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Abstract 
Effective and efficient modeling and management of hardware resources have always been 

critical toward generating highly efficient code in optimizing compilers. The instruction templates 
and dispersal rules of the Itanium® architecture add new complexity in managing resource 
constraints to instruction scheduler. We extended a finite state automaton (FSA) approach to 
efficiently manage all key resource constraints of an Itanium® architecture on-the-fly during 
instruction scheduling. We have fully integrated the FSA-based resource management into the 
instruction scheduler in the Open Research Compiler for the Itanium® architecture. Our integrated 
approach shows up to 12% speedup on some SPECint2000 benchmarks and 4.5% speedup on 
average for all SPECint2000 benchmarks on an Itanium®-based system when compares to an 
instruction scheduler with decoupled resource management. In the meantime, the instruction 
scheduling time of our approach is reduced by 4% on average. 

1. Introduction 

The Itanium® architecture exemplified by the Intel® Itanium® Processor Family (IPF) relies 
heavily on compilers to statically schedule instructions to fully utilize its wide execution 
resources. The majority of instruction schedulers use the dependence critical path lengths as the 
primary cost function to schedule instructions. Modeling of execution resources is dealt with in 
an ad hoc way if at all, often in a manner of scattering the hardware details across the entire 
scheduling phase. The Intel® Itanium® architecture [12] introduces the notion of instruction 
bundles and templates, which limit the instruction mixes presented to the hardware so that 
instructions can be dispatched efficiently to execution units. Instruction templates impose new 
constraints on instruction packing and dispatching, adding new complexity to resource 
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management. In fact, such new constraints are not unique to the Itanium® architecture. Modern 
processors tend to specialize execution units according to functional types (e.g. memory, ALU, 
floating-point, etc.) and even have asymmetric functionality within the same types. A given 
instruction can sometimes be issued only to a particular unit within the same type, and such 
decisions could even be affected by surrounding instructions. 

 

Figure 1:  An example comparing decoupled vs. integrated template selection. 

A simple but sub-optimal approach to deal with these new and complex templates and 
instruction dispatching constraints is to add a separate instruction-packing phase after instruction 
scheduling. However, the example in Figure 1 argues for an intelligent scheduling phase 
equipped with better resource management to achieve optimal performance. Assume a 
hypothetical implementation of the Itanium® architecture that can issue three instructions per 
cycle. It has two memory (M) execution units and two ALU (I) units. For simplicity, assume 
there are only two instruction templates: MII and MMI, where M and I specify the functional unit 

ld a = [x]
add b = y, e
ld y = [f] ;;  // can’t fit in cycle 1
ld c = [g] 
add x = h, I
add d = j, k ;;

(a) Decoupled scheduling before template selection

{ .mii
ld a = [x] // cycle 1
add b = y, e // cycle 1
add x = h, i ;; // cycle 1

} { .mmi
ld y = [f] // cycle 2
ld c = [g] // cycle 2
add d = j, k ;; // cycle 2

}

(c) Integrated scheduling and template selection

{ .mii
ld a = [x] // cycle 1
add b = y, e // cycle 1
nop.i 0 ;;

} { .mii
ld y = [f] // cycle 2
nop.i 0
nop.i 0 ;;

} { .mii
ld c = [g] // cycle 3
add x = h, I // cycle 3
add d = j, k ;; // cycle 3

}

(b) Decoupled scheduling after template selection

ld a = [x]
add b = y, e
ld y = [f] ;;  // can’t fit in cycle 1
ld c = [g] 
add x = h, I
add d = j, k ;;

(a) Decoupled scheduling before template selection

{ .mii
ld a = [x] // cycle 1
add b = y, e // cycle 1
add x = h, i ;; // cycle 1

} { .mmi
ld y = [f] // cycle 2
ld c = [g] // cycle 2
add d = j, k ;; // cycle 2

}

(c) Integrated scheduling and template selection

{ .mii
ld a = [x] // cycle 1
add b = y, e // cycle 1
nop.i 0 ;;

} { .mii
ld y = [f] // cycle 2
nop.i 0
nop.i 0 ;;

} { .mii
ld c = [g] // cycle 3
add x = h, I // cycle 3
add d = j, k ;; // cycle 3

}

(b) Decoupled scheduling after template selection
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types in the respective template slots. The order of slots in a template defines the sequential 
semantics within a cycle. The string “;;” marks a stop bit, the explicit cycle break specified by the 
compiler to the hardware. Anti-dependences are allowed in the same cycle as long as the 
instructions are ordered to reflect such dependences.  

For the six instructions in Figure 1, a traditional instruction scheduler based on dependence 
critical paths may derive a two-cycle schedule as shown in Figure 1(a) even if it takes into 
account the availability of execution units. However, in the decoupled approach, a subsequent 
instruction-packing phase cannot find any available template to bundle the three instructions in 
the first schedule cycle, since they require a non-existent MIM template. Reordering the three 
instructions to use the MMI template is not feasible due to the anti-dependence on y.  The 
bundling phase ends up forcing the “ld y = [f]” instruction into an extra cycle, resulting in a three-
cycle schedule as shown in Figure 1(b).  The bundling phase could attempt to reorder instructions 
beyond the current cycle with sophistication similar to instruction scheduling. This would 
however defeat the purpose of a decoupled approach to separate instruction scheduling from 
bundling for simplicity. In contrast, if template selection is integrated into the resource 
management of an instruction scheduler, the optimal scheduling can be achieved using the two 
templates MII and MMI in two cycles as shown in Figure 1(c). 

Instruction scheduling is already one of the most complex phases in an optimizing compiler. 
Adding in the modeling of instruction templates makes it an even more challenging task. This is 
further complicated by the instruction dispersal rules that govern the dispatching of an instruction 
sequence onto execution units at each cycle, the compressed templates for packing instructions 
from different cycles, the one-to-many mapping possibility from instructions to functional units, 
etc.  

The motivation of this work is to model the resource constraints due to architectural and 
micro-architectural specifications during instruction scheduling to generate high-performing 
code. Specifically, we target the constraints from the instruction dispersal rules, template 
selection, and execution pipelines in the Itanium® architecture, though the approach can be 
generalized to other processor architectures as well. The solution has to be time and space 
efficient to fit in a practical, production environment. We also want the modeling and 
management of hardware resources in an encapsulated module to allow easy migration to future 
implementations of the Itanium® architecture or any future processors with similar resource 
constraints, while the implementation of core scheduling heuristics remains independent from the 
micro-architectural specifications. In contrast, although producing high quality of code motivates 
our work, we are not looking for an optimal solution of the scheduling problem under the given 
resource constraints since this is an NP-hard problem and we have to develop a practical solution 
for a production environment.  

