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Abstract 

This paper deals with the determination of moving areas 
in an image sequence from the variations in time of the intensity 
distribution. Beyond this problem we are concerned with an 
application whose aim is the estimation of the trajectory of an 
underwater vehicle by means of a video sensor on the robot pointing 
to the sea bottom. The trajectory will be piecewisely reconstructed by 
tracking a series of appropriate elements, i.e. apparent moving areas. 
throughout the image sequence. Contextual information is explicitely 
introduced in the moving-area detection-and-recovery process, which 
is stated as a statistical labeling one. The label field is modeled as a 
Markovian field using Gibbs distributions defined on a spatio- 
temporal neighborhood system. A solution to this labeling problem is 
formulated according to the maximum a posteriori (MAP) criterion. 
We have adopted a deterministic iterative algorithm to optimize the 
criterion at hand. Experiments with an underwater video image 
sequence are presented. 

INTRODUCTION 

This study adresses a spatibtemporal analysis problem 
which is relevant to a project whose aim is to realize the trajectory 
estimation of an underwater vehicle equipped with a video sensor, [I]. 
This camera points to the bottom and it is maintained vertically. The 
use of complementary data supplying height and course information 
allows to restrict the problem to the measurement of 2D displacements 
in the image plane. The mjectory will be piecewisely reconstructed by 
tracking a series of appropriate elements, i.e. apparent moving areas. 
throughout the image sequence. 

The situation involved by this application does not 
correspond to the usual one which associates motion detection with 
change detection, that is static camera and moving objects. Normally 
the case of a moving camera implies a more complex algorithmic 
solution to achieve motion-based segmentation and moving object 
detection as shown in [Z]. Nevertheless in the case at hand the 
apparent motion of image points due to the camera displacement is far 
from being perceptible for all image points, because of the intrinsic 
properties of underwater images. Signal-to-noise ratio is low and 
image content is poorly structured and often uniform. Thus it is 
necessary to select the most reliable areas in the image, which are 
called 'tracers'. These areas must be spatially circumscribed in the 
image, and they must show a perceptible apparent motion which is 
entirely due to the underwater vehicle displacement. The vehicle 
trajectory will be piecewisely reconstructed by tracking successive 
tracers throughout the image sequence (long-term process). 

As far as we are concerned, we only deal with the short- 
term process. that is determining adequate tracers at a given time and 
estimating their velocity field. Although the camera moves, we take 
advantage of the previous remarks to set up the tracer determination 
problem as if the matter would be to determine moving areas over a 
stationary background. (Among detected moving areas. it may happen 
that some correspond to elements moving by themselves, e.g. fish; 

they can be subsequently eliminated). Besides, the appearance of 
undenvater images incites to resort to a statistical framework. 
Therefore the method developped in this paper finds a valorizing 
application in this context. The information of the instantaneous 
motion of each tracer is represented by the velocity field along its 
boundary. It is obtained by first estimating at every point the velocity 
vector component perpendicular to the border using and adapting the 
model-based method described in [Z], and then by reconstructing the 
complete velocity field according to the stochastic gradient algorithm 
also presented in [Z]. 

This paper focuses on the determination of moving areas 
in an image sequence through the study of variations in time of the 
intensity distribution. Detection of changes in time of the gray value 
distribution in an image sequence corresponds to one of the basic 
problems to be addressed in dynamic scene analysis. [7]. Change 
detection can be realized by considering intensity differences in time, 
[10.1 I]. or by introducing more elaborate statistical tests, such as 
maximum likelihood tests. [4.6.7]. Relevant interpretation of these 
changes remains in the general case an open question. Nevertheless for 
a large class of applications they can be correlated to motion 
information owing to some assumptions about the image formation 
process, i.e. mainly, constant illumination. As a maner of fact, the 
need is not limited to change detection but encompasses the recovery 
of the masks of moving areas in the image. Usually, these hvo 
processing stages are performed one after the other by means of 
separate techniques. Change images may include false detection 
because of noise, but above all it comprises three kinds of regions 
among change regions, first, due to objects covering up background. 
second, due to background uncovered by objects and third, due to each 
object moving over itself. Hence a complementary process is required 
to select areas corresponding at a given time t to real moving objects. 
These areas will be concisely called moving object marks or moving 
orear. To this end solutions have been proposed which essentially rely 
on heuristics. [7.10,111. 

