta-
tion are identical, but machines in different stations are dis-
similar.  Jobs arrive to the system with exponential interar-
rival times with a mean of 1/15 of an hour.  Thus, 15 jobs 
arrive in a typical hour.  There are three types of jobs, and 
jobs are of types 1, 2, and 3, with respective probabilities 
0.3, 0.5, and 0.2.  Job types 1, 2, and 3 require 4, 3, and 5 
operations to be done, respectively, and each operation 
must be done at a specified work station in a prescribed or-
der.  Each job begins at the receiving/shipping station, 
travels to the work stations on its routing, and then leaves 
the system at the receiving/shipping station.  For example, 
the routing for a type 1 job is 3, 1, 2, 5. 

A job must be moved from one station to another by a 
forklift truck, which moves at a speed of 5 feet per second.  
When a forklift becomes available, it processes requests by 
jobs using a shortest-distance-first dispatching rule. The 
factory has 2 forklift trucks. 

Each station has a single FIFO queue.  The time to 
perform an operation at a particular machine is a gamma 
random variable with a shape parameter of 2, whose mean 
depends on the job type and the station to which the ma-
chine belongs.  For example, the mean service time for a 
type 1 job at station 3 (the first station on its routing) is 
0.25 hour.  When a machine finishes processing a job, the 
job blocks that machine (i.e., the machine cannot process 
another job) until the job is removed by a forklift.   

The factory is open 8 hours a day, and thus the arrive 
rate is 120 jobs per day.  The system configuration described 
here is called system design 3 in Law and Kelton (2000). 

Let 1 2, ,...N N  be the output stochastic process corre-
sponding to daily throughputs.  Then we are interested in 
obtaining a point estimate and 90 percent confidence inter-
val for the steady-state mean daily throughput ( )E Nν = .  
Using Welch’s graphical procedure, we determined that a 
reasonable warmup period for this output process is 15l =  
days [see Law and Kelton (2000, pp. 694-695)]. 

We made 10n =  (production) replications of length 
115m =  days, and used a warmup period of  15l =  days.  

Let 
 

115

16

100

ji
l

j

N
X ==

∑
 

 
where jiN  is the throughput in the ith day of the jth repli-
cation.   
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Substituting the 'jX s  into Expressions (1), (2), and 
(3), we get the following point estimate and approximate 
90 percent confidence interval for ( )E Nν = : 
 

ˆ (10) 120.29Xν = =  
 
and 
 

120.29 0.63   or   [119.66,120.92]±  
 

Thus, we are approximately 90 percent confident that 
the steady-state mean daily throughput is between 119.66 
and 120.92 jobs per day.  Note that this confidence interval 
contains 120, which should be the mean daily throughput if 
the system has enough machines and forklifts.  (In a real 
application, ν  would not, of course, be known.)  

Note also that the confidence interval is quite precise, 
with the half-length being less than 1 percent of the point 
estimate.   Also, since jX  is the average of 100  'jiN s , it 
should be approximately normally distributed by a central-
limit-theorem type effect.  This suggests that the coverage 
of the confidence interval should be close to the desired 
coverage probability of 0.9.  Finally, if, for example, we 
wanted to decrease the half-length by a factor of 3, then a 
total of approximately 90 replications would be required. 

6 SUMMARY AND PITFALLS IN  
OUTPUT-DATA ANALYSIS 

We have seen that both terminating and nonterminating 
analyses can be performed easily by making independent 
replications of the simulation model and by using Expres-
sions (1), (2), and (3), which come from a first under-
graduate course in statistics.  In the case of steady-state pa-
rameters, we also have to determine a warmup period, but 
this can be reliably addressed using Welch’s graphical ap-
proach.  The method of replication can also be applied eas-
ily to comparing alternative system configurations [see, for 
example, Law and Kelton (2000, chapters 10 and 11)] and 
to estimating multiple measures of performance. 
 The following are three major pitfalls in output-data 
analysis: 
 

• Analyzing simulation output data from one run us-
ing formulas [e.g., Expression (3)] that assume in-
dependence, which might result in a gross underes-
timation of variances and standard deviations.  This 
problem is exacerbated by the use of these formu-
las by some simulation-software packages. 

• Failure to have a warmup period for steady-state 
analyses 

• Failure to determine the statistical precision of 
simulation output statistics by the use of a confi-
dence interval, which can be accomplished easily 
using the replication approach.  
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