In this work, we propose an extended finite-state automaton (FSA) to model all the resource 
constraints during instruction scheduling. Each state encodes the currently occupied functional 
units of a cycle as well as instruction templates and dispatching information. The scheduling of an 
instruction triggers a transition between states. Our extended FSA successfully models the new 
notion of instruction templates and the set of instructions dispersal rules on the Itanium® 
architecture with both compilation time and space efficiency. Our experimental results show that 
modeling these additional resource constraints is crucial toward achieving high performance on 
Itanium® processors. With a minimal effort we have successfully migrated the encapsulated 
machine model and management of hardware resources in a micro-level scheduler from the 
Itanium® processors to the Itanium® 2 processors under IPF, where these two generations of 
processors pose a number of different micro-architectural constraints.  
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In the rest of the paper, Section 2 provides background information and definitions of 
terminology. Section 3 details the functional-unit based finite-state automaton and its 
construction. Section 4 discusses instruction scheduling with an integrated modeling of all 
resource constraints based on the FSA. Section 5 presents the experimental results that compare 
our integrated approach with decoupled approaches. Section 6 discusses the related work, and 
Section 7 concludes this paper. 

2. Background 

2.1.  Intel® Itanium® architecture 

The Itanium® architecture [12] uses wide instruction words as in the Very Long Instruction 
Word (VLIW) architecture. There are four functional unit types – M (memory), I (integer), F 
(floating point), and B (branch). Each instruction also has an instruction type – M, I, A, F, B, and 
L. The instruction type specifies the functional unit type where an instruction can be executed, 
where instruction type A (i.e., ALU instructions) can be dispatched to functional units of either 
type M or I, and instruction type L consumes one I and one F units. Instructions are encoded into 
bundles where each bundle contains three instructions with a specific instruction template. Each 
instruction occupies one slot in a bundle. A template specifies the functional unit type for each 
contained instruction. There are 12 basic templates, such as MII, MMI, MFI, MIB, etc. A stop bit 
indicates to the processor that the instructions before and after the stop bit may have certain 
resource dependencies and are to be executed at different cycles. Each basic template type has 
two versions: one with a stop bit after the third slot and one without. Two of the basic templates, 
MI_I and M_MI, have a stop bit in the middle of a bundle. For example, the MI_I template has a 
stop bit between the two I slots. We call the two compressed templates because they allow the 
packing of instructions from different cycles into smaller code size. Flow and output register 
dependences are generally disallowed (with a few exceptions) among the same groups of 
instructions delimited by explicit stop bits, but register anti-dependences are generally allowed.  

Each implementation of the Itanium® architecture has its own micro-architectural features. 
For example, the Itanium® processor [13] can issue and execute up to six instructions (two 
bundles) per cycle. It has a total of 9 functional units (FU): 2 M-units (M0 and M1), 2 I-units (I0 
and I1), 2 F-units (F0 and F1), and 3 B-units (B0, B1, B2). Functional units under the same type 
may be asymmetric, requiring certain instructions to be executed only to a particular FU of a FU 
type. Each processor generation may also have different instruction latencies and execution-
pipeline bypasses, resulting in varying latencies between the same pair of dependent instructions 
when they are dispatched to different FUs. Each processor generation has its own set of 
instruction dispersal rules that describes how each instruction is dispersed to a FU in an 
instruction sequence. Depending on the bundle location (the first or second in a cycle) and slot 
location in an instruction fetch cycle, the same instruction may be dispersed to different FUs. 
How one instruction is ordered or aligned could force another instruction intended for the same 
cycle to be stalled to a later cycle due to conflict in critical FUs. On the Itanium® processor, in a 
cycle started with an MII bundle, the instruction in the first I slot always goes to the I0 unit. If the 
instruction in the second I slot can be executed only on the I0 unit, which is already taken, the 
processor will force it to execute in the next cycle. A detailed description of all of these micro-
architectural features for the Itanium® processor can be found in [13]. 
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2.2. High- and micro-level instruction scheduling 

Our integrated instruction scheduler divides the task of instruction scheduling into two – the 
high-level instruction scheduling and the micro-level scheduling. This integrated instruction 
scheduler has been implemented in the Open Research Compiler. Depending on the scheduling 
scope, the scheduler can perform global scheduling or basic block local scheduling. The high-
level instruction scheduling algorithm in our global scheduler is based on [2] but performs on the 
scope of single-entry-multiple-exit regions containing multiple basic blocks with internal control 
flow transfers. Note that basic block is a degenerated region. Within each region, a dependence 
DAG is constructed, where each node represents an instruction in the region and each edge 
indicates a dependence relation (flow, output, or anti) between the instructions on the two ends of 
the edge. The edges are weighted, and the weight is the minimal latency required by the hardware 
to issue the two instructions. The implementation is a forward, cycle scheduling. The enhanced 
priority function is based on the path lengths (to the last cycle of the region) weighted by 
execution frequency in the global dependence DAG. Each basic block in the region is selected as 
the target basic block in a topological order weighted with execution frequencies. If all of the 
predecessors of an instruction have been scheduled and the scheduling latency on each incoming 
dependence edge is satisfied, this instruction is ready to schedule. All ready instructions from the 
basic blocks dominated by the target basic block are the candidates to be scheduled into the target 
basic block. The high-level instruction scheduling determines the issue cycle of each instruction 
according to dependences and instruction execution latencies. These scheduling steps are repeated 
for every basic block to serve as a target basic block and terminated when all of the instructions in 
the region are scheduled. When one region is scheduled, the next most frequently executed region 
is then scheduled. 

