
Journal of Instruction-Level Parallelism 6 (2004) 1-26 Submitted 10/03; published 4/04

©2004 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Efficient Modeling of Itanium® Architecture during Instruction
Scheduling using Extended Finite State Automata

Dong-Yuan Chen DONG-YUAN.CHEN@INTEL.COM
Lixia Liu LIXIA.LIU@INTEL.COM
Roy D.C. Ju ROY.JU@INTEL.COM
Intel Labs
Intel Corporation
Santa Clara, CA 95052 USA

Chen Fu CHENFU@CS.RUTGERS.EDU
Division of Computer and Information Sciences
Rutgers, the State University of New Jersey
Piscataway, NJ 08854 USA

Shuxin Yang SXYANG@ICT.AC.CN

Chengyong Wu CWU@ICT.AC.CN
Institute of Computing Technology
Chinese Academy of Sciences
Beijing, P. R. China

Abstract
Effective and efficient modeling and management of hardware resources have always been

critical toward generating highly efficient code in optimizing compilers. The instruction templates
and dispersal rules of the Itanium® architecture add new complexity in managing resource
constraints to instruction scheduler. We extended a finite state automaton (FSA) approach to
efficiently manage all key resource constraints of an Itanium® architecture on-the-fly during
instruction scheduling. We have fully integrated the FSA-based resource management into the
instruction scheduler in the Open Research Compiler for the Itanium® architecture. Our integrated
approach shows up to 12% speedup on some SPECint2000 benchmarks and 4.5% speedup on
average for all SPECint2000 benchmarks on an Itanium®-based system when compares to an
instruction scheduler with decoupled resource management. In the meantime, the instruction
scheduling time of our approach is reduced by 4% on average.

1. Introduction

The Itanium® architecture exemplified by the Intel® Itanium® Processor Family (IPF) relies
heavily on compilers to statically schedule instructions to fully utilize its wide execution
resources. The majority of instruction schedulers use the dependence critical path lengths as the
primary cost function to schedule instructions. Modeling of execution resources is dealt with in
an ad hoc way if at all, often in a manner of scattering the hardware details across the entire
scheduling phase. The Intel® Itanium® architecture [12] introduces the notion of instruction
bundles and templates, which limit the instruction mixes presented to the hardware so that
instructions can be dispatched efficiently to execution units. Instruction templates impose new
constraints on instruction packing and dispatching, adding new complexity to resource

CHEN, LIU, JU, FU, YANG & WU

2

management. In fact, such new constraints are not unique to the Itanium® architecture. Modern
processors tend to specialize execution units according to functional types (e.g. memory, ALU,
floating-point, etc.) and even have asymmetric functionality within the same types. A given
instruction can sometimes be issued only to a particular unit within the same type, and such
decisions could even be affected by surrounding instructions.

Figure 1: An example comparing decoupled vs. integrated template selection.

A simple but sub-optimal approach to deal with these new and complex templates and
instruction dispatching constraints is to add a separate instruction-packing phase after instruction
scheduling. However, the example in Figure 1 argues for an intelligent scheduling phase
equipped with better resource management to achieve optimal performance. Assume a
hypothetical implementation of the Itanium® architecture that can issue three instructions per
cycle. It has two memory (M) execution units and two ALU (I) units. For simplicity, assume
there are only two instruction templates: MII and MMI, where M and I specify the functional unit

ld a = [x]
add b = y, e
ld y = [f] ;; // can’t fit in cycle 1
ld c = [g]
add x = h, I
add d = j, k ;;

(a) Decoupled scheduling before template selection

{ .mii
ld a = [x] // cycle 1
add b = y, e // cycle 1
add x = h, i ;; // cycle 1

} { .mmi
ld y = [f] // cycle 2
ld c = [g] // cycle 2
add d = j, k ;; // cycle 2

}

(c) Integrated scheduling and template selection

{ .mii
ld a = [x] // cycle 1
add b = y, e // cycle 1
nop.i 0 ;;

} { .mii
ld y = [f] // cycle 2
nop.i 0
nop.i 0 ;;

} { .mii
ld c = [g] // cycle 3
add x = h, I // cycle 3
add d = j, k ;; // cycle 3

}

(b) Decoupled scheduling after template selection

ld a = [x]
add b = y, e
ld y = [f] ;; // can’t fit in cycle 1
ld c = [g]
add x = h, I
add d = j, k ;;

(a) Decoupled scheduling before template selection

{ .mii
ld a = [x] // cycle 1
add b = y, e // cycle 1
add x = h, i ;; // cycle 1

} { .mmi
ld y = [f] // cycle 2
ld c = [g] // cycle 2
add d = j, k ;; // cycle 2

}

(c) Integrated scheduling and template selection

{ .mii
ld a = [x] // cycle 1
add b = y, e // cycle 1
nop.i 0 ;;

} { .mii
ld y = [f] // cycle 2
nop.i 0
nop.i 0 ;;

} { .mii
ld c = [g] // cycle 3
add x = h, I // cycle 3
add d = j, k ;; // cycle 3

}

(b) Decoupled scheduling after template selection

EFFICIENT MODELING OF ITANIUM® ARCHIETCURE

3

types in the respective template slots. The order of slots in a template defines the sequential
semantics within a cycle. The string “;;” marks a stop bit, the explicit cycle break specified by the
compiler to the hardware. Anti-dependences are allowed in the same cycle as long as the
instructions are ordered to reflect such dependences.

For the six instructions in Figure 1, a traditional instruction scheduler based on dependence
critical paths may derive a two-cycle schedule as shown in Figure 1(a) even if it takes into
account the availability of execution units. However, in the decoupled approach, a subsequent
instruction-packing phase cannot find any available template to bundle the three instructions in
the first schedule cycle, since they require a non-existent MIM template. Reordering the three
instructions to use the MMI template is not feasible due to the anti-dependence on y. The
bundling phase ends up forcing the “ld y = [f]” instruction into an extra cycle, resulting in a three-
cycle schedule as shown in Figure 1(b). The bundling phase could attempt to reorder instructions
beyond the current cycle with sophistication similar to instruction scheduling. This would
however defeat the purpose of a decoupled approach to separate instruction scheduling from
bundling for simplicity. In contrast, if template selection is integrated into the resource
management of an instruction scheduler, the optimal scheduling can be achieved using the two
templates MII and MMI in two cycles as shown in Figure 1(c).

Instruction scheduling is already one of the most complex phases in an optimizing compiler.
Adding in the modeling of instruction templates makes it an even more challenging task. This is
further complicated by the instruction dispersal rules that govern the dispatching of an instruction
sequence onto execution units at each cycle, the compressed templates for packing instructions
from different cycles, the one-to-many mapping possibility from instructions to functional units,
etc.

The motivation of this work is to model the resource constraints due to architectural and
micro-architectural specifications during instruction scheduling to generate high-performing
code. Specifically, we target the constraints from the instruction dispersal rules, template
selection, and execution pipelines in the Itanium® architecture, though the approach can be
generalized to other processor architectures as well. The solution has to be time and space
efficient to fit in a practical, production environment. We also want the modeling and
management of hardware resources in an encapsulated module to allow easy migration to future
implementations of the Itanium® architecture or any future processors with similar resource
constraints, while the implementation of core scheduling heuristics remains independent from the
micro-architectural specifications. In contrast, although producing high quality of code motivates
our work, we are not looking for an optimal solution of the scheduling problem under the given
resource constraints since this is an NP-hard problem and we have to develop a practical solution
for a production environment.

In this work, we propose an extended finite-state automaton (FSA) to model all the resource
constraints during instruction scheduling. Each state encodes the currently occupied functional
units of a cycle as well as instruction templates and dispatching information. The scheduling of an
instruction triggers a transition between states. Our extended FSA successfully models the new
notion of instruction templates and the set of instructions dispersal rules on the Itanium®
architecture with both compilation time and space efficiency. Our experimental results show that
modeling these additional resource constraints is crucial toward achieving high performance on
Itanium® processors. With a minimal effort we have successfully migrated the encapsulated
machine model and management of hardware resources in a micro-level scheduler from the
Itanium® processors to the Itanium® 2 processors under IPF, where these two generations of
processors pose a number of different micro-architectural constraints.

CHEN, LIU, JU, FU, YANG & WU

4

In the rest of the paper, Section 2 provides background information and definitions of
terminology. Section 3 details the functional-unit based finite-state automaton and its
construction. Section 4 discusses instruction scheduling with an integrated modeling of all
resource constraints based on the FSA. Section 5 presents the experimental results that compare
our integrated approach with decoupled approaches. Section 6 discusses the related work, and
Section 7 concludes this paper.

