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Abstract

Abstract: Dynamical Algebraic Combinatorics explores actions on sets of discrete
combinatorial objects, many of which can be built up by small local changes, e.g.,
Schützenberger’s promotion and evacuation, or the rowmotion map on order ideals. There are
strong connections to the combinatorics of representation theory and with Coxeter groups. Some
of these actions can be extended to piecewise-linear maps on polytopes, then detropicalized to
the birational setting. Here the dynamics have the flavor of cluster algebras, but this connection
is still relatively unexplored.

The term “homomesy” describes the following widespread phenomenon: Given a group action on
a set of combinatorial objects, a statistic on these objects is called “homomesic” if its average
value is the same over all orbits. Along with its intrinsic interest as a kind of “hidden invariant”,
homomesy can be used to help understand certain properties of the action. This notion can be
lifted to the birational setting, and the resulting identities are somewhat surprising. Proofs of
homomesy often involve developing tools that further our understanding of the underlying
dynamics, e.g., by finding an equivariant bijection.

This talk will be a introduction to these ideas, giving a number of examples of such actions and
pointing out connections to other areas.
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Some themes in Dynamical Algebraic Combinatorics

1 Periodicity/order;

2 Orbit structure;

3 Homomesy;

4 Equivariant bijections; and

5 Lifting from combinatorial to piecewise-linear and birational settings.



Cyclic rotation of binary strings
“Immer mit den einfachsten Beispielen anfangen.” — David Hilbert



Cyclic rotation of binary strings

Let Sn,k be the set of length n binary strings with k 1s.
Let CR : Sn,k → Sn,k be rightward cyclic rotation.

Example
Cyclic rotation for n = 6, k = 2:

101000 7−→ 010100
CR

Periodicity is clear here. The map has order n = 6.
Orbit structure is very nice; every orbit size must divide n.
Homomesy? Need a statistic, first.
Equivariant bijection? No need.
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Cyclic rotation of binary strings

An inversion of a binary string is a pair of positions (i , j) with i < j such that there is a
1 in position i and a 0 in position j .

Example
Orbits of cyclic rotation for n = 6, k = 2:

String Inv String Inv String Inv
101000 7 110000 8 100100 6
010100 5 011000 6 010010 4
001010 3 001100 4 001001 2
000101 1 000110 2
100010 5 000011 0
010001 3 100001 4

Average 4 Average 4 Average 4
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Definition of Homomesy

Given

a set S ,
an invertible map τ : S → S such that every τ -orbit is finite,
a function (“statistic”) f : S → K where K is a field of characteristic 0.

We say that the triple (S , τ, f ) exhibits homomesy if there exists a constant c ∈ K such
that for every τ -orbit O ⊆ S ,

1
#O

∑
x∈O

f (x) = c .

In this case, we say that the function f is homomesic with average c (also called
c-mesic) under the action of τ on S .
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Homomesy

Theorem (Propp & R. [PrRo15, §2.3])

Let inv(s) denote the number of inversions of s ∈ Sn,k .

Then the function inv : Sn,k → Q is homomesic with average k(n−k)
2 with respect to

cyclic rotation on Sn,k .

Proof.
Consider superorbits of length n. Show that replacing “01” with “10” in a string s leaves
the total number of inversions in the superorbit generated by s unchanged (and thus the
average since our superorbits all have the same length).
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Cyclic rotation of binary strings

Example
n = 6, k = 2

String Inv String Inv String Inv
101000 7 110000 8 100100 6
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100010 5 000011 0
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Cyclic rotation of binary strings

Example
n = 6, k = 2

String Inv String Inv String Inv
101000 7 110000 8 100100 6
010100 5 011000 6 010010 4
001010 3 001100 4 001001 2
000101 1 000110 2 100100 6
100010 5 000011 0 010010 4
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Cyclic rotation of binary strings

Example

Inversions
String String Change
101000 011000 -1
010100 001100 -1
001010 000110 -1
000101 000011 -1
100010 100001 -1
010001 110000 +5

There are other homomesic statistics as well:
Let 1j(s) := sj , the jth bit of the string s. Can you see why this is homomesic?