The global instruction scheduling also drives a number of machine-dependent optimizations 
to fully utilize the architectural features. These include control and data speculation to move load 
instructions across branches and aliasing stores. To support speculation, a new type of speculative 
edge is introduced in the dependence DAG. In contrast to a normal dependence edge whose 
dependence must be observed during the scheduling sequence, a speculative edge indicates that 
the represented dependence may be ignored due to the special hardware support for control and 
data speculation on Itanium® architecture. While selecting ready instructions, only normal 
dependence edges are examined. When an instruction is scheduled, we then examine whether the 
dependence on any speculative edge to this instruction is not satisfied. If so, this instruction is 
scheduled speculatively and has to be marked so with proper encoding to use the speculative 
architecture support. The global instruction scheduling phase can also schedule instructions 
across joint points with compensation code generated and can schedule partially ready 
instructions. The high-level instruction scheduling in the local scheduler operates on a basic block 
scope without speculation. Both the global and local instruction schedulers incorporate resource 
management thru the same micro-level scheduler.  

The micro-level scheduling takes care of the placement of instructions and resource 
management within a cycle.  It can reorder instructions within the same cycle in order to achieve 
the best FU assignment and template selection, as long as it honors all the instruction 
dependencies specified by the high-level scheduler. The micro-level scheduling thus shields from 
high-level scheduling algorithm the complicated resource management of the Itanium® 
architecture, such as available FUs, instruction dispersal rules, and instruction bundles and 
templates.  
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2.3. Building machine information into compiler 

 

Figure 2:  Building and propagating machine information. 

Figure 2 shows the creation and usage of the machine-specific information in various stages 
of the compiler life cycle. A Machine Model Builder (MM Builder) constructs a set of machine 
description structures from a published processor parameter file [14] in the compiler building 
process. The processor parameter file describes the micro-architecture details of an Itanium® 
processor, including available functional units, instructions mapping to functional units, latency, 
etc. The generated machine description structures include tables that specify the numbers and 
types of machine resources (such as machine width, functional units, and templates), the 
instruction latency, the pipeline bypass constraints, etc. Our functional-unit based FSA, to be 
discussed in Section 3, is also constructed by the MM builder. The functional-unit based FSA, as 
part of the machine description structures, contains a set of valid FSA states and a state transition 
table. It also incorporates valid template combinations and instruction dispersal rules for each 
state. 

The machine description structures become part of the static data in the compiler executable 
after the compiler is built. Both the high-level and micro-level instruction schedulers retrieve 
machine-specific information from the machine description structures. 
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3. Functional-unit based finite-state automata 

3.1. Motivation of functional-unit based finite-state automata 

Finite state automata have been used in several modern instruction schedulers to model the 
resource contention in execution pipelines [1, 21]. A well-designed FSA often results in a simple 
and compact implementation and exhibits better efficiency in both space and time.  

While the pipeline resource contention of Itanium® processors is simple to model, the 
instruction templates and dispersal rules introduce new challenges. The latency between a pair of 
dependent instructions depends not only on the type of source instruction but also on the 
functional unit where it is executed. The bundle template and the slot location in a bundle 
determine the functional unit assigned to execute an instruction. Hence selecting the instruction 
template and placing instructions into the proper slot locations in a bundle is critical toward 
achieving a high quality schedule.  

The importance of template selection intuitively suggests a template-centric model for 
managing resources. When an instruction is being scheduled, a template-centric model first 
decides the template assignment for the current schedule cycle and the slot location for the 
instruction.  The instruction latency and the executing functional unit of the instruction are then 
derived from the instruction template and slot location assigned per instruction dispersal rules. All 
possible template assignments are dynamically enumerated at each scheduling attempt to select 
the template and slot. 

To improve the compile-time overhead in dynamic template-assignments enumeration, one 
could build a template-based FSA off-line to guide the selection of template assignments.  The 
template-based FSA would model the template assignment and slot usage of an execution cycle.  
Each state in a template-based FSA would record all the possible selections of instruction 
templates under certain slot usage in a single execution cycle. When an instruction was 
scheduled, an unused slot S would be picked for the instruction and the FSA would transit to the 
next state where the slot S becomes taken. Template assignment would be selected from the set of 
templates in the state. Size is one major problem in such a template-based FSA. For the two-
bundle wide Itanium® processor, there are at least 68 possible template assignments in a cycle, 
after accounting for the availability of functional units. The theoretical upper bound on the 
number of states in a template-based FSA is 268, the size of the power set of all possible template 
assignments.  Even with aggressive trimming, a template-based FSA still needs dozens of 
thousand states.  

To achieve efficiency in both space and time, we take a functional-unit-centric approach. At 
the core is a Functional-Unit-based FSA (or FU-FSA in short).  Each state in the FU-FSA 
represents the set of functional units that are in use (FU usage set) in a schedule cycle. 
Instructions scheduled into a schedule cycle are treated as a sequence of FU-FSA state transitions. 
Instruction templates and dispersal rules are modeled in each state by a list of legal template 
assignments of the state. A template assignment is legal for a state if its FU usage set is a superset 
of the FU usage set of the state. Only states with at least one legal template assignment are 
included in the FU-FSA.  

The FU-FSA is much more space efficient than the template-based FSA. The FU-FSA for the 
nine-FU Itanium® processor has at most 29 or 512 states, much smaller than that of a template-
based FSA. After excluding states with no legal template assignment, the FU-FSA for an 
Itanium® processor contains 235 states. Each state has no more than 38 legal template 
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assignments, while 75% of the states have less than 10 legal template assignments. Therefore the 
FU-FSA is very compact in term of memory usage and is highly scalable to a wider machine. 

3.2. Off-line construction of FU-FSA 

The FU-FSA is constructed to represent all valid FU usage patterns as the states of the FU-
FSA. The construction of FU-FSA further preprocesses the constraints imposed by instruction 
templates and instruction dispersal rules of the Itanium® processor off-line when the compiler is 
built. These constraints are incorporated into the FU resource modeling of each state through a 
list of legal template assignments associated with each state. The construction of FU-FSA ensures 
that the FU resource usage represented by each state can only be assigned template that is in its 
list of legal template assignments. The online overhead for checking the instruction template and 
dispersal constraints is thus significantly reduced. 

 

Figure 3:  Pseudo code for building an FU-FSA for an Itanium® processor. 

Figure 3 outlines the algorithm for constructing the FU-FSA for the two-bundle wide 
Itanium® processor. It can be easily extended to generate a FU-FSA for any Itanium® processor 
that can issue N bundles per cycle. The algorithm enumerates all possible FU usage patterns, 
represented as a FU usage set PV. For each PV, we scan all possible template assignments of up 
to 2 bundles. If a template assignment T has a FU usage set TV per instruction dispersal rules and 
TV is a superset of PV, T is a legal template assignment for PV. In this case, PV is added to the set 
of FU-FSA states. The template assignment T is also added to the list of legal template 
assignments (TAs) for the state PV, that is, FSA[PV].  