2. Background

2.1. Intel® Itanium® architecture

The Itanium® architecture [12] uses wide instruction words as in the Very Long Instruction
Word (VLIW) architecture. There are four functional unit types – M (memory), I (integer), F
(floating point), and B (branch). Each instruction also has an instruction type – M, I, A, F, B, and
L. The instruction type specifies the functional unit type where an instruction can be executed,
where instruction type A (i.e., ALU instructions) can be dispatched to functional units of either
type M or I, and instruction type L consumes one I and one F units. Instructions are encoded into
bundles where each bundle contains three instructions with a specific instruction template. Each
instruction occupies one slot in a bundle. A template specifies the functional unit type for each
contained instruction. There are 12 basic templates, such as MII, MMI, MFI, MIB, etc. A stop bit
indicates to the processor that the instructions before and after the stop bit may have certain
resource dependencies and are to be executed at different cycles. Each basic template type has
two versions: one with a stop bit after the third slot and one without. Two of the basic templates,
MI_I and M_MI, have a stop bit in the middle of a bundle. For example, the MI_I template has a
stop bit between the two I slots. We call the two compressed templates because they allow the
packing of instructions from different cycles into smaller code size. Flow and output register
dependences are generally disallowed (with a few exceptions) among the same groups of
instructions delimited by explicit stop bits, but register anti-dependences are generally allowed.

Each implementation of the Itanium® architecture has its own micro-architectural features.
For example, the Itanium® processor [13] can issue and execute up to six instructions (two
bundles) per cycle. It has a total of 9 functional units (FU): 2 M-units (M0 and M1), 2 I-units (I0
and I1), 2 F-units (F0 and F1), and 3 B-units (B0, B1, B2). Functional units under the same type
may be asymmetric, requiring certain instructions to be executed only to a particular FU of a FU
type. Each processor generation may also have different instruction latencies and execution-
pipeline bypasses, resulting in varying latencies between the same pair of dependent instructions
when they are dispatched to different FUs. Each processor generation has its own set of
instruction dispersal rules that describes how each instruction is dispersed to a FU in an
instruction sequence. Depending on the bundle location (the first or second in a cycle) and slot
location in an instruction fetch cycle, the same instruction may be dispersed to different FUs.
How one instruction is ordered or aligned could force another instruction intended for the same
cycle to be stalled to a later cycle due to conflict in critical FUs. On the Itanium® processor, in a
cycle started with an MII bundle, the instruction in the first I slot always goes to the I0 unit. If the
instruction in the second I slot can be executed only on the I0 unit, which is already taken, the
processor will force it to execute in the next cycle. A detailed description of all of these micro-
architectural features for the Itanium® processor can be found in [13].

EFFICIENT MODELING OF ITANIUM® ARCHIETCURE

5

2.2. High- and micro-level instruction scheduling

Our integrated instruction scheduler divides the task of instruction scheduling into two – the
high-level instruction scheduling and the micro-level scheduling. This integrated instruction
scheduler has been implemented in the Open Research Compiler. Depending on the scheduling
scope, the scheduler can perform global scheduling or basic block local scheduling. The high-
level instruction scheduling algorithm in our global scheduler is based on [2] but performs on the
scope of single-entry-multiple-exit regions containing multiple basic blocks with internal control
flow transfers. Note that basic block is a degenerated region. Within each region, a dependence
DAG is constructed, where each node represents an instruction in the region and each edge
indicates a dependence relation (flow, output, or anti) between the instructions on the two ends of
the edge. The edges are weighted, and the weight is the minimal latency required by the hardware
to issue the two instructions. The implementation is a forward, cycle scheduling. The enhanced
priority function is based on the path lengths (to the last cycle of the region) weighted by
execution frequency in the global dependence DAG. Each basic block in the region is selected as
the target basic block in a topological order weighted with execution frequencies. If all of the
predecessors of an instruction have been scheduled and the scheduling latency on each incoming
dependence edge is satisfied, this instruction is ready to schedule. All ready instructions from the
basic blocks dominated by the target basic block are the candidates to be scheduled into the target
basic block. The high-level instruction scheduling determines the issue cycle of each instruction
according to dependences and instruction execution latencies. These scheduling steps are repeated
for every basic block to serve as a target basic block and terminated when all of the instructions in
the region are scheduled. When one region is scheduled, the next most frequently executed region
is then scheduled.

The global instruction scheduling also drives a number of machine-dependent optimizations
to fully utilize the architectural features. These include control and data speculation to move load
instructions across branches and aliasing stores. To support speculation, a new type of speculative
edge is introduced in the dependence DAG. In contrast to a normal dependence edge whose
dependence must be observed during the scheduling sequence, a speculative edge indicates that
the represented dependence may be ignored due to the special hardware support for control and
data speculation on Itanium® architecture. While selecting ready instructions, only normal
dependence edges are examined. When an instruction is scheduled, we then examine whether the
dependence on any speculative edge to this instruction is not satisfied. If so, this instruction is
scheduled speculatively and has to be marked so with proper encoding to use the speculative
architecture support. The global instruction scheduling phase can also schedule instructions
across joint points with compensation code generated and can schedule partially ready
instructions. The high-level instruction scheduling in the local scheduler operates on a basic block
scope without speculation. Both the global and local instruction schedulers incorporate resource
management thru the same micro-level scheduler.

The micro-level scheduling takes care of the placement of instructions and resource
management within a cycle. It can reorder instructions within the same cycle in order to achieve
the best FU assignment and template selection, as long as it honors all the instruction
dependencies specified by the high-level scheduler. The micro-level scheduling thus shields from
high-level scheduling algorithm the complicated resource management of the Itanium®
architecture, such as available FUs, instruction dispersal rules, and instruction bundles and
templates.

CHEN, LIU, JU, FU, YANG & WU

6

2.3. Building machine information into compiler

Figure 2: Building and propagating machine information.

Figure 2 shows the creation and usage of the machine-specific information in various stages
of the compiler life cycle. A Machine Model Builder (MM Builder) constructs a set of machine
description structures from a published processor parameter file [14] in the compiler building
process. The processor parameter file describes the micro-architecture details of an Itanium®
processor, including available functional units, instructions mapping to functional units, latency,
etc. The generated machine description structures include tables that specify the numbers and
types of machine resources (such as machine width, functional units, and templates), the
instruction latency, the pipeline bypass constraints, etc. Our functional-unit based FSA, to be
discussed in Section 3, is also constructed by the MM builder. The functional-unit based FSA, as
part of the machine description structures, contains a set of valid FSA states and a state transition
table. It also incorporates valid template combinations and instruction dispersal rules for each
state.

The machine description structures become part of the static data in the compiler executable
after the compiler is built. Both the high-level and micro-level instruction schedulers retrieve
machine-specific information from the machine description structures.

Processor
Parameter

File

FU-FSA

Latency
Table

•
•
•

Machine Description
Structures

Compiler Source
Code

Machine
Model
Builder

Build
Compiler

Compiler
Executable

Program

Program
Executable

Build Machine Description Build Compiler Compile
Program

Processor
Parameter

File

Processor
Parameter

File

FU-FSAFU-FSA

Latency
Table

Latency
Table

•
•
•

Machine Description
Structures

Compiler Source
Code

Machine
Model
Builder

Build
Compiler

Compiler
Executable

Program

Program
Executable

Build Machine Description Build Compiler Compile
Program

EFFICIENT MODELING OF ITANIUM® ARCHIETCURE

7

3. Functional-unit based finite-state automata

3.1. Motivation of functional-unit based finite-state automata

Finite state automata have been used in several modern instruction schedulers to model the
resource contention in execution pipelines [1, 21]. A well-designed FSA often results in a simple
and compact implementation and exhibits better efficiency in both space and time.

While the pipeline resource contention of Itanium® processors is simple to model, the
instruction templates and dispersal rules introduce new challenges. The latency between a pair of
dependent instructions depends not only on the type of source instruction but also on the
functional unit where it is executed. The bundle template and the slot location in a bundle
determine the functional unit assigned to execute an instruction. Hence selecting the instruction
template and placing instructions into the proper slot locations in a bundle is critical toward
achieving a high quality schedule.

The importance of template selection intuitively suggests a template-centric model for
managing resources. When an instruction is being scheduled, a template-centric model first
decides the template assignment for the current schedule cycle and the slot location for the
instruction. The instruction latency and the executing functional unit of the instruction are then
derived from the instruction template and slot location assigned per instruction dispersal rules. All
possible template assignments are dynamically enumerated at each scheduling attempt to select
the template and slot.

To improve the compile-time overhead in dynamic template-assignments enumeration, one
could build a template-based FSA off-line to guide the selection of template assignments. The
template-based FSA would model the template assignment and slot usage of an execution cycle.
Each state in a template-based FSA would record all the possible selections of instruction
templates under certain slot usage in a single execution cycle. When an instruction was
scheduled, an unused slot S would be picked for the instruction and the FSA would transit to the
next state where the slot S becomes taken. Template assignment would be selected from the set of
templates in the state. Size is one major problem in such a template-based FSA. For the two-
bundle wide Itanium® processor, there are at least 68 possible template assignments in a cycle,
after accounting for the availability of functional units. The theoretical upper bound on the
number of states in a template-based FSA is 268, the size of the power set of all possible template
assignments. Even with aggressive trimming, a template-based FSA still needs dozens of
thousand states.

To achieve efficiency in both space and time, we take a functional-unit-centric approach. At
the core is a Functional-Unit-based FSA (or FU-FSA in short). Each state in the FU-FSA
represents the set of functional units that are in use (FU usage set) in a schedule cycle.
Instructions scheduled into a schedule cycle are treated as a sequence of FU-FSA state transitions.
Instruction templates and dispersal rules are modeled in each state by a list of legal template
assignments of the state. A template assignment is legal for a state if its FU usage set is a superset
of the FU usage set of the state. Only states with at least one legal template assignment are
included in the FU-FSA.