Coxeter Toggling

Independent Sets

of Path Graphs



Independent Sets of a Path Graph

Definition
An independent set of a graph is a subset of the vertices that does not contain any
adjacent pair.

Let In denote the set of independent sets of the n-vertex path graph Pn. We usually
refer to an independent set by its binary representation.

Example
is written 1010100.

In this case, In refers to all binary strings with length n that do not contain the factor 11.
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Toggles

Definition (Striker - generalized earlier concept of Cameron and Fon-der-Flaass)

For 1 ≤ i ≤ n, the map τi : In → In, the toggle at vertex i is defined in the following
way. Given S ∈ In:

if i ∈ S , τi removes i from S ,
if i ̸∈ S , τi adds i to S , if S ∪ {i} is still independent,
otherwise, τi (S) = S .

Formally,

τi (S) =


S \ {i} if i ∈ S
S ∪ {i} if i ̸∈ S and S ∪ {i} ∈ In
S if i ̸∈ S and S ∪ {i} ̸∈ In

.



Toggles

Proposition

Each toggle τi is an involution, i.e., τ2
i is the identity. Also, τi and τj commute if and only if

|i − j | ≠ 1.

Definition
Let φ := τn ◦ · · · ◦ τ2 ◦ τ1, which applies the toggles left to right.

Example

In I5, φ(10010) = 01001 by the following steps:

10010 τ17−→ 00010 τ27−→ 01010 τ37−→ 01010 τ47−→ 01000 τ57−→ 01001.



Order & Orbits

The order of this action grows quite fast as n increases and is difficult to describe in
general. It is the LCM of the orbit sizes, which are not all divisors of some small
number (relative to n):
2, 3, 6, 15, 24, 231, 210, 1989, 240, 72105, 18018, 3354725, 3360
For n = 6 orbit sizes are 3, 7, and 11, so order is LCM(3,7,11)= 231.
The number of orbits appeared to be OEIS A000358 , but we didn’t understand why
at first.
This means that this action is unlikely to exhibit interesting Cyclic Sieving.
But we can still find homomesy.



Homomesy

Here is an example φ-orbit in I7, containing 1010100. In this case, φ10(S) = S .

1 2 3 4 5 6 7
S 1 0 1 0 1 0 0

φ(S) 0 0 0 0 0 1 0
φ2(S) 1 0 1 0 0 0 1
φ3(S) 0 0 0 1 0 0 0
φ4(S) 1 0 0 0 1 0 1
φ5(S) 0 1 0 0 0 0 0
φ6(S) 0 0 1 0 1 0 1
φ7(S) 1 0 0 0 0 0 0
φ8(S) 0 1 0 1 0 1 0
φ9(S) 0 0 0 0 0 0 1

Total: 4 2 3 2 3 2 4



Homomesy

Here is an example φ-orbit in I7, containing 1010100. In this case, φ10(S) = S .

1 2 3 4 5 6 7
S 1 0 1 0 1 0 0

φ(S) 0 0 0 0 0 1 0
φ2(S) 1 0 1 0 0 0 1
φ3(S) 0 0 0 1 0 0 0
φ4(S) 1 0 0 0 1 0 1
φ5(S) 0 1 0 0 0 0 0
φ6(S) 0 0 1 0 1 0 1
φ7(S) 1 0 0 0 0 0 0
φ8(S) 0 1 0 1 0 1 0
φ9(S) 0 0 0 0 0 0 1
Total: 4 2 3 2 3 2 4



1 2 3 4 5 6 7
S 1 0 1 0 1 0 0

φ(S) 0 0 0 0 0 1 0
φ2(S) 1 0 1 0 0 0 1
φ3(S) 0 0 0 1 0 0 0
φ4(S) 1 0 0 0 1 0 1
φ5(S) 0 1 0 0 0 0 0
φ6(S) 0 0 1 0 1 0 1
φ7(S) 1 0 0 0 0 0 0
φ8(S) 0 1 0 1 0 1 0
φ9(S) 0 0 0 0 0 0 1
Total: 4 2 3 2 3 2 4

Theorem (Joseph–R. [JR18])

Define 1i : In → {0, 1} to be the indicator function of vertex i .