After all template assignments for the FSA state with the FU usage set PV have been 
enumerated and  examined, the list of legal template assignments for PV is sorted according to 
certain priority functions. The priority functions are chosen based on the way the FU-FSA is used 
online and its effect on the generated code quality. For instance, suppose we have a set of 
instructions that are scheduled to the same cycle and results in the FU usage set of the FSA state 
S.  We want to select the template assignment for state S after scheduling for the cycle is 
completed. We can scan the list of legal template assignments of state S and use the very first one 

BuildFSA() {
FOREACH FU usage set PV DO {

FOREACH template assignment T with at most 2 bundles DO {
TV = FU usage set of T;
IF (PV is a subset of TV) {

IF (PV is not in FSA) {
Add PV as a new FSA state;

}
Add T to FSA[PV].TAs;

}
}
IF (PV is in FSA) {

Sort FSA[PV].TAs according to priority criteria;
}

}
Build FSA transition table;

}
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that meets all required dependence constraints from the set of instructions. In order to minimize 
code size for Itanium® processors, we sort the list of template assignments according to the 
following two priorities: 

1. Ascending bundle count. 
2. Putting template assignments with compressed template(s) ahead of full template(s). 

The first priority favors the usage of a single-bundle template assignment over a two-bundle 
template assignment whenever the dependence constraints are met. The second priority prefers 
the usage of compressed template(s) over full template(s) in packing instruction into templates. 
The two priority functions combined give a template assignment that has the smallest code size 
whenever possible.  

Finally the FU-FSA transition table is constructed after all legal states of FU-FSA are 
included. A state of the FU-FSA represents the set of functional units that are in use (FU usage 
set). And the transition edge from one state to another is annotated with the FU resource that are 
consumed (or released). 

3.3. On-line usage of FU-FSA 

The FU-FSA is used to model the resource usage and constraints of a single execution cycle. 
The schedule of a region is logically organized as a sequence of schedule cycles, with each 
schedule cycle modeled by one FU-FSA. When an instruction is scheduled into a cycle, it leads to 
a transition of the FU-FSA that is associated with the schedule cycle. 

Figure 4 illustrates a simple sequence of FU-FSA state transitions for a schedule cycle where 
the FU usage set in each state is represented as a bit vector. The FU-FSA starts out with the initial 
state 0x00, indicating no FU is used at the beginning. When a FU is assigned to an instruction 
during instruction scheduling, the current state follows the transition edge marked with the 
consumed FU and transits to a new state. The new state has the bit corresponding to the newly 
occupied FU set. For example, if we start with the current state 0x00 and add a new instruction 
that occupies the M0 unit (bit 0 in the bit vector), the new state will be 0x01. Figure 4 highlights 
the sequence of FU-FSA transitions, following the transition path M1�I0�I1�F0 that leads 
from the initial state 0x00 to the state 0x1E. It also shows the list of legal template assignments 
for the state 0x1E, assuming the target is an Itanium® processor.  

When the high-level scheduler requests an instruction to be scheduled at a cycle, the micro-
level scheduler needs to find a FU P for the instruction at the current schedule cycle that can lead 
to a legal transition in the FU-FSA. A legal FU-FSA state transition needs to satisfy two 
conditions. First, there must be a transition edge annotated with P out of the current state. This 
basically checks for the availability of FU resource P. The second condition requires that at least 
one legal template assignment under the new state satisfies the dependence constraints for all 
instructions currently scheduled in the cycle. Note that, in general, the Itanium® architecture 
allows concurrent execution in the same cycle of instructions with register write-after-read 
dependences and memory read-after-write, write-after-write and write-after-read dependences. 
We refer to such dependence constraints among instructions in the same scheduled cycle as intra-
cycle instruction dependences. Dependence constraints that span multiple schedule cycles are 
called inter-cycle instruction dependences. 
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Figure 4:  A state transition example in a functional-unit based FSA. 

When there is no intra-cycle instruction dependence, no check is required for the second 
condition since the construction of FU-FSA guarantees that at least one legal template assignment 
exists for each state. When there are intra-cycle dependences in the schedule cycle, the FU-FSA 
transition needs to ensure the existence of at least one template assignment that can lay out 
instructions in the required dependence order. This is accomplished by scanning the list of legal 
template assignments of the new FU-FSA state. In either case, the final selection of template 
assignment is needed only when scheduling for a cycle has completed, instead of done at every 
scheduling attempt.  

As illustrated in Figure 4, each state has a structure LegalTA that contains the list of legal 
template assignments (TAs) for that state per instruction dispersal rules. When instruction 
scheduling for a cycle has completed and it is time to finalize the template selection for the cycle, 
the list of legal template assignments of the current FU-FSA state is scanned to find a template 
assignment that can best realize the set of instructions in the cycle. One simple approach is to pick 
the first template assignment in the list that satisfies all required constraints. By properly 
arranging the list of template assignments for each state during the FU-FSA construction as 
discussed in Section 3.2, the simple approach can optimally select the template assignment that 
lead to smaller code size (or bundle count). A smaller code size in general leads to better 
performance due to a reduction in I-cache misses.  
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4. Instruction scheduling with integrated resource management 

4.1. Scalar instruction scheduling using FU-FSA 

With a FU-FSA based micro-level scheduler taking care of the resource management, the 
instruction scheduler can focus on high-level scheduling decision. Figure 5 highlights the 
interaction between the high-level instruction scheduler and the micro-level scheduler. On the 
left-hand side is the flow of a typical instruction scheduler. The right-hand side shows the 
functions done in the micro-level scheduler.  

 

Figure 5:  Interaction between high-level and micro-level instruction scheduling. 

The instruction scheduler repeatedly picks the best candidate from a list of instructions in the 
schedule region that are ready for execution at the current cycle. The schedule region could be a 
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used in the global instruction scheduler of ORC. The instruction scheduler then consults the 
micro-level scheduler through the IssueOp function to check for resource availability. The 
IssueOp function determines whether there is a FU available for the candidate instruction and 
whether there exists a legal template assignment that satisfies instruction dependence constraints 
if exist. Using the FU-FSA, it simply picks an available FU for the candidate instruction and sees 
whether the FU results in a legal FU-FSA state transition.  
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If IssueOp completes successfully, the candidate instruction is committed to the cycle. If 
IssueOp is not able to fit the instruction in the current cycle, the instruction scheduler marks the 
candidate instruction as being tried already. In either case, the scheduler picks another candidate 
instruction from the candidate list to schedule until the current cycle is full or there is no more 
candidate instruction to try. The instruction scheduler then closes the current cycle and advances 
to the next cycle.  

