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Self-Avoiding Walks on the hexagonal lattice H:

Conjecture (Flory, 1948; Nienhuis, 1982)

Precise asymptotics for the mean-square displacement
¢, of SAWs of length n:

° (lw(n)|?) ~ Dn®  as n — oo,

where v :=3/4
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Self-Avoiding Walks on the hexagonal lattice H:

Conjecture (Flory, 1948; Nienhuis, 1982)

Precise asymptotics for the mean-square displacement
and for the number ¢, of SAWSs of length n:

° (lw(n)|?) ~ Dn®  as n — oo,

° ch~ An 1y

where v :=3/4 and p. = /2 4+ /2, v 1= 43/32.

as n > OO
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Self-Avoiding Walks on the hexagonal lattice H:

Conjecture (Flory, 1948; Nienhuis, 1982)

Precise asymptotics for the mean-square displacement
and for the number ¢, of SAWSs of length n:

° (lw(n)|?) ~ Dn®  as n — oo,
° ch~ An 1y
where v :=3/4 and p. = /2 4+ /2, v 1= 43/32.

¥ ~ and v are universal; p. is lattice-dependent.
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as n > OO




Theorem (H. Duminil-Copin, S. Smirnov, 2010)

The connective constant satisfies pic := lim,_ oo ¢y = V2 + V2.

@ Easy observations:
Cram < CnCm = Jpc:= lim ¢, ,
n— oo

22 <, <3.2" = V2< ue<2.
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Theorem (H. Duminil-Copin, S. Smirnov, 2010)

The connective constant satisfies pic := lim,_ oo ¢y = V2 + V2.

@ Easy observations:
Cram < CnCm = Jpc:= lim ¢, ,
n— oo

22 <, <3.2" = V2< ue<2.

@ The generating function (diverges < pc, converges p > fic):

Gp) =Y p I =>"cp"
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Theorem (H. Duminil-Copin, S. Smirnov, 2010)

The connective constant satisfies pic := lim,_ oo ¢y = V2 + V2.

@ Easy observations:
Cram < CnCm = Jpc:= lim ¢, ,
n— oo

22 <, <3.2" = V2< ue<2.

@ The generating function (diverges < pc, converges p > fic):
Gp) =Y p I =>"cp"
w n

¥ oltis expected that G(u) ~ (e — p) 7.
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Theorem (H. Duminil-Copin, S. Smirnov, 2010)

The connective constant satisfies pic := lim,_ oo ¢y" = V2 + V2.

@ Easy observations:
Coim < Cn* Cm = I pc:= lim ¢," ,
n—oo

2n/2 Scn§3'2n71 = \/5§Hc§2 .
@ The generating function (diverges u < e, converges p > ic):

Ga—>z(/f4) = Z /’L_E(w) = Z Cna—z* /”'_n'

wCQa—z

¥ oltis expected that G(p) ~ (e — p)™".

Try to count simpler objects,
bridges: Walks that never go below
the first step and above the last one.
The number of bridges grows at the
same (exponential) speed as walks.
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Definition

A self-avoiding bridge is a SAW w such that the first site is of minimal
second coordinate and the last one of maximal second coordinate. Let b,
be the number of self-avoiding bridges of length n.
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Definition

A self-avoiding bridge is a SAW w such that the first site is of minimal
second coordinate and the last one of maximal second coordinate. Let b,
be the number of self-avoiding bridges of length n.

Proposition (Hammersley 1961)
e is the same for bottom-top bridges, bottom-bottom bridges, loops.
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Definition

A self-avoiding bridge is a SAW w such that the first site is of minimal
second coordinate and the last one of maximal second coordinate. Let b,
be the number of self-avoiding bridges of length n.

Proposition (Hammersley 1961)
e is the same for bottom-top bridges, bottom-bottom bridges, loops.

g ~y is expected to be different: 9/16, 9/16, —1/2.
e
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Definition

A self-avoiding bridge is a SAW w such that the first site is of minimal
second coordinate and the last one of maximal second coordinate. Let b,
be the number of self-avoiding bridges of length n.

Proposition (Hammersley 1961)
e is the same for bottom-top bridges, bottom-bottom bridges, loops.

g ~y is expected to be different: 9/16, 9/16, —1/2.
@ 5, < ¢, for obvious reasons.
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Definition

A self-avoiding bridge is a SAW w such that the first site is of minimal
second coordinate and the last one of maximal second coordinate. Let b,
be the number of self-avoiding bridges of length n.

Proposition (Hammersley 1961)

e is the same for bottom-top bridges, bottom-bottom bridges, loops.

g ~y is expected to be different: 9/16, 9/16, —1/2.