For 1 ≤ i ≤ n, 1i − 1n+1−i is 0-mesic on φ-orbits of In.

Also 211 + 12 and 1n−1 + 21n are 1-mesic on φ-orbits of In.
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Idea of the proof that 1i − 1n+1−i is 0-mesic: Given a 1 in an “orbit board”, if the 1 is not in the right
column, then there is a 1 either

2 spaces to the right,
or 1 space diagonally down and right,

and never both.
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Idea of the proof that 1i − 1n+1−i is 0-mesic: This allows us to partition the 1’s in the orbit board into
snakes that begin in the left column and end in the right column.

This technique is similar to one used by Shahrzad Haddadan to prove homomesy in orbits of an invertible
map called “winching” on k-element subsets of {1, 2, . . . , n}.
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Idea of the proof that 1i − 1n+1−i is 0-mesic: Each snake corresponds to a composition of n − 1 into
parts 1 and 2. Also, any snake determines the orbit!

1 refers to 1 space diagonally down and right
2 refers to 2 spaces to the right
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Red snake composition: 221121
Purple snake composition: 211212
Orange snake composition: 112122
Green snake composition: 121221
Blue snake composition: 212211

Brown snake composition: 122112



More Consequences of Snakes

Besides homomesy, this snake representation can be used to explain a lot about the
orbits (particularly the orbit sizes, i.e. the number of independent sets in an orbit).

When n is even, all orbits have odd size.
“Most” orbits in In have size congruent to 3(n − 1) mod 4.
The number of orbits of In (OEIS A000358)
And much more...

Using elementary Coxeter theory, it’s possible to extend our main theorem to other
“Coxeter elements” of toggles. We get the same homomesy if we toggle exactly once at
each vertex in any order.



Antichain Rowmotion

on Posets



Rowmotion: an invertible operation on antichains

Let A(P) be the set of antichains of a finite poset P .

Given A ∈ A(P), let ρA(A) be the set of minimal elements of the complement of the
downward-saturation of A (the smallest downset containing A).

ρA is invertible since it is a composition of three invertible operations:

antichains←→ downsets←→ upsets←→ antichains

# #

ρA :  # # −→

#  

# #

 # # −→

  

  

#   −→

# #

# #

#   

# #

This map and its inverse have been considered with varying degrees of generality, by many
people more or less independently (using a variety of nomenclatures and notations): Duchet,
Brouwer and Schrijver, Cameron and Fon Der Flaass, Fukuda, Panyushev, Rush and Shi, and
Striker and Williams, who named it rowmotion.
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Panyushev’s conjecture (AST’s theorem)

Let ∆ be a (reduced irreducible) root system in Rn. (Pictures soon!)

Choose a system of positive roots and make it a poset of rank n by decreeing that y covers x iff
y − x is a simple root.

Theorem (Armstrong–Stump–Thomas [AST11], Conj. [Pan09])

Let O be an arbitrary ρA-orbit. Then

1
#O

∑
A∈O

#A =
n

2
.

In our language, the cardinality statistic is homomesic with respect to the action of rowmotion
on antichains in root posets.



Picture of root posets

Here are the classes of posets included in Panyushev’s conjecture.

Φ+(A3)

e1 − e4

e1 − e3 e2 − e4

e1 − e2 e2 − e3 e3 − e4

Φ+(B3) e1 + e2

e1 + e3

e1 e2 + e3

e1 − e3 e2

e1 − e2 e2 − e3 e3

Φ+(C3) 2e1

e1 + e2

e1 + e3 2e2

e1 − e3 e2 + e3

e1 − e2 e2 − e3 2e3

Φ+(D4) e1 + e2

e1 + e3

e1 − e4 e1 + e4 e2 + e3

e1 − e3 e2 − e4 e2 + e4

e1 − e2 e2 − e3 e3 − e4 e3 + e4

Figure: The positive root posets A3, B3, C3, and D4.