The instruction scheduler now needs to decide when to finalize the template assignment for 
each cycle. One alternative is to finalize the template assignment on-the-fly as soon as scheduling 
for a cycle is completed (the 1-cycle template selection heuristic). The template selection 
algorithm looks at the one-cycle window in making template assignment. Or one may defer the 
template assignment until the whole schedule region is completely scheduled. Selecting the 
template assignments for several cycles at once allow better packing of instructions in adjacent 
cycles by exploiting compressed templates. However, it requires extra compilation time and a 
larger space for maintaining the states of several cycles. 

Our instruction schedulers employ a 2-cycle template selection heuristic that is able to utilize 
compressed templates for better instruction packing while incurs minimal compilation time and 
space overhead. Instead of finalizing the template assignment as soon as the scheduling of a cycle 
is done, the template assignment is selected with a one-cycle delay to give a window of two 
schedule cycles for template selection. Only the states of two cycles need to be maintained during 
instruction scheduling, namely, the previous cycle (prevCycle) and the current cycle (curCycle). 
When the high-level scheduler advances a cycle, the AdvanceCycle function in the micro-level 
scheduler is invoked to finalize the template assignment for the previous cycle. By looking at 
both previous and current cycles when selecting the final template assignment of the previous 
cycle, it allows the utilization of compressed templates. It results in a good balance between the 
quality of generated code and the space and time efficiency of the instruction scheduler. 

Once scheduling for the schedule region is completed, the EndRegion function in the micro-
scheduler is called to finalize the template assignment of both the previous and current cycles.  

The pseudo code in Figure 6 illustrates a simplified implementation of IssueOp using the FU-
FSA. Inputs to the IssueOp function include the instruction op to be scheduled and the FU-FSA 
state of the schedule cycle it is scheduled into. The IssueOp function also has access to all the 
dependence edges involving instruction op in the global dependence DAG built for the schedule 
region. The simplified IssueOp function assumes that the latency requirements between op and 
other instructions due to inter-cycle dependences have been verified. 
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Figure 6:  Pseudo code for IssueOp using FU-FSA. 

Inside the IssueOp function, unoccupied FUs are first selected for the new instruction op, as 
shown in the first FOREACH loop over the candidate FUs. When a tentative FU is selected for 
op, the cycle is updated to reflect the assignment. The new FU-FSA state is checked to make sure 
it is a legal state. Furthermore, if there are dependences among instructions within the cycle, the 
list of legal template assignments (TAs) for the new state must be examined to ensure at least one 
legal template assignment exists for the required instruction sequence in the cycle. The 
ChkCycleDep function performs the dependence check given a template assignment and the 
instructions scheduled in the cycle with their FU assignments.  

If op is not able to use any of the unoccupied FUs, occupied but valid FUs for op are tried 
next. IssueOp will re-arrange the FU assignments for instructions already scheduled in the current 

IssueOp(op, cycle) {
funcUnits = FUs op can be issued to;
freeUnits = unoccupied FUs in cycle;

// Try available FUs first.
candidateUnits = funcUnits & freeUnits;
FOREACH FU in candidateUnits DO {

Record op issued to FU in cycle;
state = getFSAState(cycle); 
IF (state is valid) {

IF (intra-cycle dependence in cycle) {
FOREACH ta in FSA[state].TAs DO {

IF (ChkCycleDep(cycle,ta) == TRUE)
RETURN YES; // Succeed

}
} ELSE 

RETURN YES; // Succeed
}
Back out op from FU in cycle;

}

// Try permuting FU assignments.
candidateUnits = funcUnits & ~freeUnits;
FOREACH FU in candidateUnits DO {

IF (FU is locked) CONTINUE; 
old_op = cycle->op_in_FU(FU);
Back out old_op from FU in cycle;
Issue and lock op to FU in cycle;
IF (IssueOp(old_op, cycle) == TRUE)

RETURN YES;                 // Succeed
Back out op from FU in cycle;
Record old_op issued to FU in cycle;

}
RETURN NO; // Fail

}
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cycle to exploit the best resource usage. It involves backing out the FU assignment for one or 
more instructions and re-arranges the mapping of instructions to FUs. The second FOREACH 
loop over the candidate FUs performs this FU re-mapping. A FU locking mechanism avoids 
repeating previously tried combinations to ensure termination of the algorithm. Heuristics that 
give higher priority to the most constrained instructions can be applied to reduce the search space 
during FU re-mapping. 

4.1.1. A scalar instruction scheduling example 
Figure 7 shows an example of the high-level scheduler and the micro-level scheduler in 

action. This example assumes that the schedule region is a simple basic block. Figure 7(a) shows 
the dependence DAG of the instructions in the schedule region. It also lists the FUs that are valid 
for each of the instructions.  

Figure 7(b) demonstrates the step-by-step interaction and the internal states of the high-level 
scheduler and the micro-level scheduler. The high-level scheduler builds a ready list of candidate 
instructions based on their respective path length in the DAG. In case of a tie, the order is 
arbitrary. In the micro-scheduler, it shows the FU-FSA state for the current schedule cycle and 
the tentative template assignment (TTA) if an intra-cycle dependence (ICD) exists in the cycle.  

The high-level instruction scheduler starts with scheduling instruction I1 at cycle 0, which is 
assigned to FU M0 by the micro-level scheduler. Next come instruction I5 that must be executed 
after I1 because of the anti-dependence on register x. Instructions I1 and I5 can be executed at the 
same cycle as long as I1 is put before I5. The micro-scheduler picks FU I0 for I5 and makes sure 
that the template MI_I does allow FU M0 to goes before FU I0.  Instruction I2 is scheduled next. 
Note that I2 can only be executed on FU I0, which is already taken by I5 at cycle 0. However, the 
micro-level scheduler is able to reassign I5 to FU I1 and make FU I0 available for I2. The FU 
rearrangement maintains the ordering between I1 and I5 since FU M0 goes before FU I1 in the 
MII template. The scheduling of instructions continues until all instructions in the basic block are 
scheduled in two schedule cycles. 