@ 5, < ¢, for obvious reasons. Moreover, ¢, < r,?b,7 where r, is the
number of partitions of n into increasing positive integers. Since

r, < CeV", we obtain that b, and ¢, are logarithmically equivalent. @
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Definition

The winding W, (a, b) of a curve w between a and b is the rotation (in
radians) of the curve between a and b.

W, (a,b) =0 W, (a,b) = 27
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Definition

The winding W,(a, b) of a curve w between a and b is the rotation (in
radians) of the curve between a and b.

W, (a,b) =0 W, (a,b) = 27

With this definition, we can define the parafermionic operator for a € 9Q
and z € Q:

F(z) = F(a,z,p,0) == Z e loWu(a2)  —lw),

wC: a—z
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Definition

The winding W,(a, b) of a curve w between a and b is the rotation (in
radians) of the curve between a and b.

W, (a,b) =0 W, (a,b) = 27

With this definition, we can define the parafermionic operator for a € 9Q
and z € Q:

F(z) = F(a,z,p,0) == Z e loWu(a2)  —lw),
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Definition

The winding W,(a, b) of a curve w between a and b is the rotation (in
radians) of the curve between a and b.

W, (a,b) =0 W, (a,b) = 27

With this definition, we can define the parafermionic operator for a € 9Q
and z € Q:

F(z) = F(a,z,p,0) == Z e loWu(a2)  —lw),

wC: a—z

Lemma (Discrete integrals on elementary contours vanish)

Ifu=p,=v2+ V2 and o = g, then F satisfies the following relation
for every vertex v € V(RQ),

(p—Vv)F(p) +(q —Vv)F(q) + (r—v)F(r)=0

where p, q, r are the mid-edges of the three edges adjacent to v.

v
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@ We write c(w) for the contribution of the walk w to the sum.
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@ We write c(w) for the contribution of the walk w to the sum.

¥ One can partition the set of walks w finishing
at p, g or r into pairs and triplets of walks:
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@ We write c(w) for the contribution of the walk w to the sum.

¥ One can partition the set of walks w finishing
at p, g or r into pairs and triplets of walks:

In the first case,
+ C(w2) = (q — V)e*iUle (Q,Q)u*f(wl) + (r _ V)efia'wwz(a,r)'ulff(u&)
(p— v)e_if’ww(avp)u—f(m) ( + efi%“efim%”>
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@ We write c(w) for the contribution of the walk w to the sum.

¥ One can partition the set of walks w finishing
at p, g or r into pairs and triplets of walks:

- - _5
In the first case, providing o = e

+ C(wg) — (q _ V)e—iale(a,q)'u—Z(wl) + ( ) —ioWo,(a r) —£(w2)
= (p— v)e HEWurl@p) ) ( P pe e %) =0
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@ We write c(w) for the contribution of the walk w to the sum.

¥ One can partition the set of walks w finishing
at p, g or r into pairs and triplets of walks:

- - _5
In the first case, providing o = e

+c(w2) = (g —v)e

—ingl(a,q)’u/—Z(wl) +( ) —ioWo,(a r) —£(w2)
(p— v)e*igww(aﬁ)“*é(wl) ( 5

27 :5 47w
L i FeTiE T) =0

In the second case,

c(w1) + c(wa) + c(ws)
=(p- V)e*iowﬂ(a’p)ﬂfe(‘”l) (1 + uflei%ﬂe*i%'%ﬂ + ufle* i e*ig'%) .

Hugo Duminil-Copin & Stanislav Smirnov The self-avoiding walk on the hexagonal lattice



@ We write c(w) for the contribution of the walk w to the sum.

.
\ 73
/,_?

) —ioW,(a,r) 72(4@)
5
8

@ One can partition the set of walks w finishing
at p, g or r into pairs and triplets of walks:

e

In the first case, providing o = 2,

+ C(u}z) — (q _ V)e*io'wwl (a,q)‘u,‘g(wl) + (
= (p— v)e EWei(ap)  ~ter) (

27

—i2r _i5.4m
+e '3e '8 3):0

In the second case, providing pt = s := V2 + V2,

c(w1) + cwz) + c(ws)
_ (p _ v)e_iawwl(a’p)u*_é(wl) (]_ + lu*_lei%”e_ig'%ﬂ -+ /1*_1 _179_12 %) = O
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@ We write c(w) for the contribution of the walk w to the sum.

.
\ 73
/,_?