Our approach is in particular distinguished by treating 
conjointly detection of temporal changes. and reconstruction of mobile 
object masks. Therefore- we will mention it as the moving-area 
detection-and-recovery (MADR) process. To this end, spatial and 
temporal contextual information is explicitely introduced in the 
MADR process according to a probabilistic formulation. Besides no 
assumptions are made on the respective intensity levels of objects and 
background. More formaUy, this problem is stated as a statistical 
labeling one. To decide whether a point belongs or not to a moving 
area is equivalent to assign to it a given label. The label field is 
modeled as a Markovian field using Gibbs distributions. A solution to 
this labeling problem is formulated according to the maximum a 
posteriori (MAP) criterion. We have adopted a deterministic iterative 
algorithm to optimize the criterion at hand, based on an efficient 
manner of selecting sites to be visited. which drastically limit the 
computational load. 
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LABELING AND CRITERION 

We propose a probabilistic formulation of the MADR 
process, which provides both a convenient framework for modeling - 
prior expectations concerning significant spatio-temporal properties of 
a moving area against stationary background, and with an efficient - 
criterion for specifying the most likely interpretation when dealing 
with noise-conupted observations. Interpretation must be understood 
here as the recognition of moving areas in the image. As already 
outlined, interpretation is stated as a statistical labeling problem. 

Let E be the label field and e a possible realization of this 
random field. The label set is given by R ={-  1 , 0 , +  1); 0 
corresponds to stationary background. -1 and +1 to change areas. 
Moving areas will be defined as regions of connected (+l)-labeled 
points. (resp. (-])-labeled), validated at the end of the optimization 
process supplying the most likely interpretation, f .  Let 11 be the 
intensity image array at time t. and p = (x,y) be a sample or image 
punt. The intensity value at point p in 11 is denoted by f (p.t) or 
f (x.y,t). Besides et(p) will designate the label of point p in image It. 
and el is the label array {er(p)). The next step is to define how the 
observation must be chosen. 

As we assume that motion appearance is closely related to 
change in time of the intensity function, we consider as observation 
the temporal derivative of the intensity function. denoted fi. As we 
deal with digitized images, we use an approximation of fi, that is the 
finite difference f t(x,y) = f (x.y,t + dt) - f (x,y,t). where dt is the time 
interval between successive images. In fact a filtered version o f f  r, gt ,  
will be introduced. Let 0 denote the observation field. which is 
supposed to be a random field, and let o be a possible realization of it. 
We wish to find the most likely interpretation. f t ,  in terms of moving 
areas, of the changes in time of the intensity. To this end, we resort to 
the maximum a posteriori (MAP) criterion, which leads to maximize 
the probability of the random label field given the observation data. 
P ( E  = e l 0  = 0). Using Bayes's rule and neglecting normalizing factor 
which is constant as far as the maximization is concerned, we get: 

max,  P ( O = o l E = e ) P ( E = e )  (1). 

MODELING WITH GIBBS DISTRIBUTIONS 

The point is now how to formalize the prior probability 
distribution of the interpretation P(E). We model the label field as a 
Markovian random field. Markovian modeling effectively offers the 
appropriate mathematical concept to express local interactions in the 
labeling process. Besides we resort to Gibbs distribution. which allows 
to manipulate an explicit analytical expression of this prior 
probability. The use of Gibbs distribution in the context of image 
analysis and its interest were originally strengthened in [S]. Recent 
anempts to apply this approach to motion problems are reported in [9]. 
concerning scene segmentation from visual motion. 

The distribution of the label field is given by the 
following expression: 

1 -U(e )  
P ( E  = e) = Zexp(T) (2): 

where Z is a normalizing constant called the partition function, and T ,  
often refemd to as temperature, may act as a global conuol parameter 
during the optimization process. U (e) is called the energy function. 
The main efficiency of this modeling approach lies in the fact that U 
is given by the sum of local potentials defmed on so-called cliques c, 
c E C. where C is the set of cliques for a given neighborhood system. 
U is of the form: U (e) = x,, Vc(e). Indeed this modeling approach 
offers easy and mathematically well-mastered means of adapting the 
algorithmic solution to different situations while keeping its 
framework. 