When the high-level instruction scheduler completes all instructions in the basic block, it 
invokes the EndRegion function and the micro-level scheduler proceeds to finalize the template 
assignment for both cycles. During the final selection of template assignment, the FU assignment 
in cycle 1 is rearranged from {M0, M1} to {M0, I0} to enable the use of M_MI template 
assignment. The reassignment of FUs can be accomplished using a process similar to that in the 
IssueOp. The final schedule results in two bundles of instructions with an M_MI compressed 
template in the second bundle. 



EFFICIENT MODELING OF ITANIUM® ARCHIETCURE 
 

15 
 

Figure 7:  A simple scalar instruction scheduling example. 

(a) Dependence DAG for the sample instructions.
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4.2. Software pipeline scheduling using FU-FSA 

The FU-FSA model can be easily integrated into a software-pipelining scheduler as well. The 
FU-FSA-based micro-level scheduler works on cycle-level resource management. It coordinates 
with the high-level scheduler to obtain dependence information among instructions and to 
compute the latency between pairs of dependent instructions. 

To simplify our discussion, let us assume the software pipelining scheduler is a modulo 
scheduler [24]. In contrast to a scalar instruction scheduler that generally considers only loop-
independent dependences, a software pipeline scheduler needs to consider both loop-independent 
dependences and loop-carried dependences. Thus both types of dependences must be examined 
when the micro-level scheduler looks at the intra-cycle instruction dependences that constrain the 
ordering of instructions during template selection. Furthermore, the micro-level scheduler must 
model a modulo resource table that is logically laid out as N consecutive scheduling cycles, where 
N is the Initiation Interval of the pipelined schedule under construction. In the modulo resource 
table, schedule cycles (c+k*N), for k � 0, are all modeled by the FU-FSA associated with modulo 
schedule cycle c. Finally, the final template assignments for the N modulo schedule cycles can 
only be decided and selected after the software pipeline scheduler have completed the 
construction of the final pipelined schedule.  

 

Figure 8:  Modeling resources using FU-FSA for software pipelining. 

Figure 8 illustrates how these additional factors are considered when the FU-FSA based 
micro-scheduler is working with a modulo scheduler. Figure 8(a) shows the first two iterations of 
a loop with four instructions A, B, C and D, annotated with subscripts indicating the loop 
iteration they come from. Figure 8(b) shows the execution of the two loop iterations after 
software pipelined with an Initiation Interval (II) of 2. Figure 8(c) shows the modulo resource 
table that must be modeled in the micro-level scheduler. In this example, instructions A and B are 
scheduled to cycle 0 and instruction D is scheduled to cycle 2 in the pipelined schedule. However, 
instructions A, B and D all consume resources in modulo schedule cycle 0 and trigger transitions 
in the FU-FSA state corresponding to modulo schedule cycle 0. Furthermore, while examining 
the intra-cycle dependences of modulo schedule cycle 0, the loop-carried dependence from 
instruction D of iteration 1 to instruction B of iteration 2 must be considered. Hence we must 
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ensure instruction D comes before instruction B in selecting template assignment for module 
schedule cycle 0. 

5. Experimental results 

The proposed instruction scheduling integrated with FU-FSA-based resource management for 
the Itanium® architecture has been fully implemented in the Open Research Compiler (ORC) for 
Itanium® architecture [20]. We compare our integrated approach with an approach of decoupled 
instruction scheduling and template selection in terms of run-time and compilation-time 
performance.  

ORC includes advanced program optimizations, such as inter-procedural analysis and 
optimizations, loop-nest transformations, machine-independent optimizations, and profile-guided 
optimizations and scheduling. The global instruction scheduling reorders instructions across basic 
blocks. There has been a large amount of research work done on instruction scheduler [2, 3, 8, 10, 
16, 17, 18, 23]. Our global instruction scheduler uses a forward, cycle scheduling algorithm based 
on [2], but it performs on the scope of single-entry-multiple-exit regions as described in Sec 2.2. 
The global instruction scheduling also utilizes the special architectural features of Itanium® 
processors and performs control and data speculation to move load instructions across branches 
and potential aliasing stores. In case there are spills from register allocation, the local scheduling 
is invoked for the affected basic blocks. The local scheduling operates on a basic block scope 
without speculation. Both the global and local instruction scheduling incorporate our FU-FSA 
based resource management.  

We compare two levels of integration in resource management and instruction scheduling for 
Itanium® processors, namely, the decoupled bundling approach (BASE) and our integrated FU-
FSA resource modeling approach (FUFSA). Both BASE and FUFSA use the same instruction 
scheduler and heuristics. In the BASE configuration, the instruction scheduler performs 
scheduling based on instruction dependences, instruction latency, pipeline bypass constraints, 
issue width, and the functional unit availability. But instruction dispersal rules and templates are 
only taken into account during a subsequent, independent bundling phase that is dedicated to pack 
instructions under templates. The independent bundling phase invoked after the local scheduling 
uses the same FU-FSA-based machine model and micro-level scheduler in much the same way as 
in FUFSA. The bundling phase is not allowed to reorder instructions across the cycle boundary 
marked by the upstream schedulers. 

In the FUFSA configuration, the instruction scheduler incorporates the FU-FSA-based 
resource management that accounts for instruction latency, pipeline bypass constraints, issue 
width, types of FUs, templates, and dispersal rules. Instructions are packed under templates on-
the-fly when instructions are scheduled without a separate bundling phase. 

For each of the BASE and FUFSA configurations, we collected data on two bundling 
heuristics. The first heuristic (1-cycle template selection) selects the template for instructions in a 
cycle as soon as scheduling to the cycle is done. It effectively ignores the two compressed 
templates, MI_I and M_MI. These configurations are called BASE-1 and FUFSA-1 respectively. 
The second heuristic (2-cycle template selection) defers the template selection of a completed 
cycle until the next schedule cycle is done, enabling the use of compressed templates to reduce 
code size. We called these configurations BASE-2 and FUFSA-2. Note FUFSA-2 is the target 
approach of this work as described in the preceding sections. 
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We measured performance using all 12 SPECint2000 benchmark programs with full 
reference input sets. These benchmark programs are compiled using ORC with the peak 
performance options, which include inter-procedural optimizations, function inlining, profile 
feedback, and extensive intra-procedural and Itanium® processor specific optimizations. The 
generated codes are run and measured on a 733 MHz Itanium®-based workstation with 2 MB L3 
cache and 1 GB memory, running RedHat 7.1 version of Linux.  