The FU-FSA is much more space efficient than the template-based FSA. The FU-FSA for the
nine-FU Itanium® processor has at most 29 or 512 states, much smaller than that of a template-
based FSA. After excluding states with no legal template assignment, the FU-FSA for an
Itanium® processor contains 235 states. Each state has no more than 38 legal template

CHEN, LIU, JU, FU, YANG & WU

8

assignments, while 75% of the states have less than 10 legal template assignments. Therefore the
FU-FSA is very compact in term of memory usage and is highly scalable to a wider machine.

3.2. Off-line construction of FU-FSA

The FU-FSA is constructed to represent all valid FU usage patterns as the states of the FU-
FSA. The construction of FU-FSA further preprocesses the constraints imposed by instruction
templates and instruction dispersal rules of the Itanium® processor off-line when the compiler is
built. These constraints are incorporated into the FU resource modeling of each state through a
list of legal template assignments associated with each state. The construction of FU-FSA ensures
that the FU resource usage represented by each state can only be assigned template that is in its
list of legal template assignments. The online overhead for checking the instruction template and
dispersal constraints is thus significantly reduced.

Figure 3: Pseudo code for building an FU-FSA for an Itanium® processor.

Figure 3 outlines the algorithm for constructing the FU-FSA for the two-bundle wide
Itanium® processor. It can be easily extended to generate a FU-FSA for any Itanium® processor
that can issue N bundles per cycle. The algorithm enumerates all possible FU usage patterns,
represented as a FU usage set PV. For each PV, we scan all possible template assignments of up
to 2 bundles. If a template assignment T has a FU usage set TV per instruction dispersal rules and
TV is a superset of PV, T is a legal template assignment for PV. In this case, PV is added to the set
of FU-FSA states. The template assignment T is also added to the list of legal template
assignments (TAs) for the state PV, that is, FSA[PV].

After all template assignments for the FSA state with the FU usage set PV have been
enumerated and examined, the list of legal template assignments for PV is sorted according to
certain priority functions. The priority functions are chosen based on the way the FU-FSA is used
online and its effect on the generated code quality. For instance, suppose we have a set of
instructions that are scheduled to the same cycle and results in the FU usage set of the FSA state
S. We want to select the template assignment for state S after scheduling for the cycle is
completed. We can scan the list of legal template assignments of state S and use the very first one

BuildFSA() {
FOREACH FU usage set PV DO {

FOREACH template assignment T with at most 2 bundles DO {
TV = FU usage set of T;
IF (PV is a subset of TV) {

IF (PV is not in FSA) {
Add PV as a new FSA state;

}
Add T to FSA[PV].TAs;

}
}
IF (PV is in FSA) {

Sort FSA[PV].TAs according to priority criteria;
}

}
Build FSA transition table;

}

EFFICIENT MODELING OF ITANIUM® ARCHIETCURE

9

that meets all required dependence constraints from the set of instructions. In order to minimize
code size for Itanium® processors, we sort the list of template assignments according to the
following two priorities:

1. Ascending bundle count.
2. Putting template assignments with compressed template(s) ahead of full template(s).

The first priority favors the usage of a single-bundle template assignment over a two-bundle
template assignment whenever the dependence constraints are met. The second priority prefers
the usage of compressed template(s) over full template(s) in packing instruction into templates.
The two priority functions combined give a template assignment that has the smallest code size
whenever possible.

Finally the FU-FSA transition table is constructed after all legal states of FU-FSA are
included. A state of the FU-FSA represents the set of functional units that are in use (FU usage
set). And the transition edge from one state to another is annotated with the FU resource that are
consumed (or released).

3.3. On-line usage of FU-FSA

The FU-FSA is used to model the resource usage and constraints of a single execution cycle.
The schedule of a region is logically organized as a sequence of schedule cycles, with each
schedule cycle modeled by one FU-FSA. When an instruction is scheduled into a cycle, it leads to
a transition of the FU-FSA that is associated with the schedule cycle.

Figure 4 illustrates a simple sequence of FU-FSA state transitions for a schedule cycle where
the FU usage set in each state is represented as a bit vector. The FU-FSA starts out with the initial
state 0x00, indicating no FU is used at the beginning. When a FU is assigned to an instruction
during instruction scheduling, the current state follows the transition edge marked with the
consumed FU and transits to a new state. The new state has the bit corresponding to the newly
occupied FU set. For example, if we start with the current state 0x00 and add a new instruction
that occupies the M0 unit (bit 0 in the bit vector), the new state will be 0x01. Figure 4 highlights
the sequence of FU-FSA transitions, following the transition path M1�I0�I1�F0 that leads
from the initial state 0x00 to the state 0x1E. It also shows the list of legal template assignments
for the state 0x1E, assuming the target is an Itanium® processor.

When the high-level scheduler requests an instruction to be scheduled at a cycle, the micro-
level scheduler needs to find a FU P for the instruction at the current schedule cycle that can lead
to a legal transition in the FU-FSA. A legal FU-FSA state transition needs to satisfy two
conditions. First, there must be a transition edge annotated with P out of the current state. This
basically checks for the availability of FU resource P. The second condition requires that at least
one legal template assignment under the new state satisfies the dependence constraints for all
instructions currently scheduled in the cycle. Note that, in general, the Itanium® architecture
allows concurrent execution in the same cycle of instructions with register write-after-read
dependences and memory read-after-write, write-after-write and write-after-read dependences.
We refer to such dependence constraints among instructions in the same scheduled cycle as intra-
cycle instruction dependences. Dependence constraints that span multiple schedule cycles are
called inter-cycle instruction dependences.

CHEN, LIU, JU, FU, YANG & WU

10

Figure 4: A state transition example in a functional-unit based FSA.

When there is no intra-cycle instruction dependence, no check is required for the second
condition since the construction of FU-FSA guarantees that at least one legal template assignment
exists for each state. When there are intra-cycle dependences in the schedule cycle, the FU-FSA
transition needs to ensure the existence of at least one template assignment that can lay out
instructions in the required dependence order. This is accomplished by scanning the list of legal
template assignments of the new FU-FSA state. In either case, the final selection of template
assignment is needed only when scheduling for a cycle has completed, instead of done at every
scheduling attempt.

As illustrated in Figure 4, each state has a structure LegalTA that contains the list of legal
template assignments (TAs) for that state per instruction dispersal rules. When instruction
scheduling for a cycle has completed and it is time to finalize the template selection for the cycle,
the list of legal template assignments of the current FU-FSA state is scanned to find a template
assignment that can best realize the set of instructions in the cycle. One simple approach is to pick
the first template assignment in the list that satisfies all required constraints. By properly
arranging the list of template assignments for each state during the FU-FSA construction as
discussed in Section 3.2, the simple approach can optimally select the template assignment that
lead to smaller code size (or bundle count). A smaller code size in general leads to better
performance due to a reduction in I-cache misses.

0x00

0x01

0x02

0x04

0x100

M0
M1

I0

B2

I0
0x06

0x0E
I1

F0
0x1E

0x1DC

0x19D

num_of_TAs

TAs

0x00

0x01

0x02

0x04

0x100

M0
M1

I0

B2

I0
0x06

0x0E
I1

F0
0x1E

0x1DC

0x19D

LegalTA

MLX MI_I MFI MI_I MLX MLX MLX MFI

MLX MIBMFI MLXMFI MFIMFI MIBMFB MII

0x00

0x01

0x02

0x04

0x100

M0
M1

I0

B2

I0
0x06

0x0E
I1

F0
0x1E

0x1DC

0x19D

num_of_TAs

TAs

0x00

0x01

0x02

0x04

0x100

M0
M1

I0

B2

I0
0x06

0x0E
I1

F0
0x1E

0x1DC

0x19D

LegalTA

MLX MI_I MFI MI_I MLX MLX MLX MFI

MLX MIBMFI MLXMFI MFIMFI MIBMFB MII

EFFICIENT MODELING OF ITANIUM® ARCHIETCURE

11

4. Instruction scheduling with integrated resource management

4.1. Scalar instruction scheduling using FU-FSA

With a FU-FSA based micro-level scheduler taking care of the resource management, the
instruction scheduler can focus on high-level scheduling decision. Figure 5 highlights the
interaction between the high-level instruction scheduler and the micro-level scheduler. On the
left-hand side is the flow of a typical instruction scheduler. The right-hand side shows the
functions done in the micro-level scheduler.

Figure 5: Interaction between high-level and micro-level instruction scheduling.

The instruction scheduler repeatedly picks the best candidate from a list of instructions in the
schedule region that are ready for execution at the current cycle. The schedule region could be a
simple basic block in a basic block scheduler. Or it could be the single-entry-multiple-exits region
used in the global instruction scheduler of ORC. The instruction scheduler then consults the
micro-level scheduler through the IssueOp function to check for resource availability. The
IssueOp function determines whether there is a FU available for the candidate instruction and
whether there exists a legal template assignment that satisfies instruction dependence constraints
if exist. Using the FU-FSA, it simply picks an available FU for the candidate instruction and sees
whether the FU results in a legal FU-FSA state transition.

Start Region

End Region

Candidate List
empty?

