

A scalable infrastructure for CMS data analysis based on OpenStack Cloud and GlusterFS

Datacenter Indirection Infrastructure(DII) for High Energy Physics (HEP)

¹Salman Toor, ²Lirim Osmani, ¹Paula Eerola, ¹Oscar Kraemer, ¹Tomas Lindén, ²Sasu Tarkoma and ³John White ¹Helsinki Institute of Physics (HIP), CMS Program, ²Computer Science Department, University of Helsinki, and ³Helsinki Institute of Physics (HIP), Technology Program {Salman.Toor, Paula.Eerola, Carl.Kraemer, Tomas.Linden}@helsinki.fi, {Lirim.Osmani, Sasu.Tarkoma}@cs.helsinki.fi, John.White@cern.ch

Introduction

The aim of this project is to design and implement a scalable and resilient Infrastructure for CERN High Energy Physics (HEP) data analysis. The infrastructure is based on OpenStack components for structuring a private Cloud with Gluster File System. Our test results show that the adopted approach provides a scalable and resilient solution for managing resources.

System Components

- OpenStack Cloud (Grizzly release)
- Gluster File System
- ➤ Advanced Resource Connector middleware
- CERN Virtual Machine File System

Architecture

- Computational resources
 - ♦ Dell PowerEdge, 2 quad core Intel Xeon
 - ♦ 32GB (8 x 4GB) RAM
 - ♦ 4 x 10GbE Broadcom 57718 network
- ➤ Gluster File System servers
 - ♦ Dell Power Edge servers
 - ♦ 512GB LUN attached to each
 - ♦ FCoE (Fibre Channel over Ethernet) protocol

Туре	Nodes	Cores	Memory	
Virtual Machines (QCOW2 images)				
WN	25	4	14	
CE	1	4	14	
GlusterFS	2	4	14	
Real Machines				
Controller	1	8	32	
Compute	19	8	32	
GlusterFS	2	8	32	

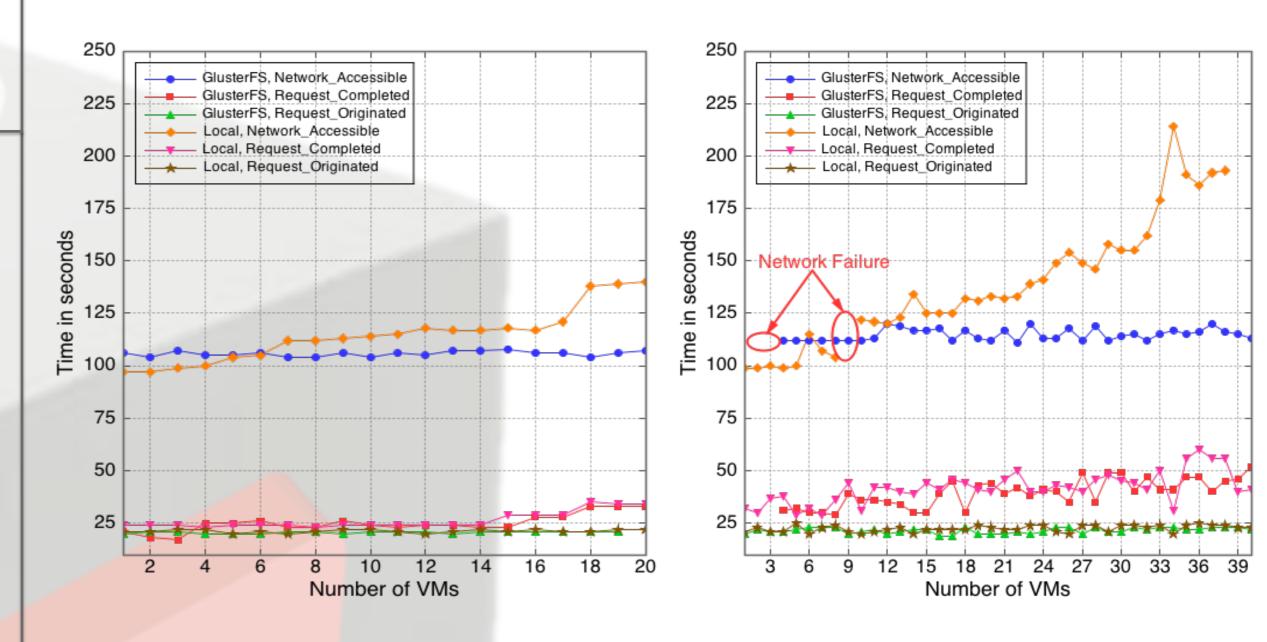
Computing GlusterFS volume Gluster Openstack Compute Controller GlusterFS Head **Gluster Brick Gluster Brick**