Figure 9:  CPU cycles speedup over BASE-2. 

Figure 9 shows the speedup in CPU cycles of all configurations over BASE-2. FUFSA-2 
outperforms BASE-2 on all benchmarks, with an average of 4.5% speedup. Crafty and Eon show 
an impressive speedup of over 12%. We also observed that in general the 2-cycle template 
selection heuristic performs better than the 1-cycle template selection heuristic. On average, 
BASE-2 gets a 1.8% speedup over BASE-1 and FUFSA-2 obtains a 2.26% speedup over 
FUFSA-1.  
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Figure 10:  Code size with respect to BASE-2. 

 Figure 10 compares the code size of the four configurations by measuring the size of the text 
sections in the generated binaries. Note that a shorter bar in Figure 10 indicates a smaller code 
size. It is clear that FUFSA-2 is able to generate code that is smaller than BASE-2 does. The 
static code size from FUFSA-2 is reduced by 9.32% with respect to BASE-2. Furthermore we are 
able to reduce static code size by about 10% when compressed templates are used to pack 
instructions, as observed from the reduction achieved by BASE-2 over BASE-1 and FUFSA-2 
over FUFSA-1.  

To further understand how FUFSA improves performance, we use the PFMON (version 0.06) 
tool to measure dynamic execution statistics through the performance monitors of Itanium® 
processors. Due to space limitation, we select two programs, crafty and eon, which benefit the 
most from the FUFSA approach, and two other programs, bzip2 and perlbmk, which receive only 
small improvements from the FUFSA approach. Figure 11 shows the distribution of dynamic 
cycles under the various stall categories for each of the four programs. Readers are referred to 
[13] for the full description of each stall category. The cycle distributions for each configuration 
have been normalized with respect to the total cycles of BASE-2.  
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Figure 11:  Cycle breakdown for crafty, eon, bzip2 and perlbmk. 

As shown in Figure 11, FUFSA mainly reduces cycles in two stall categories – 
ISSUE_LIMIT_CYCLE and INST_ACCESS_CYCLE. The ISSUE_LIMIT_CYCLE counts all 
cycle breaks that are due to the explicit insertion of stop bit in the generated code or the implicit 
insertion of stop bit by the processor when resources are oversubscribed. The BASE 
configuration does not account for the constraints of instruction templates and dispersal rules 
during instruction scheduling. Thus it is more aggressive in scheduling instructions into certain 
cycles even though there is no instruction template to pack them into a single cycle. The 
independent bundling phase then needs to split these cycles to fit instruction templates. The 
FUFSA configuration takes into account the effect of instruction templates and dispersal rules 
during scheduling, avoiding the template selection deficiency. The FUFSA configurations thus 
have fewer cycles in the ISSUE_LIMIT_CYCLE categories. On the four benchmarks, FUFSA-2 
gets 2-4% speedup over BASE-2 and FUFSA-1 obtains 2-6% speedup over BASE-1 due to the 
reduction of ISSUE_LIMIT_CYCLE. 

FUFSA also shows significant cycle reduction over BASE in the INST_ACCESS_CYCLE 
stall category, which counts cycles lost to I-cache or ITLB misses. FUFSA-2 gains 12% on crafty 
and 9.5% on eon over BASE-2 in INST_ACCESS_CYCLE. The reduction in I-cache and ITLB 
misses can be attributed to the fact that the code generated by FUFSA is more compact than the 
code from BASE. For benchmarks that spend significant execution cycles waiting for I-cache and 
ITLB misses, such as crafty and eon, FUFSA is able to achieve higher speedup over BASE by 
reducing the impact from I-cache and ITLB misses. On the other hand, benchmarks that have 
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fewer cycles in the INST_ACCESS_CYCLE category, such as bzip2 and perlbmk, get a lower 
speedup from FUFSA over BASE.  

Figure 12: Scheduling time with respect to BASE-2. 

We also compare the compilation time spent in instruction scheduling (scheduling time) in 
Figure 12. We used the cross-build version of ORC hosted on an x86 machine. The compilation 
time is measured on a workstation with dual 2.4 GHz Pentium IV Xeon processors, 512 KB L2 
cache and 512 MB memory. The scheduling time measures the compilation time spent in global 
scheduling and local scheduling, including the time for the micro-level scheduler and resource 
modeling. For the BASE configuration, the scheduling time also includes the independent 
bundling phase for selecting instruction templates. The scheduling time accounts for the majority 
of the time in the code generator component in the current implementation. The scheduling time 
at each configuration is normalized to the time at BASE-2. On average, the scheduling time of the 
FUFSA is about 4% less than the scheduling time of BASE.  The scheduling time of using the 1-
cycle template selection heuristic is only about 2% less than the scheduling time of using the 2-
cycle template selection heuristic. This shows the design of our FSA-based on-the-fly resource 
management during scheduling provides not only good performance improvements but also 
compilation time efficiency. It also shows the FUFSA-2 is a better choice in the speedup versus 
compilation time tradeoff. 

6. Related Work 

Prior work on modeling hardware resource constraints during scheduling has been mostly on 
resource (or structural) hazards. Traditional compilers explicitly model the pipeline of the 
processor by simulating instruction timing. A list of committed resources is maintained in each 
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cycle and tracked by a resource reservation table. Whenever an instruction is considered for 
scheduling, its resource requirements are checked against the resources already committed in the 
reservation tables at different cycles. [6, 7, 8, 22] all use the reservation table approach. However, 
the reservation table approach is less capable of managing instructions that can be handled by 
multiple types of functional units.  Another problem with using resource reservation tables is that 
the table size is the number of resources times the length of the longest pipeline stage, and every 
hazard test requires an OR operation on the tables.  

Operations in the TriMedia TM1000 mediaprocessor, are issued to different issue slots based 
their operation types [11]. The mapping from operations to issue slots in TM1000 is fixed. 
However, the mapping of instructions to FUs in an Itanium® processor is determined from the 
sequence of instructions at each fetch cycle, based on the instruction templates and dispersal 
rules. The reservation-table-based approach in [4] for assigning issue slots on TM1000 is not 
capable of handling the template- and context-sensitive resource constraints of Itanium® 
processors. 

