The self-avoiding walk on the hexagonal lattice

Hugo Duminil-Copin Université de Genève

Stanislav Smirnov Université de Genève & St. Petersburg State University

January 2011

Conjecture (Flory, 1948; Nienhuis, 1982)

Precise asymptotics for the mean-square displacement c_n of SAWs of length n:

•
$$\langle |\omega(n)|^2 \rangle \sim Dn^{2\nu}$$
 as $n \longrightarrow \infty$,

where $\nu := 3/4$

Conjecture (Flory, 1948; Nienhuis, 1982)

Precise asymptotics for the mean-square displacement and for the number c_n of SAWs of length n:

•
$$\langle |\omega(n)|^2 \rangle \sim Dn^{2\nu}$$
 as $n \longrightarrow \infty$,

•
$$c_n \sim A n^{\gamma-1} \mu_c^{\ n}$$
 as $n \longrightarrow \infty$

where $\nu := 3/4$ and $\mu_c := \sqrt{2 + \sqrt{2}}$, $\gamma := 43/32$.

Conjecture (Flory, 1948; Nienhuis, 1982)

Precise asymptotics for the mean-square displacement and for the number c_n of SAWs of length n:

•
$$\langle |\omega(n)|^2 \rangle \sim Dn^{2\nu}$$
 as $n \longrightarrow \infty$,

•
$$c_n \sim A n^{\gamma-1} \mu_c^n$$
 as $n \longrightarrow \infty$

where $\nu := 3/4$ and $\mu_c := \sqrt{2 + \sqrt{2}}$, $\gamma := 43/32$.

The connective constant satisfies $\mu_c := \lim_{n \to \infty} c_n^{\frac{1}{n}} = \sqrt{2 + \sqrt{2}}$.

• Easy observations:

$$c_{n+m} < c_n \cdot c_m \Rightarrow \exists \mu_c := \lim_{n \to \infty} c_n^{\frac{1}{n}},$$

$$2^{n/2} \le c_n \le 3 \cdot 2^{n-1} \ \Rightarrow \ \sqrt{2} \le \mu_c \le 2 \ .$$

The connective constant satisfies $\mu_c := \lim_{n \to \infty} c_n^{\frac{1}{n}} = \sqrt{2 + \sqrt{2}}$.

• Easy observations:

$$c_{n+m} < c_n \cdot c_m \Rightarrow \exists \mu_c := \lim_{n \to \infty} c_n^{\frac{1}{n}},$$

$$2^{n/2} \le c_n \le 3 \cdot 2^{n-1} \ \Rightarrow \ \sqrt{2} \le \mu_c \le 2 \ .$$

• The generating function (diverges $\mu < \mu_c$, converges $\mu > \mu_c$):

$$G(\mu) := \sum_{\omega} \mu^{-\ell(\omega)} = \sum_{n} c_n \cdot \mu^{-n}.$$

The connective constant satisfies $\mu_c := \lim_{n \to \infty} c_n^{\frac{1}{n}} = \sqrt{2 + \sqrt{2}}$.

• Easy observations:

$$c_{n+m} < c_n \cdot c_m \Rightarrow \exists \mu_c := \lim_{n \to \infty} c_n^{\frac{1}{n}},$$

$$2^{n/2} \le c_n \le 3 \cdot 2^{n-1} \ \Rightarrow \ \sqrt{2} \le \mu_c \le 2 \ .$$

• The generating function (diverges $\mu < \mu_c$, converges $\mu > \mu_c$):

$$G(\mu) := \sum_{\omega} \mu^{-\ell(\omega)} = \sum_{n} c_n \cdot \mu^{-n}.$$

 \bullet It is expected that $G(\mu) \sim (\mu_c - \mu)^{-\gamma}$.

The connective constant satisfies $\mu_c := \lim_{n \to \infty} c_n^{\frac{1}{n}} = \sqrt{2 + \sqrt{2}}$.

• Easy observations:

$$c_{n+m} < c_n \cdot c_m \Rightarrow \exists \mu_c := \lim_{n \to \infty} c_n^{\frac{1}{n}},$$

$$2^{n/2} \le c_n \le 3 \cdot 2^{n-1} \implies \sqrt{2} \le \mu_c \le 2$$
.

• The generating function (diverges $\mu < \mu_c$, converges $\mu > \mu_c$):

$$G_{a \to z}(\mu) := \sum_{\omega \subset \Omega: a \to z} \mu^{-\ell(\omega)} = \sum_n c_{n, a \to z} \cdot \mu^{-n}.$$

Try to count simpler objects, bridges: Walks that never go below the first step and above the last one. The number of bridges grows at the same (exponential) speed as walks.