We have defined potentials on a set of cliques derived 
from a spatio-temporal neighborhood system shown in Fig.1. A clique 
is a subset of sites which are mutual neighbors. In the case at hand 
interpretation sites are pixels p and two types of cliques are possible. 
either a clique consists of one single pixel, or it comprises two sites 

(pi ,p2). There are four such spatial cliques, horizontal one (**). 
vertical one (:), diagonal ones (**). (**) and one temporal one. There 
is no theoritical means to choose the best family of potentials 
associated with possible configurations of labels for each clique. This 
choice must be guided by the knowledge of the problem at hand. For 
the while we suppose the label field to be piecewise constant and we 
take a set of constant-level potentials. For the spatial cliques, they are 
defined as follows: 

vc= Ps . ife(p1) + e(p2); (3i) 
v, = - p, , ife(p1) = e(p2). (3 ii) 

This kind of potentials favours spatial continuity of the label field: the 
optimization process will be inclined to eliminate very small regions. 
which can be assumed to correspond to false detection due to noise. 
and to form compact regions (stationarity principle). In consequence a 
complementary item must be introduced to cope with discontinuities. 
Discontinuity is materialized by points belonging to borders of two 
adjacent regions. Therefore edge location takes place at pixels of the 
interpretation site network. Edge state can be considered as an 
additional quality for an interpretation site. It is a deterministic 
information supplied by an edge detection operator applied in each 
image 11. Accordingly potentials will be slightly modified to take into 
account this additional information, as explained in [8]. They are 
chosen in such a way to encourage to label the point of interest with 
the same label as points in its neighborhood which are not border 
points and which are situated on the same side of the contour. Three 
levels are defined (- PS , 0 ,  Ps ). A positive potential discourages the 
corresponding label configuration, a negative one encourages it and a 
potential equal to zero expresses a neutral opinion. 

Before describing potential associated with the temporal 
cliques, let us point out a few aspects concerning change areas and 
moving areas, which will make more explicit the choice of these 
potentials. For this purpose, let us introduce the notation Ft for the 
image of intensity changes between image It+& and I f ,  validated for 
instance by thresholding the image difference or by using one of the 
likelihood tests proposed in [4.6]. One solution to be sure to keep only 
points corresponding to the position of the moving object in image I ,  
is basically to perform a logical-AND between Ft-dt and Ft, as 
described for instance in [10.11]. In the case of objects supposed to be 
projected as uniform intensity regions, this logical operation typically 
acknowledges the following succession of events at a given location p 
of the image: background (at t - dt), object (at t), background (at 
t + dt). (If significant overlapping between successive projections of 
the object occurs, a complementary stage based on spatial properties of 
the intensity function is usually required in this case.) The above- 
mentioned remarks can give an intuitive insight into the definition of 
potentials associated with the temporal clique, knowing that we deal 
with a ternary labeling process. If site p l  is supposed to correspond to 
time t and site p2 to time t - dt, they are given by: 

Vc = pT . ife(p1) = e(p2) .OR. e(p2) = 0; ( 4 0  
V,=- pT , ife(pl)=-e(p2) .OR. e(pl)=O. (4ii) 

The last case corresponding to e(p1) = 0 expresses that it is preferred 
to miss a detection if doubtful rather than to induce a false alarm. We 
do not take into account the unit clique in the optimization process. 
This means that all labels are assumed to be of equal probability. 

The last step is to define the conditional probability of the 
observation. The observation is given by the filtered temporal 
derivative of the intensity function, gt. We model this observation as a 
piecewise constant function corrupted by an additive zero-mean 
Gaussian noise. This model is a tractable one, even if sometimes 
unrealistic. Nevertheless it is suited enough for the application we deal 
with. Results reported in this article indicate that the use of such a 
model is acceptable. The observation at each point p follows a 
Gaussian law of mean p and variance 02. The mean depends on the 
label according to a simple law. [8]. Variance 02, which is assumed to 
be independent of the label, and only due to noise effect, is a constant 
with respect to the optimization process. It is supposed to be space 
invariant. If we assume that observation variables are independant 
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from one pixel to the other, the conditional probability of the 
observation 0 is okthe form: 

where N is the number of pixels in It. 
The resulting a posteriori probability distribution of the 

label field given by the product of expressions (2) and (3, is again a 
Gibbs one. If we take the opposite of the logarithm of it and neglect 
constant terms, we come to: 

I 1 
~ ( e )  = =Zpe ,,(BI(P) - P=(P) )' + +CCE V C ( ~ )  (6). 