Cycle full or
all candidate tried?

Advance cycle

Select next candidate, cand,
from the candidate list

Can cand be issued
at the current cycle?

Commit cand to current cycle
Update candidate list

Mark cand
as tried in

current
cycle

Candidate List
empty?

Make FSA state transition
with cand operation

FSA transition OK?

Commit new state
Return YES

Restore original state
Return NO

prevCycle = curCycle
curCycle = NULL

curCycle empty?

Finalize template assignment
selection for prevCycle

Return

Finalize template assignment
selection for the curCycle

High-level Instruction Scheduler Micro-level Scheduler

Yes

No

Yes

No

Yes

No

Yes
No

Yes

No

EndRegion()

AdvanceCycle()

IssueOp(cand)

Start Region

End Region

Candidate List
empty?

Cycle full or
all candidate tried?

Advance cycle

Select next candidate, cand,
from the candidate list

Can cand be issued
at the current cycle?

Commit cand to current cycle
Update candidate list

Mark cand
as tried in

current
cycle

Candidate List
empty?

Make FSA state transition
with cand operation

FSA transition OK?

Commit new state
Return YES

Restore original state
Return NO

prevCycle = curCycle
curCycle = NULL

curCycle empty?

Finalize template assignment
selection for prevCycle

Return

Finalize template assignment
selection for the curCycle

High-level Instruction Scheduler Micro-level Scheduler

Yes

No

Yes

No

Yes

No

Yes
No

Yes

No

EndRegion()

AdvanceCycle()

IssueOp(cand)

CHEN, LIU, JU, FU, YANG & WU

12

If IssueOp completes successfully, the candidate instruction is committed to the cycle. If
IssueOp is not able to fit the instruction in the current cycle, the instruction scheduler marks the
candidate instruction as being tried already. In either case, the scheduler picks another candidate
instruction from the candidate list to schedule until the current cycle is full or there is no more
candidate instruction to try. The instruction scheduler then closes the current cycle and advances
to the next cycle.

The instruction scheduler now needs to decide when to finalize the template assignment for
each cycle. One alternative is to finalize the template assignment on-the-fly as soon as scheduling
for a cycle is completed (the 1-cycle template selection heuristic). The template selection
algorithm looks at the one-cycle window in making template assignment. Or one may defer the
template assignment until the whole schedule region is completely scheduled. Selecting the
template assignments for several cycles at once allow better packing of instructions in adjacent
cycles by exploiting compressed templates. However, it requires extra compilation time and a
larger space for maintaining the states of several cycles.

Our instruction schedulers employ a 2-cycle template selection heuristic that is able to utilize
compressed templates for better instruction packing while incurs minimal compilation time and
space overhead. Instead of finalizing the template assignment as soon as the scheduling of a cycle
is done, the template assignment is selected with a one-cycle delay to give a window of two
schedule cycles for template selection. Only the states of two cycles need to be maintained during
instruction scheduling, namely, the previous cycle (prevCycle) and the current cycle (curCycle).
When the high-level scheduler advances a cycle, the AdvanceCycle function in the micro-level
scheduler is invoked to finalize the template assignment for the previous cycle. By looking at
both previous and current cycles when selecting the final template assignment of the previous
cycle, it allows the utilization of compressed templates. It results in a good balance between the
quality of generated code and the space and time efficiency of the instruction scheduler.

Once scheduling for the schedule region is completed, the EndRegion function in the micro-
scheduler is called to finalize the template assignment of both the previous and current cycles.

The pseudo code in Figure 6 illustrates a simplified implementation of IssueOp using the FU-
FSA. Inputs to the IssueOp function include the instruction op to be scheduled and the FU-FSA
state of the schedule cycle it is scheduled into. The IssueOp function also has access to all the
dependence edges involving instruction op in the global dependence DAG built for the schedule
region. The simplified IssueOp function assumes that the latency requirements between op and
other instructions due to inter-cycle dependences have been verified.

EFFICIENT MODELING OF ITANIUM® ARCHIETCURE

13

Figure 6: Pseudo code for IssueOp using FU-FSA.

Inside the IssueOp function, unoccupied FUs are first selected for the new instruction op, as
shown in the first FOREACH loop over the candidate FUs. When a tentative FU is selected for
op, the cycle is updated to reflect the assignment. The new FU-FSA state is checked to make sure
it is a legal state. Furthermore, if there are dependences among instructions within the cycle, the
list of legal template assignments (TAs) for the new state must be examined to ensure at least one
legal template assignment exists for the required instruction sequence in the cycle. The
ChkCycleDep function performs the dependence check given a template assignment and the
instructions scheduled in the cycle with their FU assignments.

If op is not able to use any of the unoccupied FUs, occupied but valid FUs for op are tried
next. IssueOp will re-arrange the FU assignments for instructions already scheduled in the current

IssueOp(op, cycle) {
funcUnits = FUs op can be issued to;
freeUnits = unoccupied FUs in cycle;

// Try available FUs first.
candidateUnits = funcUnits & freeUnits;
FOREACH FU in candidateUnits DO {

Record op issued to FU in cycle;
state = getFSAState(cycle);
IF (state is valid) {

IF (intra-cycle dependence in cycle) {
FOREACH ta in FSA[state].TAs DO {

IF (ChkCycleDep(cycle,ta) == TRUE)
RETURN YES; // Succeed

}
} ELSE

RETURN YES; // Succeed
}
Back out op from FU in cycle;

}

// Try permuting FU assignments.
candidateUnits = funcUnits & ~freeUnits;
FOREACH FU in candidateUnits DO {

IF (FU is locked) CONTINUE;
old_op = cycle->op_in_FU(FU);
Back out old_op from FU in cycle;
Issue and lock op to FU in cycle;
IF (IssueOp(old_op, cycle) == TRUE)

RETURN YES; // Succeed
Back out op from FU in cycle;
Record old_op issued to FU in cycle;

}
RETURN NO; // Fail

}

CHEN, LIU, JU, FU, YANG & WU

14

cycle to exploit the best resource usage. It involves backing out the FU assignment for one or
more instructions and re-arranges the mapping of instructions to FUs. The second FOREACH
loop over the candidate FUs performs this FU re-mapping. A FU locking mechanism avoids
repeating previously tried combinations to ensure termination of the algorithm. Heuristics that
give higher priority to the most constrained instructions can be applied to reduce the search space
during FU re-mapping.

4.1.1. A scalar instruction scheduling example
Figure 7 shows an example of the high-level scheduler and the micro-level scheduler in

action. This example assumes that the schedule region is a simple basic block. Figure 7(a) shows
the dependence DAG of the instructions in the schedule region. It also lists the FUs that are valid
for each of the instructions.

Figure 7(b) demonstrates the step-by-step interaction and the internal states of the high-level
scheduler and the micro-level scheduler. The high-level scheduler builds a ready list of candidate
instructions based on their respective path length in the DAG. In case of a tie, the order is
arbitrary. In the micro-scheduler, it shows the FU-FSA state for the current schedule cycle and
the tentative template assignment (TTA) if an intra-cycle dependence (ICD) exists in the cycle.

The high-level instruction scheduler starts with scheduling instruction I1 at cycle 0, which is
assigned to FU M0 by the micro-level scheduler. Next come instruction I5 that must be executed
after I1 because of the anti-dependence on register x. Instructions I1 and I5 can be executed at the
same cycle as long as I1 is put before I5. The micro-scheduler picks FU I0 for I5 and makes sure
that the template MI_I does allow FU M0 to goes before FU I0. Instruction I2 is scheduled next.
Note that I2 can only be executed on FU I0, which is already taken by I5 at cycle 0. However, the
micro-level scheduler is able to reassign I5 to FU I1 and make FU I0 available for I2. The FU
rearrangement maintains the ordering between I1 and I5 since FU M0 goes before FU I1 in the
MII template. The scheduling of instructions continues until all instructions in the basic block are
scheduled in two schedule cycles.

When the high-level instruction scheduler completes all instructions in the basic block, it
invokes the EndRegion function and the micro-level scheduler proceeds to finalize the template
assignment for both cycles. During the final selection of template assignment, the FU assignment
in cycle 1 is rearranged from {M0, M1} to {M0, I0} to enable the use of M_MI template
assignment. The reassignment of FUs can be accomplished using a process similar to that in the
IssueOp. The final schedule results in two bundles of instructions with an M_MI compressed
template in the second bundle.

EFFICIENT MODELING OF ITANIUM® ARCHIETCURE

15

Figure 7: A simple scalar instruction scheduling example.

(a) Dependence DAG for the sample instructions.