(Graphic courtesy of Striker-Williams.)



Example of antichain rowmotion on A3 root poset
For the type A3 root poset, there are 3 ρA-orbits, of sizes 8, 4, 2:

#

# # −→

 # #

#

# # −→

#   

#

#  −→

 # #

#

 # −→

# # #

#

−→ # # −→

# #  

#

# # −→

  #

#

 # −→

# #  

#

#  ↰

# # #

#

# # −→

# # #

#

# # −→

   

#

  −→

# # #

 

# # ↰

# # #

#

# # ←→

 #  

#

# #

#  #

Checking the average cardinality for each orbit we find that
1 + 2 + 2 + 1 + 1 + 2 + 2 + 1

8
=

0 + 3 + 2 + 1
4

=
2 + 1

2
=

3
2
.



Orbits of rowmotion on antichains of [2]× [3]

ρA

2

ρA

1

ρA

1

Average cardinality: 6/5

ρA

1 1

..

ρA

1

ρA

2

ρA

2

Average cardinality: 6/5

ρA

1 0

..



Orbits of rowmotion on antichains of [2]× [2]

ρA

1

ρA

2

Average cardinality: 1

ρA

1 0

..

ρA

1

..
1

For antichain rowmotion on this poset, periodicity has been known for a long time:

Theorem (Brouwer–Schrijver 1974)

On [a]× [b], rowmotion is periodic with period a+ b.

Theorem (Fon-Der-Flaass 1993)

On [a]× [b], every rowmotion orbit has length (a + b)/d , some d dividing both a and b.



Antichains in [a]× [b]: cardinality is homomesic

For rectangular posets [a]× [b] (the type A minuscule poset, where [k] = {1, 2, . . . , k}), the
homomesy is easier to show than for root posets.

Theorem (Propp, R.)

Let O be an arbitrary ρA-orbit in A([a]× [b]). Then
1

#O
∑
A∈O

#A =
ab

a+ b
.

7

6

5

4

3

2

1 8

9

10

11
12

-1+1-1-1-1 -1 -1 -1+1+1 +1 +1

(Graphic courtesy of Ben Young.)

This proof uses an non-obvious equivariant
bijection (the “Stanley–Thomas” word [Sta09,
§2]) between antichains in [a]× [b] and binary
strings, which carries the ρA map to cyclic
rotation of bitstrings.

The figure shows the Stanley–Thomas word
for a 3-element antichain in A([7]× [5]). Red
↔ +1, while Black ↔ −1.

This bijection also allowed Propp–R. to derive
refined homomesy results for fibers and
antipodal points in [a]× [b].
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Orbits of rowmotion on antichains of [2]× [3]

Look at the cardinalities across a positive fiber such as the one highlighted in red.

ρA

1

ρA

0

ρA

1

Average: 3/5

ρA

0 1

..

ρA

1

ρA

1

ρA
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Average: 3/5

ρA

0 0
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Orbits of rowmotion on antichains of [2]× [3]

How about across a negative fiber such as the one highlighted in red.

ρA

0

ρA

1

ρA

0

Average: 2/5

ρA
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..
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Average: 2/5

ρA

0 0

..



Antichains in [a]× [b]: fiber-cardinality is homomesic

For (i , j) ∈ [a]× [b], and A an antichain in [a]× [b], let 1i ,j(A) be 1 or 0 according to
whether or not A contains (i , j).

Also, let fi (A) =
∑

j∈[b] 1i ,j(A) ∈ {0, 1} (the cardinality of the intersection of A with the
fiber {(i , 1), (i , 2), . . . , (i , b)} in [a]× [b]), so that #A =

∑
i fi (A).