FSA-based approach has the intuitive appeal by modeling a set of valid schedules as a 
language over the instructions. The model in [5, 19] built FSA directly from the reservation 
tables. The work in [21] reduced the size of FSA by moving away from using reservation vectors 
as states. Instead each state encodes all potential structural hazards for all instructions in the 
pipeline as collision matrix. Additional improvements for the FSA-based approach were proposed 
in [1] to factor, merge, and reverse automata. Note that because the Itanium® architecture needs a 
compiler to model resources primarily at hardware issue time, the FSA in our approach takes 
advantages of that. Reservation-table-based scheduling usually models resources that are needed 
at issue time and after the issue cycle.  

A recent work [15] is an example of the decoupled approach, and it uses an integer linear 
programming method to model resource constraints as a post-pass local scheduling on assembly 
code. A subsequent work [25] extends to model certain aspects of global scheduling though still 
based on the integer linear programming and post-pass approach. Our scheduling approach may 
involve backtracking to swap functional unit assignments, which is similar to some modulo 
scheduling work, e.g. [24]. However, the backtracking in our approach is limited within a cycle, 
whereas the backtracking in modulo scheduling could go much further. 

The idea of using a table-driven approach to isolate machine-specific information and retarget 
a compiler is certainly not new. The work in [9] used a table-driven algorithm to translate a low-
level intermediate representation into efficient code sequences for a target machine. Their work 
focused on selecting sequences of object code instructions for machines with different sets of 
instructions. In contrast, our work focus on using FSA or a table-driven approach to model 
resource constraints, in particular under the context of instruction scheduling and ILP-based 
optimizations. We are more interested in easing the migration to different micro-architectural 
implementations within the same processor architecture. There is also a similarity between our 
approach and code selection of CISC-like instructions, where both appear to pack multiple 
instructions to a wider or more complex instruction sequence. However, the code selection of 
CISC-like instructions is usually done by looking for particular patterns from a sequence of 
primitive instructions in the intermediate representation. Although it can also be implemented as a 
table-driven manner, such code selection is usually not tied to instruction scheduling. In contrast, 
our approach packs multiple instructions into templates to purposely integrate with instruction 
scheduling to fully utilize machine resources and latencies. Different combinations of instructions 
in the templates are also much more flexible than the particular patterns in CISC-like instructions. 
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Our scheduling approach in this work clearly falls into the line of greedy list scheduling in 
terms of scheduling length and the overall code size. As mentioned earlier, the high-level 
scheduling, which drives a cycle-based scheduling, is based on [2] though with a number of 
enhancements. The greedy nature of the scheduling heuristics selects the candidate with the 
highest frequency-weighted path length among all ready instructions to schedule into the current 
cycle. For a set of instructions scheduled into the same cycle, if there exists any legal template 
combination to fit these instructions, our approach will find at least one such template selection 
since it will enumerate different combinations of issue slots by attempting to re-assign previously 
scheduled instructions in the current cycle into some other slots. Since the enumeration space is 
typically small, the search time has not been an issue. Once the issue slots are fixed, the particular 
state in the FSA is determined and the first legal template selection also meets the smallest code 
size within the current cycle since the templates are currently sorted with increasing code sizes. 
However, our approach does not attempt to achieve the smallest code size for a given region, 
because the enumeration process for fitting issue slots currently does not look for the smallest 
code size among all possible template selections with different sets of issue slots. The main 
reason for choosing our approach is to fit with a practical, production environment, where an 
optimal solution is usually too expensive to obtain. Greedy list scheduling has been widely 
adopted, and among other considerations time efficiency has been one important advantage. 
Hence, we use it as the high-level scheduling in our approach and leverage many known 
techniques built around it. The way we factor all legal templates under the same FSA state is 
primary for space efficiency at a small cost of occasionally looking up the list of legal templates. 

7. Conclusions 

The Intel® Itanium® architecture and its hardware implementations have introduced a new 
notion of instruction templates and a set of complicated dispersal rules in addition to the 
traditional pipeline resource hazards. This has stretched the limit of an optimizing compiler, in 
particular on instruction scheduling, in its ability to model resource constraints effectively and 
efficiently in the course of generating highly optimized code. In this work, we have extended the 
FSA-based approach to manage all of the key resource constraints on-the-fly during instruction 
scheduling. The FSA is built off-line prior to compilation. To largely cut down the number of 
states in the FSA, each state models the occupied functional units. State transition is triggered by 
the incoming scheduling candidate, and resource constraints are carefully integrated into a micro-
scheduler.  

The proposed scheduling approach integrated with resource management has been fully 
implemented in the Open Research Compiler. The integrated approach shows a clear performance 
advantage over decoupled approaches with up to 12% speedup and an average of 4.5% 
improvement across 12 highly optimized SPECint2000 integer programs running on Itanium®-
based workstations. This shows the necessity of modeling all resource constraints, including 
instruction templates and dispersal rules, during scheduling for a high-performing architecture 
such as the Itanium® architecture. We also demonstrate that the compilation time for our 
integrated approach is competitive to that of a decoupled approach even with a full modeling of 
the hardware resources. Furthermore, our machine model and micro-level scheduler are 
modularized and can be easily retargeted to a newer generation of Itanium® processors.  

One possible improvement to our implementation is to encode the supported instruction 
sequences from the legal template assignments in each state. The encoding would allow a faster 
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check on whether intra-cycle dependences among instructions are supported, eliminating the need 
to walk through the list of legal template assignments. We would also like to investigate 
incorporating code size as a first-order consideration into our integrated instruction scheduling 
and resource management model.  

Instruction dispersal rules have become ever more complicated on modern processors for 
both superscalar and VLIW architectures. This is due to various design consideration, such as 
performance, power consumption, area, and reconfigurability. Our FSA-based approach on 
scheduling and resource management is a good framework to model such resource constraints 
during scheduling beyond the Itanium® architecture. In addition, all VLIW architectures have to 
pack instructions statically, which can be seen as a form of instruction templates to be modeled 
by a compiler. We would like to apply our integrated approach to various architectures. One can 
try to make the set of templates a variable and develop a good schedule for the variable sets of 
templates, though this remains a challenging problem. We also would like to employ the FU-FSA 
based approach in a JIT compilation environment where compilation time is critical to the overall 
performance. 
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