I1: ld a = [x] I3: ld y = [e]I2: shl g = h, i I4: ld z = [f]

I5: extr x = b, 2, 8

I6: add c = x, g

latency = 0

latency = 1

latency = 1
Valid FUs for instructions
I1,I3,I4: M0, M1
I2: I0
I5: I0,I1
I6: M0,M1,I0,I1

Micro-level SchedulerHigh-level Scheduler

start scheduling cycle 0
priority ready list : I1,I2,I3,I4
IssueOP(I1)

commit I1 to cycle 0
priority ready list : I5,I2,I3,I4
IssueOP(I5)

commit I5 to cycle 0
priority ready list: I2,I3,I4
IssueOP(I2)

commit I2 to cycle 0
priority ready list: I3,I4
IssueOP(I3)

commit I3 to cycle 0
priority ready list: I4
IssueOP(I4)

mark I4 as tried at cycle 0
priority ready list:
AdvanceCycle()
priority ready list: I6,I4
IssueOP(I6)

commit I6 to cycle 1
priority ready list: I4
IssueOP(I4)

commit I4 to cycle 1
priority ready list:
EndRegion()

cycle 0. state: {}
intra-cycle dependence (ICD):N
tentative template assignment(TTA):
assign M0 to I1
state: {M0}, ICD:N, TTA:

assign I0 to I5. Intra-cycle dep: I1 -> I5
state: {M0,I0}, ICD:Y, TTA:MI_I

Not able to assign I0 to I2. Rearrange FU
assignment: I0 to I2 and I1 to I5

state: {M0,I0,I1}, ICD:Y, TTA:MII

assign M1 to I3
state: {M0,M1,I0,I1}, ICD:Y
TTA:MII M_MI

No available M-type FU for I4
Return NO

cycle 1. state: {}, ICD:N, TTA:

assign M0 to I6
state:{M0}, ICD:N, TTA:

assign M1 to I4
state:{M0,M1}, ICD:N, TTA:

Final Template Assignment (FTA)
FTA for cycle 0: MII M_MI
Permute FU assignment for cycle 1
cycle 1 state:{M0,I0}, ICD:N, TTA:
FTA for cycle 1: M_MI

Final Bundle Template:
{MII: I1 I2 I5} {M_MI: I3;; I4 I6;;}

(b) Scheduling states in high-level and micro-level schedulers.

(a) Dependence DAG for the sample instructions.

I1: ld a = [x] I3: ld y = [e]I2: shl g = h, i I4: ld z = [f]

I5: extr x = b, 2, 8

I6: add c = x, g

latency = 0

latency = 1

latency = 1
Valid FUs for instructions
I1,I3,I4: M0, M1
I2: I0
I5: I0,I1
I6: M0,M1,I0,I1

I1: ld a = [x] I3: ld y = [e]I2: shl g = h, i I4: ld z = [f]

I5: extr x = b, 2, 8

I6: add c = x, g

latency = 0

latency = 1

latency = 1
Valid FUs for instructions
I1,I3,I4: M0, M1
I2: I0
I5: I0,I1
I6: M0,M1,I0,I1

Micro-level SchedulerHigh-level Scheduler

start scheduling cycle 0
priority ready list : I1,I2,I3,I4
IssueOP(I1)

commit I1 to cycle 0
priority ready list : I5,I2,I3,I4
IssueOP(I5)

commit I5 to cycle 0
priority ready list: I2,I3,I4
IssueOP(I2)

commit I2 to cycle 0
priority ready list: I3,I4
IssueOP(I3)

commit I3 to cycle 0
priority ready list: I4
IssueOP(I4)

mark I4 as tried at cycle 0
priority ready list:
AdvanceCycle()
priority ready list: I6,I4
IssueOP(I6)

commit I6 to cycle 1
priority ready list: I4
IssueOP(I4)

commit I4 to cycle 1
priority ready list:
EndRegion()

cycle 0. state: {}
intra-cycle dependence (ICD):N
tentative template assignment(TTA):
assign M0 to I1
state: {M0}, ICD:N, TTA:

assign I0 to I5. Intra-cycle dep: I1 -> I5
state: {M0,I0}, ICD:Y, TTA:MI_I

Not able to assign I0 to I2. Rearrange FU
assignment: I0 to I2 and I1 to I5

state: {M0,I0,I1}, ICD:Y, TTA:MII

assign M1 to I3
state: {M0,M1,I0,I1}, ICD:Y
TTA:MII M_MI

No available M-type FU for I4
Return NO

cycle 1. state: {}, ICD:N, TTA:

assign M0 to I6
state:{M0}, ICD:N, TTA:

assign M1 to I4
state:{M0,M1}, ICD:N, TTA:

Final Template Assignment (FTA)
FTA for cycle 0: MII M_MI
Permute FU assignment for cycle 1
cycle 1 state:{M0,I0}, ICD:N, TTA:
FTA for cycle 1: M_MI

Final Bundle Template:
{MII: I1 I2 I5} {M_MI: I3;; I4 I6;;}

(b) Scheduling states in high-level and micro-level schedulers.

Micro-level SchedulerHigh-level Scheduler

start scheduling cycle 0
priority ready list : I1,I2,I3,I4
IssueOP(I1)

commit I1 to cycle 0
priority ready list : I5,I2,I3,I4
IssueOP(I5)

commit I5 to cycle 0
priority ready list: I2,I3,I4
IssueOP(I2)

commit I2 to cycle 0
priority ready list: I3,I4
IssueOP(I3)

commit I3 to cycle 0
priority ready list: I4
IssueOP(I4)

mark I4 as tried at cycle 0
priority ready list:
AdvanceCycle()
priority ready list: I6,I4
IssueOP(I6)

commit I6 to cycle 1
priority ready list: I4
IssueOP(I4)

commit I4 to cycle 1
priority ready list:
EndRegion()

cycle 0. state: {}
intra-cycle dependence (ICD):N
tentative template assignment(TTA):
assign M0 to I1
state: {M0}, ICD:N, TTA:

assign I0 to I5. Intra-cycle dep: I1 -> I5
state: {M0,I0}, ICD:Y, TTA:MI_I

Not able to assign I0 to I2. Rearrange FU
assignment: I0 to I2 and I1 to I5

state: {M0,I0,I1}, ICD:Y, TTA:MII

assign M1 to I3
state: {M0,M1,I0,I1}, ICD:Y
TTA:MII M_MI

No available M-type FU for I4
Return NO

cycle 1. state: {}, ICD:N, TTA:

assign M0 to I6
state:{M0}, ICD:N, TTA:

assign M1 to I4
state:{M0,M1}, ICD:N, TTA:

Final Template Assignment (FTA)
FTA for cycle 0: MII M_MI
Permute FU assignment for cycle 1
cycle 1 state:{M0,I0}, ICD:N, TTA:
FTA for cycle 1: M_MI

Final Bundle Template:
{MII: I1 I2 I5} {M_MI: I3;; I4 I6;;}

Micro-level SchedulerHigh-level Scheduler

start scheduling cycle 0
priority ready list : I1,I2,I3,I4
IssueOP(I1)

commit I1 to cycle 0
priority ready list : I5,I2,I3,I4
IssueOP(I5)

commit I5 to cycle 0
priority ready list: I2,I3,I4
IssueOP(I2)

commit I2 to cycle 0
priority ready list: I3,I4
IssueOP(I3)

commit I3 to cycle 0
priority ready list: I4
IssueOP(I4)

mark I4 as tried at cycle 0
priority ready list:
AdvanceCycle()
priority ready list: I6,I4
IssueOP(I6)

commit I6 to cycle 1
priority ready list: I4
IssueOP(I4)

commit I4 to cycle 1
priority ready list:
EndRegion()

cycle 0. state: {}
intra-cycle dependence (ICD):N
tentative template assignment(TTA):
assign M0 to I1
state: {M0}, ICD:N, TTA:

assign I0 to I5. Intra-cycle dep: I1 -> I5
state: {M0,I0}, ICD:Y, TTA:MI_I

Not able to assign I0 to I2. Rearrange FU
assignment: I0 to I2 and I1 to I5

state: {M0,I0,I1}, ICD:Y, TTA:MII

assign M1 to I3
state: {M0,M1,I0,I1}, ICD:Y
TTA:MII M_MI

No available M-type FU for I4
Return NO

cycle 1. state: {}, ICD:N, TTA:

assign M0 to I6
state:{M0}, ICD:N, TTA:

assign M1 to I4
state:{M0,M1}, ICD:N, TTA:

Final Template Assignment (FTA)
FTA for cycle 0: MII M_MI
Permute FU assignment for cycle 1
cycle 1 state:{M0,I0}, ICD:N, TTA:
FTA for cycle 1: M_MI

Final Bundle Template:
{MII: I1 I2 I5} {M_MI: I3;; I4 I6;;}

start scheduling cycle 0
priority ready list : I1,I2,I3,I4
IssueOP(I1)

commit I1 to cycle 0
priority ready list : I5,I2,I3,I4
IssueOP(I5)

commit I5 to cycle 0
priority ready list: I2,I3,I4
IssueOP(I2)

commit I2 to cycle 0
priority ready list: I3,I4
IssueOP(I3)

commit I3 to cycle 0
priority ready list: I4
IssueOP(I4)

mark I4 as tried at cycle 0
priority ready list:
AdvanceCycle()
priority ready list: I6,I4
IssueOP(I6)

commit I6 to cycle 1
priority ready list: I4
IssueOP(I4)

commit I4 to cycle 1
priority ready list:
EndRegion()

cycle 0. state: {}
intra-cycle dependence (ICD):N
tentative template assignment(TTA):
assign M0 to I1
state: {M0}, ICD:N, TTA:

assign I0 to I5. Intra-cycle dep: I1 -> I5
state: {M0,I0}, ICD:Y, TTA:MI_I

Not able to assign I0 to I2. Rearrange FU
assignment: I0 to I2 and I1 to I5

state: {M0,I0,I1}, ICD:Y, TTA:MII

assign M1 to I3
state: {M0,M1,I0,I1}, ICD:Y
TTA:MII M_MI

No available M-type FU for I4
Return NO

cycle 1. state: {}, ICD:N, TTA:

assign M0 to I6
state:{M0}, ICD:N, TTA:

assign M1 to I4
state:{M0,M1}, ICD:N, TTA:

Final Template Assignment (FTA)
FTA for cycle 0: MII M_MI
Permute FU assignment for cycle 1
cycle 1 state:{M0,I0}, ICD:N, TTA:
FTA for cycle 1: M_MI

Final Bundle Template:
{MII: I1 I2 I5} {M_MI: I3;; I4 I6;;}

(b) Scheduling states in high-level and micro-level schedulers.