) —ioW,(a,r) 72(4@)
5
8

@ One can partition the set of walks w finishing
at p, g or r into pairs and triplets of walks:

e

In the first case, providing o = 2,

+ C(u}z) — (q _ V)e*io'wwl (a,q)‘u,‘g(wl) + (
= (p— v)e EWei(ap)  ~ter) (

27

—i2r _i5.4m
+e '3e '8 3):0

In the second case, providing pt = s := V2 + V2,

c(w1) + cwz) + c(ws)
— (p _ V)e—iUWw1(aap)lu*_€(wl) (]_ + lu*_lei%”e_ig'%ﬂ -+ /1*_1 _179_12 %) = O
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q

Gf p = ps then § F(z)dz = 0 along an elementary contour

Proposition ((partial) Discrete holomorphicity)

If Q is simply connected, then §. F(z)dz = 0 for any discrete contour .

Will be used to show pc = .. Take a trapezoid contour St ;:
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q

Gf p = ps then § F(z)dz = 0 along an elementary contour

Proposition ((partial) Discrete holomorphicity)
If Q is simply connected, then §. F(z)dz = 0 for any discrete contour .

Will be used to show pc = .. Take a trapezoid contour St ;:
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q

Gf p = ps then § F(z)dz = 0 along an elementary contour

Proposition ((partial) Discrete holomorphicity)
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q

Gf p = ps then § F(z)dz = 0 along an elementary contour

Proposition ((partial) Discrete holomorphicity)
If Q is simply connected, then §. F(z)dz = 0 for any discrete contour .

Will be used to show pc = .. Take a trapezoid contour St ;:
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@ We know the winding on the boundary!
So we can replace F by the sum of Boltzman weights.

22 1
1 = Y2 VEAT, L)+ B(T, L)+ — E(T, L, ).
5 ( ) + B( fhs) \/5( fh) J

Hugo Duminil-Copin & Stanislav Smirnov The self-avoiding walk on the hexagonal lattice




An upper bound on p:

2-V2 1
1= —F7—7+—»A T7L7 * +BT,L7 * +_ET7L7 * )y
5 AT L)+ BT, L) + 5 E(T, L ) J
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An upper bound on p:

2-V2 1
1= —F7—7+—»A T7L7 * +BT,L7 * +_ET7L7 * )y
5 AT L)+ BT, L) + 5 E(T, L ) J

implies

%ﬁ > AT L) . J
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An upper bound on p:

2-V2 1
1= —F7—7+—»A T7L7 * +BT,L7 * +_ET7L7 * )y
5 AT L)+ BT, L) + 5 E(T, L ) J

implies

Send T,L — o0
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An upper bound on p:

L= S5 CA(T L) + B(T, L) + = (T, Ly o),

242 1
2 V2

implies
2
> A( T,L, ,u*)

2-V2
Send T,L — o0

2

oo > T\/E > Gbottom-bottom bridges(/f’f*) s }

hence pie < fiy. ©
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A lower bound on j.:

22 1
1 = Y2 YRAT, L)+ B(T, L)+ — E(T, L, 1).
5 ( ps) + B( fe) ﬁ( )
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A lower bound on p.:

22
1= %A(T,L,u*)+B(T,L,u*)+—E(T,L,u*).

N

As L — oo, A and B increase to their limits A(T, p.) and B(T, ).
Hence E decreases to its limit E( T, 1.).
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A lower bound on p.:

22
1 — %A(T,L,u*HB(T,L,u*H

N

E(Tv Laﬂ*)' J

As L — oo, A and B increase to their limits A(T, p.) and B(T, ).
Hence E decreases to its limit E( T, 1.).

@ If E(T, p1.) > 0 for some T, then

(i) = Y E(T,Lw) = oo. J
L

Therefore pic > . ®
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A lower bound on j.:

2—+/2

N

E(Tv Laﬂ*)' J

As L — oo, A and B increase to their limits A(T, p.) and B(T, ).
Hence E decreases to its limit E( T, 1.).

@ If E(T, p1.) > 0 for some T, then

(i) = Y E(T,Lw) = oo. }
L

Therefore fic > i ®
¥ If E(T, ) =0 for all T, then

1 = Yoo VEAT, )+ B(T, 1) -

2-2
2
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A lower bound on . (continued):
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A lower bound on . (continued):

V2—+/2
Also clearly
AT +1,m) < AT, )+ B(T,)? - J
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A lower bound on . (continued):

V2 —+/2
Also clearly
AT +1,12) < AT, ) + B(T, )2 J
We conclude that
2— 2
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A lower bound on . (continued):

V2—+/2
Also clearly
AT +1,12) < AT, ) + B(T, )2 J

We conclude that

2—+2
hence
B(T, 1) > const
) = const + T’ )
Therefore G(p.) > > 7 B(T, 1) = 00 and pic > fis. ©

Hugo Duminil-Copin & Stanislav Smirnov The self-avoiding walk on the hexagonal lattice



@ Determined the connective constant.