W can be called the total energy function. The most likely 
interpretation will then result from the minimization of this function 
W with respect to e. The next section will present the procedure 
designed for this purpose. 

OPTIMIZATION PROCEDURE 

The formulation of the labeling problem through the 
MAP criterion gives raise to several intrinsic difficulties, in particular 
the number of variables involved in the minimization of (6). equal to 
the size of the image. A stochastic optimization procedure called 
simulated annealing ensures that the global minimum can be reached 
asymptotically speaking, regardless of the initial state. [5]. In practical 
situations, this algorithm presents the major drawback of requiring a 
tmmendous amount of iterations. This explains several effnns for 
designing other procedures indeed sub-optimal but computationally 
more efficient, as surveyed in (31. We have adopted a deterministic 
iterative algorithm to optimize the criterion at hand, which could be 
defined as a deterministic version of the Metropolis sampling 
algorithm. Temperature parameter T is set to a constant value. We 
start from a given initial configuration of the Iabel field, ep. By 
iteratively minimizing relation (6). we are supposed to reach the most 
likely interpretation &; it is delivered by the final configuration 
denoted el .  This minimization procedure works as follows. After 
selecting a site p, we compute the energy change induced by 
modifying the current label of site p, we, for all o E R \ {  w, }, that 
is: 

w(p ,o )=W(e ; ) -W(er )  (7). 
where the field e; is defined as equal to el except for site q = p where 
e;(q)= w. Of course the evaluation of w involves only local 
computations. If all variations w(p, o )  are positive, label w, is kept 
at site p, otherwise er(p) is set to w, that minimizes w(p,  a ) .  This 
systematic minimum search is reasonable. since we deal with only 
three labels and we use constant-level potentials. Computational cost 
is rather low. 

In fact sites are ordered according to a stability criterion 
as introduced in [3]. Let us denote v this stability function. v is 
merely defined as follows: 
v (p) = w(p , o m )  if w(p,  a,) < 0; v (p) = 0, otherwise .(a) 
This function v measures how significantly a more stable labeling, in 
the sense of a lower energy state, can occur from an alternative 
decision. At the beginning of the minimization process, given an 
initial configuration e?, a stack k constntcted which contains sites p 
such that v (p) # 0. These sites are ranged according to the value of 
v (p); the site at the top, p*, corresponding to the lowest value of v. 
will be considered by the minimization process. Once the label of 
has been updated, function v is computed again for neighbors of p*. 
The stack is reorganized accordingly and new sites may be added to it. 
This operation is iterated until the stack is empty leading to the final 
configuration ef. This way of selecting sites, by constantly focusing 
on sites which are the most likely to be mislabeled, enables to 
drastically limit the total number of iterations. In return the 
construction and the maintenance of the stack must be taken into 
account. The smaller the initial size of the stack the more efficient this 
technique. This militates for taking care of the step of initialization. 
that is determining ep. Moreover the optimization process must start 
not too far from the global minimum in order to prevent it from being 

captured by irrelevant local minima, since a deterministic method is 
used. 

INITIALIZING STEP 

The determination of ef subdivides into two stages. First 
an augmented set of labels is considered. fi = { - 1.0, + 1, NIL]. NIL 
signifies that no labeling decision has been made for the while. The 
intermediate field label is denoted ej"". It is obtained through the use 
of a slightly-modified version of one of the change detectors based on 
a likelihood test, described in [61. We model the intensity distribution 
a. a piecewise constant function corrupted by an additive zero-mean 
Gaussian noise. We assume the noise variance to be constant over the 
two windows M1 and M2, centered on p respectively in It and It+&. 
which are considered to validate or not a change in time at point p. 
This assumption of constant variance leads to a simplified expression 
for the likelihood ratio. This ratio corresponds to change hypothesis 
versus no-change hypothesis. Once optimal estimators of the means of 
the different Gaussian laws involved are derived, we can substitute 
these estimators for means in the likelihood ratio. Then the optimized 
likelihood ratio can be rewritten in the following form, after some 
mathematical developments and after taking its square root. [a],: 