CHEN, LIU, JU, FU, YANG & WU

16

4.2. Software pipeline scheduling using FU-FSA

The FU-FSA model can be easily integrated into a software-pipelining scheduler as well. The
FU-FSA-based micro-level scheduler works on cycle-level resource management. It coordinates
with the high-level scheduler to obtain dependence information among instructions and to
compute the latency between pairs of dependent instructions.

To simplify our discussion, let us assume the software pipelining scheduler is a modulo
scheduler [24]. In contrast to a scalar instruction scheduler that generally considers only loop-
independent dependences, a software pipeline scheduler needs to consider both loop-independent
dependences and loop-carried dependences. Thus both types of dependences must be examined
when the micro-level scheduler looks at the intra-cycle instruction dependences that constrain the
ordering of instructions during template selection. Furthermore, the micro-level scheduler must
model a modulo resource table that is logically laid out as N consecutive scheduling cycles, where
N is the Initiation Interval of the pipelined schedule under construction. In the modulo resource
table, schedule cycles (c+k*N), for k � 0, are all modeled by the FU-FSA associated with modulo
schedule cycle c. Finally, the final template assignments for the N modulo schedule cycles can
only be decided and selected after the software pipeline scheduler have completed the
construction of the final pipelined schedule.

Figure 8: Modeling resources using FU-FSA for software pipelining.

Figure 8 illustrates how these additional factors are considered when the FU-FSA based
micro-scheduler is working with a modulo scheduler. Figure 8(a) shows the first two iterations of
a loop with four instructions A, B, C and D, annotated with subscripts indicating the loop
iteration they come from. Figure 8(b) shows the execution of the two loop iterations after
software pipelined with an Initiation Interval (II) of 2. Figure 8(c) shows the modulo resource
table that must be modeled in the micro-level scheduler. In this example, instructions A and B are
scheduled to cycle 0 and instruction D is scheduled to cycle 2 in the pipelined schedule. However,
instructions A, B and D all consume resources in modulo schedule cycle 0 and trigger transitions
in the FU-FSA state corresponding to modulo schedule cycle 0. Furthermore, while examining
the intra-cycle dependences of modulo schedule cycle 0, the loop-carried dependence from
instruction D of iteration 1 to instruction B of iteration 2 must be considered. Hence we must

A1

B1

C1

D1

A2

B2

C2

D2

A1 B1

C1

D1 A2 B2

C2

D2

0:

1:

2:

A B

C

D0,2

1

3:

4:

Modulo cycles (II=2)

Iteration 1

Iteration 2

Pipelined
Kernel

(a) Sequential loop execution (b) Pipelined loop execution (c) Micro-level scheduler resource modeling

state0

state1

FU-FSA
states

Loop-independent dependence

Loop-carried dependence

A1

B1

C1

D1

A2

B2

C2

D2

A1 B1

C1

D1 A2 B2

C2

D2

0:

1:

2:

A B

C

D0,2

1

3:

4:

Modulo cycles (II=2)

Iteration 1

Iteration 2

Pipelined
Kernel

(a) Sequential loop execution (b) Pipelined loop execution (c) Micro-level scheduler resource modeling

state0

state1

FU-FSA
statesA1

B1

C1

D1

A2

B2

C2

D2

A1 B1

C1

D1 A2 B2

C2

D2

0:

1:

2:

A B

C

D0,2

1

3:

4:

Modulo cycles (II=2)

Iteration 1

Iteration 2

Pipelined
Kernel

(a) Sequential loop execution (b) Pipelined loop execution (c) Micro-level scheduler resource modeling

state0

state1

FU-FSA
states

Loop-independent dependence

Loop-carried dependence

EFFICIENT MODELING OF ITANIUM® ARCHIETCURE

17

ensure instruction D comes before instruction B in selecting template assignment for module
schedule cycle 0.

5. Experimental results

The proposed instruction scheduling integrated with FU-FSA-based resource management for
the Itanium® architecture has been fully implemented in the Open Research Compiler (ORC) for
Itanium® architecture [20]. We compare our integrated approach with an approach of decoupled
instruction scheduling and template selection in terms of run-time and compilation-time
performance.

ORC includes advanced program optimizations, such as inter-procedural analysis and
optimizations, loop-nest transformations, machine-independent optimizations, and profile-guided
optimizations and scheduling. The global instruction scheduling reorders instructions across basic
blocks. There has been a large amount of research work done on instruction scheduler [2, 3, 8, 10,
16, 17, 18, 23]. Our global instruction scheduler uses a forward, cycle scheduling algorithm based
on [2], but it performs on the scope of single-entry-multiple-exit regions as described in Sec 2.2.
The global instruction scheduling also utilizes the special architectural features of Itanium®
processors and performs control and data speculation to move load instructions across branches
and potential aliasing stores. In case there are spills from register allocation, the local scheduling
is invoked for the affected basic blocks. The local scheduling operates on a basic block scope
without speculation. Both the global and local instruction scheduling incorporate our FU-FSA
based resource management.

We compare two levels of integration in resource management and instruction scheduling for
Itanium® processors, namely, the decoupled bundling approach (BASE) and our integrated FU-
FSA resource modeling approach (FUFSA). Both BASE and FUFSA use the same instruction
scheduler and heuristics. In the BASE configuration, the instruction scheduler performs
scheduling based on instruction dependences, instruction latency, pipeline bypass constraints,
issue width, and the functional unit availability. But instruction dispersal rules and templates are
only taken into account during a subsequent, independent bundling phase that is dedicated to pack
instructions under templates. The independent bundling phase invoked after the local scheduling
uses the same FU-FSA-based machine model and micro-level scheduler in much the same way as
in FUFSA. The bundling phase is not allowed to reorder instructions across the cycle boundary
marked by the upstream schedulers.

In the FUFSA configuration, the instruction scheduler incorporates the FU-FSA-based
resource management that accounts for instruction latency, pipeline bypass constraints, issue
width, types of FUs, templates, and dispersal rules. Instructions are packed under templates on-
the-fly when instructions are scheduled without a separate bundling phase.

For each of the BASE and FUFSA configurations, we collected data on two bundling
heuristics. The first heuristic (1-cycle template selection) selects the template for instructions in a
cycle as soon as scheduling to the cycle is done. It effectively ignores the two compressed
templates, MI_I and M_MI. These configurations are called BASE-1 and FUFSA-1 respectively.
The second heuristic (2-cycle template selection) defers the template selection of a completed
cycle until the next schedule cycle is done, enabling the use of compressed templates to reduce
code size. We called these configurations BASE-2 and FUFSA-2. Note FUFSA-2 is the target
approach of this work as described in the preceding sections.

CHEN, LIU, JU, FU, YANG & WU

18

We measured performance using all 12 SPECint2000 benchmark programs with full
reference input sets. These benchmark programs are compiled using ORC with the peak
performance options, which include inter-procedural optimizations, function inlining, profile
feedback, and extensive intra-procedural and Itanium® processor specific optimizations. The
generated codes are run and measured on a 733 MHz Itanium®-based workstation with 2 MB L3
cache and 1 GB memory, running RedHat 7.1 version of Linux.

Figure 9: CPU cycles speedup over BASE-2.

Figure 9 shows the speedup in CPU cycles of all configurations over BASE-2. FUFSA-2
outperforms BASE-2 on all benchmarks, with an average of 4.5% speedup. Crafty and Eon show
an impressive speedup of over 12%. We also observed that in general the 2-cycle template
selection heuristic performs better than the 1-cycle template selection heuristic. On average,
BASE-2 gets a 1.8% speedup over BASE-1 and FUFSA-2 obtains a 2.26% speedup over
FUFSA-1.

0.60

0.70

0.80

0.90

1.00

1.10

1.20

bz
ip2 gz

ip vp
r

cra
fty

pa
rse

r
mcf

vo
rte

x
ga

p
tw

olf eo
n

pe
rlb

mk
gc

c
AVG

Benchmarks

S
pe

ed
up

BASE-2

BASE-1

FUFSA-2

FUFSA-1

EFFICIENT MODELING OF ITANIUM® ARCHIETCURE

19

Figure 10: Code size with respect to BASE-2.

 Figure 10 compares the code size of the four configurations by measuring the size of the text
sections in the generated binaries. Note that a shorter bar in Figure 10 indicates a smaller code
size. It is clear that FUFSA-2 is able to generate code that is smaller than BASE-2 does. The
static code size from FUFSA-2 is reduced by 9.32% with respect to BASE-2. Furthermore we are
able to reduce static code size by about 10% when compressed templates are used to pack
instructions, as observed from the reduction achieved by BASE-2 over BASE-1 and FUFSA-2
over FUFSA-1.