@ Introduced a discrete holomorphic parafermion.
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@ Determined the connective constant.

@ Introduced a discrete holomorphic parafermion.

@ What to do next?

@ What not to do next?
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What to do next? The case of the self-avoiding walk.

Conjecture (Nienhuis, 1982; Flory, 1948)

@ Combinatorial question: Up to n°() (up to a multiplicative
constant?) we have:

— n
/ —
cp~n’ 1<\/2+\/2> as n — oo

where ~ = 43/32 should be universal.
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What to do next? The case of the self-avoiding walk.

Conjecture (Nienhuis, 1982; Flory, 1948)

@ Combinatorial question: Up to n°() (up to a multiplicative
constant?) we have:

n
/ -
¢y~ nY 1 <\,’2+ \/2> as n — oo

where ~ = 43/32 should be universal.

@ Geometric question: Let w(/N) be the N-th point of the walk, and
| - | denote the Euclidean distance, then there exists D such that:

E,[Jw(n)[?] ~ Dn®* as n — oo

where v = 3/4.
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What to do next? The case of the self-avoiding walk.

Conjecture (Nienhuis, 1982; Flory, 1948)

@ Combinatorial question: Up to n°() (up to a multiplicative
constant?) we have:

n
/ —
¢y~ nY 1 <\/2+ \/2> as n — oo

where ~ = 43/32 should be universal.

@ Geometric question: Let w(/N) be the N-th point of the walk, and
| - | denote the Euclidean distance, then there exists D such that:

E,[lw(n)|?] ~ Dn* as n — oo

where v = 3/4.

Would follow from the following conjecture
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Conjecture (Lawler, Schramm, Werner, 2001)

The SAW has a conformally invariant scaling limit — SLE(8/3).
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Conjecture (Lawler, Schramm, Werner, 2001)

The SAW has a conformally invariant scaling limit — SLE(8/3).

b

as
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Conjecture (Lawler, Schramm, Werner, 2001)

The SAW has a conformally invariant scaling limit — SLE(8/3).

@ For 6 > 0, we define a probability measure on self-avoiding paths
from as to bs by assigning a weight proportional to ,uc_e(w). When
60 — 0, the sequence converges to a random continuous curve.
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Conjecture (Lawler, Schramm, Werner, 2001)

The SAW has a conformally invariant scaling limit — SLE(8/3).

b

a

@ For 6 > 0, we define a probability measure on self-avoiding paths
from as to bs by assigning a weight proportional to ,uc_e(w). When
60 — 0, the sequence converges to a random continuous curve.
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Conjecture (Lawler, Schramm, Werner, 2001)

The SAW has a conformally invariant scaling limit — SLE(8/3).

b

D(b)
® conformal x
09)
‘t‘”ﬁ
a) ®

&

@ For 6 > 0, we define a probability measure on self-avoiding paths
from as to bs by assigning a weight proportional to ,uc_e(w). When
60 — 0, the sequence converges to a random continuous curve.
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Conjecture (Lawler, Schramm, Werner, 2001)

The SAW has a conformally invariant scaling limit — SLE(8/3).

D(b)
® conformal x
09)
‘t‘”ﬁ
a) ®

b

&

@ For 6 > 0, we define a probability measure on self-avoiding paths
from as to bs by assigning a weight proportional to ,uc_e(w). When
60 — 0, the sequence converges to a random continuous curve.

A strategy to tackle this problem?

(1) Precompactness of the family of curves

(2) Conformally invariant martingales which are given by the ratio of
two parafermionic observables: F(a,z,Q)/F(a, b, ).

Main missing point: show that F is fully discrete holomorphic
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What to do next? O(n) models (1).

The O(n) model is a model on closed loops lying on a finite
subgraph of the hexagonal lattice. The probability of a
configuration is equal to

X# edgesn# loops

Zx,n,G
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What to do next? O(n) models (1).

The O(n) model is a model on closed loops lying on a finite
subgraph of the hexagonal lattice. The probability of a
configuration is equal to

X# edgesn# loops

Zx,n,G

@ Representation of the spin O(n) model.
e Physicist Nienhuis studied the model for n € (0,2] and
suggested the following phase diagram
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What to do next? O(n) models (1).