1 
15 (P)] = ~ I ~ , M p 3 r ( ~ 1  (9). 

where Mp designates the set of common spatial locations within M I  
and M2, and where n is the width of these windows if they are 
assumed to be square ones. The label field ejN" is now defined as 
follows. A two-threshold strategy is used for the test. If the likelihood 
ratio is inferior to the lowest one or supxior to the highest one, one of 
the labels 0, - 1. + I. is assigned to p according to the case at hand. [a]. 
Otherwise no decision is taken. that correswnds to the NIL-label. The 
principle of this first stage is to proceed with decisions as less 
committing as possible while making use of the low computational 
load of this test to give pre-initial labels from the set R to the 
maximum of sites corresponding to unambiguous situations. Then. in 
the second stage, the available contextual information will be used to 
assign a label from the set R to sites still with the NIL-label. Starting 
from the pre-initial label field e p ,  we apply the MAP criterion (6) to 
the subset x of points p in It whose pre-initial label is ept(p)  = NIL. 
(The stack-based version is not used in this case). Then we get the 
label field ep with labels from R. As for the determination of the final 
configuration e l ,  the minimization of expression (6) involves two 
complementary data arrays, that is the border map Bt and the change 
map F1.d between imaps If and Ir.dl. This last one is obtained again 
using the likelihood ratio given in (9). but without considering the NIL 
label. Therefore only one threshold is taken into account and three 
labels {-  l , 0 ,  + 1). The label field et.dt which is concerned with the 
determination of the temporal-clique potential, formula (4i-4ii). is 
precisely given by Fr-d. then denoted by e:Ffdl. It is not the label field 
A e r -dl which yields the moving areas referred to image It.dt. 

RESULTS 

Experiments have been carried out with a real underwater 
video image sequence acquired in a dock at IFREMER-Brest (French 
National Research Center in Oceanography). Three images 
(It.&,lt.lt+dt) out of one sequence are shown in Fig.2. Oblong shapes 
correspond to objects sunk in the dock and lying on the bottom 
surface. The border image 61 is derived from the zero-crossings of the 
difference of two filtered versions of image It, obtained with two 
Gaussian filters of respective standard deviation, ol = 4  and 0 2  =2. 
Potentials are given by Ps = 64 and P I  =500. The observation gr is 
simply obtained by averaging within a 5x5 spatial neighborhood the 
function 31. Fig.3 shows the "pre-initial" label field eQh obtained 
with the modified likelihood test before any contextual information is 
considered. The final result delivered by the complete optimization 
process is presented in Fig.4. Moving areas resulting from e{ are 
delineated. Complementary results corresponding to the different 
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"Collaboration Bretagne Image': 

intermediate steps of the procedure can be found in [a]. By comparing 
Fig.3 and Fig4 it can be pointed out that nearly all change regions due 
to uncovered background have been eliminated. and non-reliable 
detections have been swept out. Among validated moving areas the 
most significant ones coincide with the objects lying on the bottom. 
and almost a l l  the others with distinguishable blobs on the bottom 
surface. A sequence of twenty images have been processed. It was 
found that the choice of potential values is not a critical matter, and for t - d t 
a given set of parameter values, rather stable and consistent results Fig,l: Spatio-temporalneighborhwd 
have been obtained. of a given point po 

CONCLUSION 

The final goal of the whole project, which is conducted 
by the French National Research Centre in Oceanography 
(IFREMER), is to achieve a prototype, which would prove the 
feasibility of such an on-board equipment for underwater robot 
navigation. Hence a tradeoff had to be found between the algorithmic 
complexity of a solution able to cope with underwater video images 
and its implementation as efficient as possible. This leads us on one 
hand to achieve an elaborate statistical modeling of a spatio-temporal 
tracer using Gibbs distributions, and on the other hand to reson to a 
deterministic optimization procedure to solve the labeling problem 
designed. Current work deals with the processing of other sequences 
of underwater video images, which were acquired off-shore. We will 
also investigate a few extensions of this study, such as the Fig.2: Three successive imagesfrom on undenvorer video image 

consideration of other models for the observation, and of other sequence acquired in a dock; size is 256~256pixels 

fig.3: Pre-initial label field. e p .  considering four labels 
fi = r -  l.O.+ l.NIL).with )il =200, 12 =350 

Q 

families of potential functions. 
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