To further understand how FUFSA improves performance, we use the PFMON (version 0.06)
tool to measure dynamic execution statistics through the performance monitors of Itanium®
processors. Due to space limitation, we select two programs, crafty and eon, which benefit the
most from the FUFSA approach, and two other programs, bzip2 and perlbmk, which receive only
small improvements from the FUFSA approach. Figure 11 shows the distribution of dynamic
cycles under the various stall categories for each of the four programs. Readers are referred to
[13] for the full description of each stall category. The cycle distributions for each configuration
have been normalized with respect to the total cycles of BASE-2.

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

bz
ip2 gz

ip vp
r

cra
fty

pa
rse

r
mcf

vo
rte

x
ga

p
tw

olf eo
n

pe
rlb

mk
gc

c
AVG

Benchmarks

C
od

e
S

iz
e

R
ed

uc
tio

n
R

at
io

BASE-2

BASE-1

FUFSA-2

FUFSA-1

CHEN, LIU, JU, FU, YANG & WU

20

Figure 11: Cycle breakdown for crafty, eon, bzip2 and perlbmk.

As shown in Figure 11, FUFSA mainly reduces cycles in two stall categories –
ISSUE_LIMIT_CYCLE and INST_ACCESS_CYCLE. The ISSUE_LIMIT_CYCLE counts all
cycle breaks that are due to the explicit insertion of stop bit in the generated code or the implicit
insertion of stop bit by the processor when resources are oversubscribed. The BASE
configuration does not account for the constraints of instruction templates and dispersal rules
during instruction scheduling. Thus it is more aggressive in scheduling instructions into certain
cycles even though there is no instruction template to pack them into a single cycle. The
independent bundling phase then needs to split these cycles to fit instruction templates. The
FUFSA configuration takes into account the effect of instruction templates and dispersal rules
during scheduling, avoiding the template selection deficiency. The FUFSA configurations thus
have fewer cycles in the ISSUE_LIMIT_CYCLE categories. On the four benchmarks, FUFSA-2
gets 2-4% speedup over BASE-2 and FUFSA-1 obtains 2-6% speedup over BASE-1 due to the
reduction of ISSUE_LIMIT_CYCLE.

FUFSA also shows significant cycle reduction over BASE in the INST_ACCESS_CYCLE
stall category, which counts cycles lost to I-cache or ITLB misses. FUFSA-2 gains 12% on crafty
and 9.5% on eon over BASE-2 in INST_ACCESS_CYCLE. The reduction in I-cache and ITLB
misses can be attributed to the fact that the code generated by FUFSA is more compact than the
code from BASE. For benchmarks that spend significant execution cycles waiting for I-cache and
ITLB misses, such as crafty and eon, FUFSA is able to achieve higher speedup over BASE by
reducing the impact from I-cache and ITLB misses. On the other hand, benchmarks that have

0.0

0.2

0.4

0.6

0.8

1.0

1.2

B
A

S
E

-2

B
A

S
E

-1

F
U

FS
A

-2

F
U

F
S

A
-1

B
A

S
E

-2

B
A

S
E

-1

F
U

F
S

A
-2

F
U

FS
A

-1

B
A

S
E

-2

B
A

S
E

-1

F
U

FS
A

-2

F
U

F
S

A
-1

B
A

S
E

-2

B
A

S
E

-1

F
U

F
S

A
-2

F
U

FS
A

-1

crafty eon bzip2 perlbmk

Benchmark Configurations

C
yc

le
 d

is
tr

ib
ut

io
n

no
rm

al
iz

ed
 to

 B
A

S
E

-2

UNSTALLED_PIPELINE_CYCLE
TAKEN_BRANCH_CYCLE
RSE_ACTIVE_CYCLE
DEPENDENCY_SCOREBOARD_CYCLE
DATA_ACCESS_CYCLES
PIPELINE_BACKEND_FLUSH_CYCLE
ISSUE_LIMIT_CYCLE
INST_ACCESS_CYCLE

`

EFFICIENT MODELING OF ITANIUM® ARCHIETCURE

21

fewer cycles in the INST_ACCESS_CYCLE category, such as bzip2 and perlbmk, get a lower
speedup from FUFSA over BASE.

Figure 12: Scheduling time with respect to BASE-2.

We also compare the compilation time spent in instruction scheduling (scheduling time) in
Figure 12. We used the cross-build version of ORC hosted on an x86 machine. The compilation
time is measured on a workstation with dual 2.4 GHz Pentium IV Xeon processors, 512 KB L2
cache and 512 MB memory. The scheduling time measures the compilation time spent in global
scheduling and local scheduling, including the time for the micro-level scheduler and resource
modeling. For the BASE configuration, the scheduling time also includes the independent
bundling phase for selecting instruction templates. The scheduling time accounts for the majority
of the time in the code generator component in the current implementation. The scheduling time
at each configuration is normalized to the time at BASE-2. On average, the scheduling time of the
FUFSA is about 4% less than the scheduling time of BASE. The scheduling time of using the 1-
cycle template selection heuristic is only about 2% less than the scheduling time of using the 2-
cycle template selection heuristic. This shows the design of our FSA-based on-the-fly resource
management during scheduling provides not only good performance improvements but also
compilation time efficiency. It also shows the FUFSA-2 is a better choice in the speedup versus
compilation time tradeoff.

6. Related Work

Prior work on modeling hardware resource constraints during scheduling has been mostly on
resource (or structural) hazards. Traditional compilers explicitly model the pipeline of the
processor by simulating instruction timing. A list of committed resources is maintained in each

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

bz
ip2 gz

ip vp
r

cr
af

ty

pa
rse

r
m

cf

vo
rte

x
ga

p
tw

olf eo
n

pe
rlb

m
k

gc
c

AVG

Benchmarks

R
ed

u
ct

io
n

 R
at

io

BASE-2

BASE-1

FUFSA-2

FUFSA-1

CHEN, LIU, JU, FU, YANG & WU

22

cycle and tracked by a resource reservation table. Whenever an instruction is considered for
scheduling, its resource requirements are checked against the resources already committed in the
reservation tables at different cycles. [6, 7, 8, 22] all use the reservation table approach. However,
the reservation table approach is less capable of managing instructions that can be handled by
multiple types of functional units. Another problem with using resource reservation tables is that
the table size is the number of resources times the length of the longest pipeline stage, and every
hazard test requires an OR operation on the tables.

Operations in the TriMedia TM1000 mediaprocessor, are issued to different issue slots based
their operation types [11]. The mapping from operations to issue slots in TM1000 is fixed.
However, the mapping of instructions to FUs in an Itanium® processor is determined from the
sequence of instructions at each fetch cycle, based on the instruction templates and dispersal
rules. The reservation-table-based approach in [4] for assigning issue slots on TM1000 is not
capable of handling the template- and context-sensitive resource constraints of Itanium®
processors.

FSA-based approach has the intuitive appeal by modeling a set of valid schedules as a
language over the instructions. The model in [5, 19] built FSA directly from the reservation
tables. The work in [21] reduced the size of FSA by moving away from using reservation vectors
as states. Instead each state encodes all potential structural hazards for all instructions in the
pipeline as collision matrix. Additional improvements for the FSA-based approach were proposed
in [1] to factor, merge, and reverse automata. Note that because the Itanium® architecture needs a
compiler to model resources primarily at hardware issue time, the FSA in our approach takes
advantages of that. Reservation-table-based scheduling usually models resources that are needed
at issue time and after the issue cycle.

A recent work [15] is an example of the decoupled approach, and it uses an integer linear
programming method to model resource constraints as a post-pass local scheduling on assembly
code. A subsequent work [25] extends to model certain aspects of global scheduling though still
based on the integer linear programming and post-pass approach. Our scheduling approach may
involve backtracking to swap functional unit assignments, which is similar to some modulo
scheduling work, e.g. [24]. However, the backtracking in our approach is limited within a cycle,
whereas the backtracking in modulo scheduling could go much further.

The idea of using a table-driven approach to isolate machine-specific information and retarget
a compiler is certainly not new. The work in [9] used a table-driven algorithm to translate a low-
level intermediate representation into efficient code sequences for a target machine. Their work
focused on selecting sequences of object code instructions for machines with different sets of
instructions. In contrast, our work focus on using FSA or a table-driven approach to model
resource constraints, in particular under the context of instruction scheduling and ILP-based
optimizations. We are more interested in easing the migration to different micro-architectural
implementations within the same processor architecture. There is also a similarity between our
approach and code selection of CISC-like instructions, where both appear to pack multiple
instructions to a wider or more complex instruction sequence. However, the code selection of
CISC-like instructions is usually done by looking for particular patterns from a sequence of
primitive instructions in the intermediate representation. Although it can also be implemented as a
table-driven manner, such code selection is usually not tied to instruction scheduling. In contrast,
our approach packs multiple instructions into templates to purposely integrate with instruction
scheduling to fully utilize machine resources and latencies. Different combinations of instructions
in the templates are also much more flexible than the particular patterns in CISC-like instructions.