	Local and GlusterFS based storage					
	Root local	Ephemeral disk	GlusterFS shared MP			
WN	10GB	45GB	900GB			
CE	10GB	-	900GB			

Network Attached Storage (NAS) iSCSI

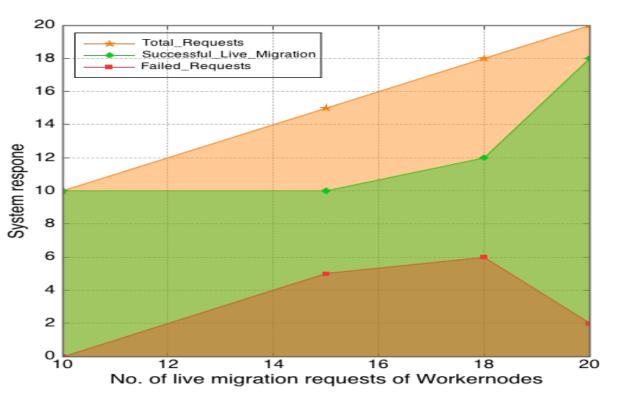
GlusterFS 10

- ➤ GlusterFS is used
 - ♦ inside the Cloud to provide shared area (Brick 1 & 2, 2TB)
 - repositories (Brick 3 & 4, 1TB)

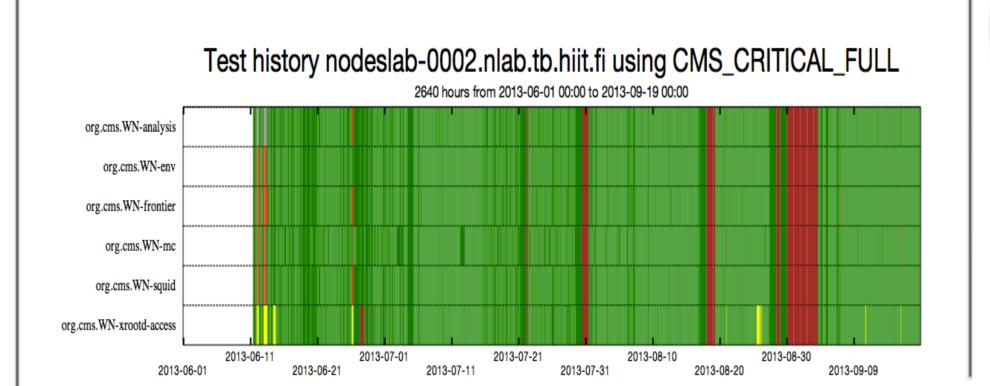

	Brick-1	Brick-2	Brick-3	Brick-4
Days	20	20	20	20
Total Reads	40GB	41GB	169GB	831GB
Total Writes	38GB	36GB	364GB	1017GB
Average – Maximum Latency (milliseconds) /				

No of Calle lin millione

1	7/ 1	No. of Calls (in millions)				
100	Read	0.05-11.6/	0.05-10.8/	0.29-217.1/	0.38-2386/	
		29.8	31.0	0.6	0.32	
	Write	0.08-16.8/	0.07-14.0/	1.66-5151/	1.06-7281/	
	$\Pi \Pi$	1.8	1.9	10.8	7.8	

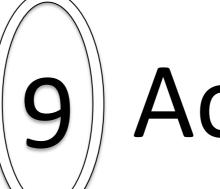

6 Performance Analysis

- ➤ 4% performance loss evaluated with the HEPSPEC-2006 benchmark
- Burst mode VM boot requests based on Local and GlusterFS based setups
- Uniform boot response with GlusterFS


Live Migration

- Experiments with different kinds of instances
 - ♦ Minimal VM of Ubuntu m1.small took 6 sec
 - ♦ Worker node VM with full configuration took 43 sec
- Experienced random failures in higher number of live migration requests

5 System Stability


- > The evaluation is based on the CMS Dashboard together with CSC and NDGF accounting and monitoring systems
- More than 65k jobs have been processed, including CMS production and analysis jobs
- > Example of a specific user
 - ♦ Run 400 analysis jobs with 74 walltime days and 85% CPU efficiency

Conclusion

We have demonstrated:

- More flexible system/user management through the virtualized environment;
- > Efficient addition/removal of virtual resourses;
- Scalability with an acceptable performance loss;
- > A seamless view of our site through ARC middleware.

Acknowledgements

- > This project is funded by Academy of Finland (AoF)
- > Thanks to Ulf Tigerstedt, CSC for help with HEPSPEC tests
- > The CMS collaboration for sending production jobs to process