A **self-avoiding bridge** is a SAW ω such that the first site is of minimal second coordinate and the last one of maximal second coordinate. Let b_n be the number of self-avoiding bridges of length n.

A **self-avoiding bridge** is a SAW ω such that the first site is of minimal second coordinate and the last one of maximal second coordinate. Let b_n be the number of self-avoiding bridges of length n.

Proposition (Hammersley 1961)

 μ_{c} is the same for bottom-top bridges, bottom-bottom bridges, loops.

A self-avoiding bridge is a SAW ω such that the first site is of minimal second coordinate and the last one of maximal second coordinate. Let b_n be the number of self-avoiding bridges of length n.

Proposition (Hammersley 1961)

 μ_c is the same for bottom-top bridges, bottom-bottom bridges, loops.

 \mathfrak{P} γ is expected to be different: 9/16, 9/16, -1/2.

A **self-avoiding bridge** is a SAW ω such that the first site is of minimal second coordinate and the last one of maximal second coordinate. Let b_n be the number of self-avoiding bridges of length n.

Proposition (Hammersley 1961)

 μ_c is the same for bottom-top bridges, bottom-bottom bridges, loops.

 $\ \ \ \ \gamma$ is expected to be different: 9/16, 9/16, -1/2.

 $b_n \leq c_n$ for obvious reasons.

A **self-avoiding bridge** is a SAW ω such that the first site is of minimal second coordinate and the last one of maximal second coordinate. Let b_n be the number of self-avoiding bridges of length n.

Proposition (Hammersley 1961)

 μ_c is the same for bottom-top bridges, bottom-bottom bridges, loops.

 $\overline{\Psi}$ γ is expected to be different: 9/16, 9/16, -1/2.

b_n $\leq c_n$ for obvious reasons. Moreover, $c_n \leq r_n^2 b_n$ where r_n is the number of **partitions** of n into increasing positive integers. Since $r_n \leq Ce^{c\sqrt{n}}$, we obtain that b_n and c_n are logarithmically equivalent.

The winding $W_{\omega}(a, b)$ of a curve ω between a and b is the rotation (in radians) of the curve between a and b.

The winding $W_{\omega}(a, b)$ of a curve ω between a and b is the rotation (in radians) of the curve between a and b.

With this definition, we can define the *parafermionic operator* for $a \in \partial \Omega$ and $z \in \Omega$:

$$F(z) = F(a, z, \mu, \sigma) := \sum_{\omega \subset \Omega: \ a \to z} e^{-i\sigma W_{\omega}(a, z)} \mu^{-\ell(\omega)}.$$

The winding $W_{\omega}(a, b)$ of a curve ω between a and b is the rotation (in radians) of the curve between a and b.

With this definition, we can define the *parafermionic operator* for $a \in \partial \Omega$ and $z \in \Omega$:

$$F(z) = F(a, z, \mu, \sigma) := \sum_{\omega \subset \Omega: \ a \to z} e^{-i\sigma W_{\omega}(a, z)} \mu^{-\ell(\omega)}.$$

The winding $W_{\omega}(a, b)$ of a curve ω between a and b is the rotation (in radians) of the curve between a and b.

With this definition, we can define the *parafermionic operator* for $a \in \partial \Omega$ and $z \in \Omega$:

$$F(z) = F(a, z, \mu, \sigma) := \sum_{\omega \subset \Omega: \ a \to z} e^{-i\sigma W_{\omega}(a, z)} \mu^{-\ell(\omega)}.$$

Lemma (Discrete integrals on elementary contours vanish)

If $\mu = \mu_* = \sqrt{2 + \sqrt{2}}$ and $\sigma = \frac{5}{8}$, then F satisfies the following relation for every vertex $v \in V(\Omega)$,

$$(p-v)F(p) + (q-v)F(q) + (r-v)F(r) = 0$$

where p, q, r are the mid-edges of the three edges adjacent to v.

• We write $c(\omega)$ for the contribution of the walk ω to the sum.

- We write $c(\omega)$ for the contribution of the walk ω to the sum.
 - **©** One can partition the set of walks ω finishing at p, q or r into **pairs** and **triplets** of walks:

- We write $c(\omega)$ for the contribution of the walk ω to the sum.
 - **©** One can partition the set of walks ω finishing at p, q or r into **pairs** and **triplets** of walks:

In the first case.

$$\begin{split} c(\omega_1) + c(\omega_2) &= (q - v) e^{-i\sigma W_{\omega_1}(a,q)} \mu^{-\ell(\omega_1)} + (r - v) e^{-i\sigma W_{\omega_2}(a,r)} \mu^{-\ell(\omega_2)} \\ &= (p - v) e^{-i\sigma W_{\omega_1}(a,p)} \mu^{-\ell(\omega_1)} \left(e^{i\frac{2\pi}{3}} e^{-i\sigma \cdot \frac{-4\pi}{3}} + e^{-i\frac{2\pi}{3}} e^{-i\sigma \cdot \frac{4\pi}{3}} \right) \end{split}$$