EFFICIENT MODELING OF ITANIUM® ARCHIETCURE

23

Our scheduling approach in this work clearly falls into the line of greedy list scheduling in
terms of scheduling length and the overall code size. As mentioned earlier, the high-level
scheduling, which drives a cycle-based scheduling, is based on [2] though with a number of
enhancements. The greedy nature of the scheduling heuristics selects the candidate with the
highest frequency-weighted path length among all ready instructions to schedule into the current
cycle. For a set of instructions scheduled into the same cycle, if there exists any legal template
combination to fit these instructions, our approach will find at least one such template selection
since it will enumerate different combinations of issue slots by attempting to re-assign previously
scheduled instructions in the current cycle into some other slots. Since the enumeration space is
typically small, the search time has not been an issue. Once the issue slots are fixed, the particular
state in the FSA is determined and the first legal template selection also meets the smallest code
size within the current cycle since the templates are currently sorted with increasing code sizes.
However, our approach does not attempt to achieve the smallest code size for a given region,
because the enumeration process for fitting issue slots currently does not look for the smallest
code size among all possible template selections with different sets of issue slots. The main
reason for choosing our approach is to fit with a practical, production environment, where an
optimal solution is usually too expensive to obtain. Greedy list scheduling has been widely
adopted, and among other considerations time efficiency has been one important advantage.
Hence, we use it as the high-level scheduling in our approach and leverage many known
techniques built around it. The way we factor all legal templates under the same FSA state is
primary for space efficiency at a small cost of occasionally looking up the list of legal templates.

7. Conclusions

The Intel® Itanium® architecture and its hardware implementations have introduced a new
notion of instruction templates and a set of complicated dispersal rules in addition to the
traditional pipeline resource hazards. This has stretched the limit of an optimizing compiler, in
particular on instruction scheduling, in its ability to model resource constraints effectively and
efficiently in the course of generating highly optimized code. In this work, we have extended the
FSA-based approach to manage all of the key resource constraints on-the-fly during instruction
scheduling. The FSA is built off-line prior to compilation. To largely cut down the number of
states in the FSA, each state models the occupied functional units. State transition is triggered by
the incoming scheduling candidate, and resource constraints are carefully integrated into a micro-
scheduler.

The proposed scheduling approach integrated with resource management has been fully
implemented in the Open Research Compiler. The integrated approach shows a clear performance
advantage over decoupled approaches with up to 12% speedup and an average of 4.5%
improvement across 12 highly optimized SPECint2000 integer programs running on Itanium®-
based workstations. This shows the necessity of modeling all resource constraints, including
instruction templates and dispersal rules, during scheduling for a high-performing architecture
such as the Itanium® architecture. We also demonstrate that the compilation time for our
integrated approach is competitive to that of a decoupled approach even with a full modeling of
the hardware resources. Furthermore, our machine model and micro-level scheduler are
modularized and can be easily retargeted to a newer generation of Itanium® processors.

One possible improvement to our implementation is to encode the supported instruction
sequences from the legal template assignments in each state. The encoding would allow a faster

CHEN, LIU, JU, FU, YANG & WU

24

check on whether intra-cycle dependences among instructions are supported, eliminating the need
to walk through the list of legal template assignments. We would also like to investigate
incorporating code size as a first-order consideration into our integrated instruction scheduling
and resource management model.

Instruction dispersal rules have become ever more complicated on modern processors for
both superscalar and VLIW architectures. This is due to various design consideration, such as
performance, power consumption, area, and reconfigurability. Our FSA-based approach on
scheduling and resource management is a good framework to model such resource constraints
during scheduling beyond the Itanium® architecture. In addition, all VLIW architectures have to
pack instructions statically, which can be seen as a form of instruction templates to be modeled
by a compiler. We would like to apply our integrated approach to various architectures. One can
try to make the set of templates a variable and develop a good schedule for the variable sets of
templates, though this remains a challenging problem. We also would like to employ the FU-FSA
based approach in a JIT compilation environment where compilation time is critical to the overall
performance.

Acknowledgements

We would like to thank members of the ORC teams in Intel and in the Institute of Computing
Technology of the Chinese Academy of Sciences for building the ORC compiler, on which our
experiments is based. We would also like to thank Kath Knobe for her many helpful comments to
improve this paper. Finally we thank the anonymous reviewers for their helpful feedback.

References

[1] V. Bala and N. Rubin, “Efficient Instruction Scheduling Using Finite State Automata,” in
Proceedings of the 28th Annual International Symposium on Microarchitecture, November
1995.

[2] D. Berstein, M. Rodeh, “Global Instruction Scheduling for Superscalar Machines,” in
Proceedings of SIGPLAN’91 Conference on Programming Language Design and
Implementation, pp. 241-255, June 1991.

[3] J. Bharadwaj, K. Menezes, and C. McKinsey, "Wavefront scheduling: path based data
representation & scheduling of subgraphs," in Proeedings. of the 32nd Annual International
Symposium on Microarchitecture, pp. 262-271, 1999.

[4] Z. Chamski, C. Eisenbeis, and E. Rohou, “Flexible Issue Slot Assignment for VLIW
Architectures”, INRIA Research Report 3784, October 1999.

[5] E. Davidson, L. Shar, A. Thomas, and J. Patel, “Effective Control for Pipelined
Computers,” in Spring COMPCON-75 digest of papers. IEEE Computer Society, February
1975.

[6] J. Dehnert and R. Towle, “Compiling for the Cydra-5,” Journal of Supercomputing, vol. 7,
no. 1-2, pp. 181-227, May 1993.

EFFICIENT MODELING OF ITANIUM® ARCHIETCURE

25

[7] A. Eichenberger and E. Davidson, “A Reduced Multipipeline Machine Description that
Preserves Scheduling Constraints,” in Proceedings of SIGPLAN’96 Conference on
Programming Language Design and Implementation, pp. 12-22, May 1996.

[8] J. Fisher, "Trace scheduling: a technique for global microcode compaction," IEEE
Transactions on Computers, vol. C-30, no. 7, pp. 478-490, July 1981.

[9] S. Glanville and S. Graham, “A New Method for Compiler Code Generation,” in
Proceedings of the 5th Annual ACM Symposium on Principles of Programming Languages,
pp. 231-240, January 1978.

[10] R. Gupta and M. L. Soffa on "Region Scheduling," IEEE Transactions on Software
Engineering, vol. 16, pp. 421-431, April 1990.

[11] J. Hoogerbrugge and L. Augusteijn, “Instruction Scheduling for TriMedia,” Journal of
Instruction-Level Parallelism, vol. 1, no. 1, February 1999.

[12] Intel, Intel® Itanium® Architecture Software Developer's Manual, Vol. 1, October 2002.

[13] Intel, Intel® Itanium® Processor Reference Manual for Software Optimization, November
2001.

[14] Intel, Itanium® Microarchitecture Knobs API Programmer's Guide, 2001.

[15] D. Kaestner and S. Winkel, “ILP-based Instruction Scheduling for IA-64,” in Proceedings
of ACM SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded Systems,
pp. 145-154, June 2001.

[16] P. Lowney, S. Freudenberger, T. Karzes, W. Lichtenstein, R. Nix, J. O’Donnell, and J.
Ruttenberg, “The Multiflow Trace Scheduling Compiler,” Journal of Supercomputing, vol.
7, no. 1-2, pp. 51-142, May 1993.

[17] U. Mahadevan and S. Ramakrishnan "Instruction Scheduling Over Regions: A Framwork
for Scheduling Across Basic Blocks," in Proceedings of the 5th International Conference on
Compiler Construction, Edingburgh, U.K., pp.419-434, April 1994.

[18] S. Moon and K. Ebcioglu, “An Efficient Resource-Constrained Global Scheduling
Technique for Superscalar and VLIW Processors,” in Proceedings of the 25th Annual
International Symposium on Microarchitecture, pp. 55-71, December 1992.

[19] T. Muller, “Employing Finite Automata for Resource Scheduling,” in Proceedings of the
26th Annual International Symposium on Microarchitecture, December 1993.

[20] Open Research Compiler (ORC) 2.0, http://ipf-orc.sourceforge.net, January 2003.

[21] T. Proebsting and C. Fraser, “Detecting Pipeline Structural Hazards Quickly,” in
Proceedings of the 21st Annual ACM Symposium on Principles of Programming Languages,
pp. 280-286, January 1994.

[22] B. Rau, M. Schlansker, and P. Tirumalai, “Code Generation Schemes for Modulo
Scheduled Loops,” in Proceedings of the 25th Annual International Symposium on
Microarchitecture, December 1992.

[23] B. Rau and J. Fisher, “Instruction-level Parallel Processing: History, Overview, and
Perspective,” Journal of Supercomputing, vol. 7, no. 1-2, pp. 9-50, May 1993.

CHEN, LIU, JU, FU, YANG & WU

26

[24] B. Rau, “Iterative Modulo Scheduling,” in Proceedings of the 27th Annual International
Symposium on Microarchitecture, December 1994.

[25] S. Winkel, “Optimal Global Scheduling for Itanium® Processor Family,” in Proceeding. of
the 2nd EPIC Compiler and Architecture Workshop (EPIC-2), November 2002.