The O(n) model is a model on closed loops lying on a finite
subgraph of the hexagonal lattice. The probability of a
configuration is equal to

X# edgesn# loops

Zx,n,G

@ Representation of the spin O(n) model.
e Physicist Nienhuis studied the model for n € (0,2] and
suggested the following phase diagram

2T n z= %)

sub-critical phase critical phase 2: SLE(FW( w2) )

critical phase 1: SLE(W)

0 1/y/2+2 z
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What to do next? O(n) models (2).

@ In the case n = 1 of the Ising model, a similar fermionic
observable F is discrete holomorphic at criticality:

& So far only partial discrete holomorphicity observed.



What to do next? O(n) models (2).

@ In the case n = 1 of the Ising model, a similar fermionic
observable F is discrete holomorphic at criticality:

F(a, z, X) = Z e*l’%Ww(a,z)X#edeS.

w with a curve w from a to z

& So far only partial discrete holomorphicity observed.



What to do next? O(n) models (2).

@ In the case n = 1 of the Ising model, a similar fermionic
observable F is discrete holomorphic at criticality:

F(a, z, X) = Z e*l’%Ww(a,z)X#edeS.

w with a curve w from a to z

For O(n) models, the parafermionic observable

F(a, z, X, 0') — § : efloWw(a,z)X#edgesn#loops
w with a curve w from a to z
should be discrete holomorphic for x = xc and 2 cos(*3") = —n.

& So far only partial discrete holomorphicity observed.
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What to do next? O(n) models (3).
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What to do next? O(n) models (3).

For n € [0,2] and x = x.(n), the interface between two points a and b
(on the boundary) converges, as the lattice step goes to zero, to SLE(k)
where

_ 4
27 — arccos(—n/2)’

K
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What to do next? O(n) models (3).

For n € [0,2] and x = x.(n), the interface between two points a and b
(on the boundary) converges, as the lattice step goes to zero, to SLE(k)
where

_ 4
27 — arccos(—n/2)’

K

Known only for the Ising model, n =1 (Chelkak & Smirnov). In this
case, Discrete Holomorphicity + Boundary Conditions determine F.
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What to do next? O(n) models (3).

For n € [0,2] and x = x.(n), the interface between two points a and b
(on the boundary) converges, as the lattice step goes to zero, to SLE(k)
where

_ 4
27 — arccos(—n/2)’

K

Known only for the Ising model, n =1 (Chelkak & Smirnov). In this
case, Discrete Holomorphicity + Boundary Conditions determine F.

For n € [0,2] and x > x(n), the interface between two points a and b
(on the boundary) converges, as the lattice step goes to zero, to SLE(k)
where

47
K= ————.
arccos(—n/2)

Known only for the critical percolation, n =1, x = 1 (Smirnov) via a
different observable.
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@ Determined the connective constant.
@ Introduced a holomorphic parafermion.

@ What to do next?
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@ Determined the connective constant.
@ Introduced a holomorphic parafermion.

@ What to do next?

@ What not to do next?
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What not to do next? O(n) models (3).

$ Do not work with the square lattice self-avoiding walk!

Consider a more general model on the square lattice, with the following

D%BE

1 L2 L3 L4 L5 L6
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What not to do next? O(n) models (3).

$ Do not work with the square lattice self-avoiding walk!

Consider a more general model on the square lattice, with the following

D%BE

1 L2 L3 L4 L5 L6

@ There are only two families of solutions: one possesses negative
weights, the other is exactly equivalent to the hexagonal O(n)
model at criticality.
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What not to do next? O(n) models (3).

$ Do not work with the square lattice self-avoiding walk!

Consider a more general model on the square lattice, with the following

D%BE

1 L2 L3 L4 L5 L6

@ There are only two families of solutions: one possesses negative
weights, the other is exactly equivalent to the hexagonal O(n)
model at criticality.

@ The solutions correspond to integrable points of the model (when
the Yang-Baxter condition applies).
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Conclusion
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Conclusion

@ We can introduce parafermionic observables for a wide variety of
models: O(n)-models, random-cluster models, self-avoiding walks...
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Conclusion

@ We can introduce parafermionic observables for a wide variety of
models: O(n)-models, random-cluster models, self-avoiding walks...

@ We can extract information from these operators in order to study

the critical phase (example of the connective constant of the
hexagonal lattice).
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Conclusion

@ We can introduce parafermionic observables for a wide variety of
models: O(n)-models, random-cluster models, self-avoiding walks...

@ We can extract information from these operators in order to study
the critical phase (example of the connective constant of the
hexagonal lattice).

@ In some cases, the information is total — universality class of the

Ising model — and we can derive conformal invariance.

Question: Can we do the same for other models?

Hugo Duminil-Copin & Stanislav Smirnov The self-avoiding walk on the hexagonal lattice



Thank you
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