- We write $c(\omega)$ for the contribution of the walk ω to the sum.
 - The or of the set of walks ω finishing at p, q or r into pairs and triplets of walks:

$$\begin{split} c(\omega_1) + c(\omega_2) &= (q - v) \mathrm{e}^{-\mathrm{i}\sigma W_{\omega_1}(a,q)} \mu^{-\ell(\omega_1)} + (r - v) \mathrm{e}^{-\mathrm{i}\sigma W_{\omega_2}(a,r)} \mu^{-\ell(\omega_2)} \\ &= (p - v) \mathrm{e}^{-\mathrm{i}\frac{5}{8}W_{\omega_1}(a,p)} \mu^{-\ell(\omega_1)} \left(\mathrm{e}^{\mathrm{i}\frac{2\pi}{3}} \mathrm{e}^{-\mathrm{i}\frac{5}{8}\cdot\frac{-4\pi}{3}} + \mathrm{e}^{-\mathrm{i}\frac{2\pi}{3}} \mathrm{e}^{-\mathrm{i}\frac{5}{8}\cdot\frac{4\pi}{3}} \right) = 0 \end{split}$$

- We write $c(\omega)$ for the contribution of the walk ω to the sum.
 - The or of the order of the set of walks ω finishing at p, q or r into pairs and triplets of walks:

$$\begin{split} c(\omega_1) + c(\omega_2) &= (q - v) e^{-i\sigma W_{\omega_1}(a,q)} \mu^{-\ell(\omega_1)} + (r - v) e^{-i\sigma W_{\omega_2}(a,r)} \mu^{-\ell(\omega_2)} \\ &= (p - v) e^{-i\frac{5}{8}W_{\omega_1}(a,p)} \mu^{-\ell(\omega_1)} \left(e^{i\frac{2\pi}{3}} e^{-i\frac{5}{8} \cdot \frac{-4\pi}{3}} + e^{-i\frac{2\pi}{3}} e^{-i\frac{5}{8} \cdot \frac{4\pi}{3}} \right) = 0 \end{split}$$

In the second case,

$$\begin{split} c(\omega_1) + c(\omega_2) + c(\omega_3) \\ &= (p - v)e^{-i\sigma W_{\omega_1}(a,p)}\mu^{-\ell(\omega_1)} \left(1 + \mu^{-1}e^{i\frac{2\pi}{3}}e^{-i\frac{5}{8}\cdot\frac{-\pi}{3}} + \mu^{-1}e^{-i\frac{2\pi}{3}}e^{-i\frac{5}{8}\cdot\frac{\pi}{3}}\right). \end{split}$$

- We write $c(\omega)$ for the contribution of the walk ω to the sum.
 - The or of the order of walks ω finishing at p, q or r into pairs and triplets of walks:

$$\begin{split} c(\omega_1) + c(\omega_2) &= (q - v) \mathrm{e}^{-\mathrm{i}\sigma W_{\omega_1}(a,q)} \mu^{-\ell(\omega_1)} + (r - v) \mathrm{e}^{-\mathrm{i}\sigma W_{\omega_2}(a,r)} \mu^{-\ell(\omega_2)} \\ &= (p - v) \mathrm{e}^{-\mathrm{i}\frac{5}{8}W_{\omega_1}(a,p)} \mu^{-\ell(\omega_1)} \left(\mathrm{e}^{\mathrm{i}\frac{2\pi}{3}} \mathrm{e}^{-\mathrm{i}\frac{5}{8}\cdot\frac{-4\pi}{3}} + \mathrm{e}^{-\mathrm{i}\frac{2\pi}{3}} \mathrm{e}^{-\mathrm{i}\frac{5}{8}\cdot\frac{4\pi}{3}} \right) = 0 \end{split}$$

In the second case, providing $\mu = \mu_* := \sqrt{2 + \sqrt{2}}$,

$$c(\omega_1) + c(\omega_2) + c(\omega_3)$$

$$= (\rho - \nu)e^{-i\sigma W_{\omega_1}(a,\rho)} \mu_*^{-\ell(\omega_1)} \left(1 + \mu_*^{-1}e^{i\frac{2\pi}{3}}e^{-i\frac{5}{8}\cdot\frac{-\pi}{3}} + \mu_*^{-1}e^{-i\frac{2\pi}{3}}e^{-i\frac{5}{8}\cdot\frac{\pi}{3}}\right) = 0.$$