Likewise let gj(A) =
∑

i∈[a] 1i ,j(A), so that #A =
∑

j gj(A).

Theorem (Propp, R.)

For all i , j ,

1
#O

∑
A∈O

fi (A) =
b

a+ b
and

1
#O

∑
A∈O

gj(A) =
a

a+ b
.

The indicator functions fi and gj are homomesic under ρA, even though the indicator
functions 1i ,j aren’t.



Rowmotion on order ideals

We’ve already seen examples of Rowmotion on antichains ρA:

# #

ρA :  # # −→

#  

# #

 # # −→

  

  

#   −→

# #

# #

#   

# #

We can also define it as an operator ρJ on J(P), the set of order ideals of a poset P , by
shifting the waltz beat by 1:

# #

ρJ :  # # −→

  

  

#   −→

# #

# #

#   −→

# #

# #

#   

  

Or as an operator on the up-sets (order filters) U(P), of P :

  

ρU : #   −→

# #

# #

#   −→

# #

# #

#   

  

  

 # #

# #



Rowmotion via Toggling
(Rowmotion in Slow motion)



Toggling Up-sets

Cameron and Fond-Der-Flaass showed how to write rowmotion on order ideals
(equivalently order filters) as a product of simple involutions called toggles.

Definition (Cameron and Fon-Der-Flaass 1995)

Let U(P) be the set of up-sets of a finite poset P .
Let e ∈ P . Then the toggle corresponding to e is the map Te : U(P)→ U(P) defined
by

Te(U) =


U ∪ {e} if e ̸∈ U and U ∪ {e} ∈ U(P),
U \ {e} if e ∈ U and U \ {e} ∈ U(P),
U otherwise.

Theorem (Cameron and Fon-Der-Flaass 1995)

Applying the toggles Te from top to bottom along a linear extension of P gives
rowmotion on up-sets of P .



Toggling Up-sets
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Applying the toggles Te from top to bottom on P gives rowmotion on up-sets of P .

Example
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Theorem (Cameron and Fon-Der-Flaass 1995)
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Rowmotion

We define the group action of rowmotion on the set of up-sets U(P) via the map
Row : U(P)→ U(P) given by the following three step process.

Start with an up-set, and

1 ∇: Take the minimal elements (giving an antichain)
2 ∆−1: Saturate downward (giving a down-set)
3 Θ: Take the complement (giving an up-set)

Example

∇ ∆−1 Θ



Antichain toggles

Striker has generalized the notion of toggles relative to any set of “allowed” subsets, not
necessarily up-sets.

Definition
Let e ∈ P . Then the antichain toggle corresponding to e is the map
τe : A(P)→ A(P) defined by

τe(A) =


A ∪ {e} if e ̸∈ A and A ∪ {e} ∈ A(P),
A \ {e} if e ∈ A,
A otherwise.

Let TogA(P) denote the toggle group of A(P) generated by the toggles {τe | e ∈ P}.

Theorem (Joseph 2017)

Applying the antichain toggles τe from bottom to top along a linear extension of P gives
ρA, rowmotion on antichains of P .



Antichain toggles

Theorem (Joseph 2017)

Applying the antichain toggles τe from bottom to top on P gives ρA, rowmotion on
antichains of P .

Example



Antichain toggles

Theorem (Joseph 2017)

Applying the antichain toggles τe from bottom to top on P gives ρA, rowmotion on
antichains of P .

Example



Antichain toggles

Theorem (Joseph 2017)

Applying the antichain toggles τe from bottom to top on P gives ρA, rowmotion on
antichains of P .

Example



Antichain toggles

Theorem (Joseph 2017)

Applying the antichain toggles τe from bottom to top on P gives ρA, rowmotion on
antichains of P .

Example



Antichain toggles

Theorem (Joseph 2017)

Applying the antichain toggles τe from bottom to top on P gives ρA, rowmotion on
antichains of P .

Example



Antichain toggles

Theorem (Joseph 2017)

Applying the antichain toggles τe from bottom to top on P gives ρA, rowmotion on
antichains of P .

Example



Antichain toggles

Theorem (Joseph 2017)

Applying the antichain toggles τe from bottom to top on P gives ρA, rowmotion on
antichains of P .

Example



Antichain toggles

Theorem (Joseph 2017)

Applying the antichain toggles τe from bottom to top on P gives ρA, rowmotion on
antichains of P .

Example



Antichain toggles

Theorem (Joseph 2017)

Applying the antichain toggles τe from bottom to top on P gives ρA, rowmotion on
antichains of P .

Example



Antichain toggles

Theorem (Joseph 2017)

Applying the antichain toggles τe from bottom to top on P gives ρA, rowmotion on
antichains of P .

Example



Antichain toggles

Theorem (Joseph 2017)
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This gives the same result as the 3-step process

1 ∆−1: Saturate downward (giving a down-set)
2 Θ: Take the complement (giving an up-set)
3 ∇: Take the minimal elements (giving an antichain)

Example

∆−1 Θ ∇



Generalization to the piecewise-linear realm

Stanley (1986) defined some polytopes associated with posets.

C(P) is the chain polytope of P , the set of f ∈ [0, 1]P such that
n∑

i=1
f (xi ) ≤ 1 for

all chains x1 < x2 < · · · < xn.
O(P) is the order polytope of P , the set of all order-preserving labelings
f ∈ [0, 1]P . Saying f is order-preserving means f (x) ≤ f (y) when x ≤ y in P .

0.2

0.7 0

0.1 0 0.3

∈ C(P)



Generalization to the piecewise-linear realm

Stanley (1986) defined some polytopes associated with posets.

C(P) is the chain polytope of P , the set of f ∈ [0, 1]P such that
n∑

i=1
f (xi ) ≤ 1 for

all chains x1 < x2 < · · · < xn.
O(P) is the order polytope of P , the set of all order-preserving labelings
f ∈ [0, 1]P . Saying f is order-preserving means f (x) ≤ f (y) when x ≤ y in P .

1

0.8 0.3

0.1 0 0.3

∈ O(P)



Generalization to the piecewise-linear realm

Up-sets of P correspond to elements of the order polytope O(P) for which every
label is 0 or 1. These are the vertices of the order polytope.
Antichains of P correspond to elements of the chain polytope C(P) for which every
label is 0 or 1. These are the vertices of the chain polytope.

Einstein and Propp have defined and analyzed piecewise-linear toggles on the order
polytope that correspond exactly to up-set toggles when restricted to the vertices of the
order polytope.



Generalization to the piecewise-linear realm

Up-sets of P correspond to elements of the order polytope O(P) for which every
label is 0 or 1. These are the vertices of the order polytope.
Antichains of P correspond to elements of the chain polytope C(P) for which every
label is 0 or 1. These are the vertices of the chain polytope.

Einstein and Propp have defined and analyzed piecewise-linear toggles on the order
polytope that correspond exactly to up-set toggles when restricted to the vertices of the
order polytope.



Toggles on the chain polytope C(P)

So why not define toggles on the chain polytope that correspond to antichain toggles
when restricted to the vertices?

To define τe : C(P)→ C(P), given g ∈ C(P) and e ∈ P , τe(g) can only differ from g at
the value of e.(

τe(g)
)
(e) = 1−max

{
k∑

i=1

g(yi )

∣∣∣∣∣ (y1, . . . , yk) is a maximal
chain in P that contains e

}

0.2 0.3

0

0.6
0.4 0.1

0.1 0.2

0.1 0.1 0
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Toggles on the chain polytope C(P)
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Toggles on the chain polytope C(P)

To define τe : C(P)→ C(P), given g ∈ C(P) and e ∈ P , τe(g) can only differ from g at
the value of e.(

τe(g)
)
(e) = 1−max

{
k∑

i=1
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Toggles on the chain polytope C(P)

To define τe : C(P)→ C(P), given g ∈ C(P) and e ∈ P , τe(g) can only differ from g at
the value of e.(

τe(g)
)
(e) = 1−max

{
k∑

i=1

g(yi )

∣∣∣∣∣ (y1, . . . , yk) is a maximal
chain in P that contains e

}

0.2 0.3

0

0.6
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0.3 + 0.1 + 0.2 + 0.1 = 0.7



Toggles on the chain polytope C(P)

To define τe : C(P)→ C(P), given g ∈ C(P) and e ∈ P , τe(g) can only differ from g at
the value of e.(

τe(g)
)
(e) = 1−max

{
k∑

i=1

g(yi )

∣∣∣∣∣ (y1, . . . , yk) is a maximal
chain in P that contains e

}

0.2 0.3

0

0.6
0.4 0.3

0.1 0.2

0.1 0.1 0

0.7 is max and 1− 0.7 = 0.3



PL Rowmotion on the chain polytope C(P)
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Detropicalizing from the piecewise-linear realm to the birational realm

Einstein and Propp showed how to lift of order-ideal toggling and rowmotion on
O(P) to the birational realm.

Now let’s do the same lifting of antichain toggling and rowmotion on C(P) to the
birational realm.
To do this, we replace max with + and + with multiplication. Under this dictionary

(
τe(g)

)
(e) = 1−max

{
k∑

i=1

g(yi )

∣∣∣∣∣ (y1, . . . , yk) is a maximal
chain in P that contains e

}
becomes (

τe(g)
)
(e) =

C∑{
k∏

i=1
g(yi )

∣∣∣∣ (y1, . . . , yk) is a maximal
chain in P that contains e

}
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Birational Antichain Rowmotion (BAR-motion)

Now we’ll define the birational antichain toggle corresponding to e ∈ P .

Definition

For e ∈ P , and field F , let τe : PF → PF be defined as the birational map that only
changes the value at e in the following way.(

τe(g)
)
(e) =

C∑{
k∏

i=1
g(yi )

∣∣∣∣ (y1, . . . , yk) is a maximal
chain in P that contains e

}

Definition
BAR-motion (birational antichain rowmotion) is the birational map obtained by
applying the birational antichain toggles from the bottom to the top.
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BAR-motion on [2]× [2]

g =
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BAR4(g) =
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Properties of BAR-motion

The order of BAR on [a]× [b] is a+ b.
The homomesy results for antichain cardinality in the combinatorial ρA setting lift
to this setting.
We can lift the Stanley–Thomas word to this setting as an equivariant surjection,
cyclically rotating with BAR . It can be used to prove homomesy, but not
periodicity [JR20+].

Here is the full orbit of BAR on a generic labeling for P = [2]× [2], with ST-words.

z

x y

w

BAR7−→

(
wy , xz , C

wx ,
C
yz

)

xy
x+y

w(x+y)
x

w(x+y)
y

C
w(x+y)z

BAR7−→

(
C
yz ,wy , xz ,

C
wx

)

w

C
wyz

C
wxz

z

BAR7−→

(
C
wx ,

C
yz ,wy , xz

)

C
w(x+y)z

(x+y)z
x

(x+y)z
y

xy
x+y

↰

(
xz , C

wx ,
C
yz ,wy

)



Summary and Take Aways

• Studying dynamics on objects in algebraic combinatorics is interesting, particularly
with regard to our THEMES:
1) Periodicity/order ; 2) Orbit structure; 3) Homomesy 4) Equivariant bijections

• Examples of cyclic sieving are also ripe for homomesy hunting.

• Situations in which maps can be built out of toggles seem particularly fruitful.

• Combinatorial objects are often discrete “shadows” of continuous PL objects, which
in turn reflect algebraic dynamics. But combinatorial tools are still frequently useful, even
at this level.

Slides for this talk are available online at

Google “Tom Roby”.

Thanks very much for coming to this talk!
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