- We write $c(\omega)$ for the contribution of the walk ω to the sum.
 - The or of the order of walks ω finishing at p,q or r into pairs and triplets of walks:

$$\begin{split} c(\omega_1) + c(\omega_2) &= (q - v) \mathrm{e}^{-\mathrm{i}\sigma W_{\omega_1}(a,q)} \mu^{-\ell(\omega_1)} + (r - v) \mathrm{e}^{-\mathrm{i}\sigma W_{\omega_2}(a,r)} \mu^{-\ell(\omega_2)} \\ &= (p - v) \mathrm{e}^{-\mathrm{i}\frac{5}{8}W_{\omega_1}(a,p)} \mu^{-\ell(\omega_1)} \left(\mathrm{e}^{\mathrm{i}\frac{2\pi}{3}} \mathrm{e}^{-\mathrm{i}\frac{5}{8}\cdot\frac{-4\pi}{3}} + \mathrm{e}^{-\mathrm{i}\frac{2\pi}{3}} \mathrm{e}^{-\mathrm{i}\frac{5}{8}\cdot\frac{4\pi}{3}} \right) = 0 \end{split}$$

In the second case, providing $\mu = \mu_* := \sqrt{2 + \sqrt{2}}$,

$$c(\omega_1) + c(\omega_2) + c(\omega_3)$$

$$= (p - v)e^{-i\sigma W_{\omega_1}(a,p)}\mu_*^{-\ell(\omega_1)} \left(1 + \mu_*^{-1}e^{i\frac{2\pi}{3}}e^{-i\frac{5}{8}\cdot\frac{-\pi}{3}} + \mu_*^{-1}e^{-i\frac{2\pi}{3}}e^{-i\frac{5}{8}\cdot\frac{\pi}{3}}\right) = 0.$$

Fig. If $\mu = \mu_*$ then $\oint F(z)dz = 0$ along an elementary contour

Proposition ((partial) Discrete holomorphicity)

If Ω is simply connected, then $\oint_{\Gamma} F(z)dz = 0$ for any discrete contour Γ .

 \P If $\mu=\mu_*$ then $\oint F(z)dz=0$ along an elementary contour

Proposition ((partial) Discrete holomorphicity)

If Ω is simply connected, then $\oint_{\Gamma} F(z)dz = 0$ for any discrete contour Γ .

 \P If $\mu=\mu_*$ then $\oint F(z)dz=0$ along an elementary contour

Proposition ((partial) Discrete holomorphicity)

If Ω is simply connected, then $\oint_{\Gamma} F(z)dz = 0$ for any discrete contour Γ .

$$0 = -\sum_{z \in \alpha} F(z) + \sum_{z \in \beta} F(z) + e^{i\frac{2\pi}{3}} \sum_{z \in \varepsilon} F(z) + e^{-i\frac{2\pi}{3}} \sum_{z \in \bar{\varepsilon}} F(z)$$

 \P If $\mu=\mu_*$ then $\oint F(z)dz=0$ along an elementary contour

Proposition ((partial) Discrete holomorphicity)

If Ω is simply connected, then $\oint_{\Gamma} F(z)dz = 0$ for any discrete contour Γ .

$$0 = -\sum_{z \in \alpha} F(z) + \sum_{z \in \beta} F(z) + e^{i\frac{2\pi}{3}} \sum_{z \in \varepsilon} F(z) + e^{-i\frac{2\pi}{3}} \sum_{z \in \bar{\varepsilon}} F(z)$$

$$0 = -\sum_{z \in \underline{\alpha}} F(z) + \sum_{z \in \beta} F(z) + \mathrm{e}^{\mathrm{i} \frac{2\pi}{3}} \sum_{z \in \varepsilon} F(z) + \mathrm{e}^{-\mathrm{i} \frac{2\pi}{3}} \sum_{z \in \bar{\varepsilon}} F(z)$$

$$0 = -\sum_{z \in \underline{\alpha}} F(z) + \sum_{z \in \beta} F(z) + \mathrm{e}^{\mathrm{i} \frac{2\pi}{3}} \sum_{z \in \varepsilon} F(z) + \mathrm{e}^{-\mathrm{i} \frac{2\pi}{3}} \sum_{z \in \bar{\varepsilon}} F(z)$$

$$1 \ = \ \cos\left(\frac{3\pi}{8}\right) \sum_{\omega: \mathbf{a} \to \mathbf{a}} \mu_*^{-\ell(\omega)} + \sum_{\omega: \mathbf{a} \to \beta} \mu_*^{-\ell(\omega)} + \cos\left(\frac{\pi}{4}\right) \sum_{\omega: \mathbf{a} \to \varepsilon \cup \bar{\varepsilon}} \mu_*^{-\ell(\omega)}.$$

We know the winding on the boundary!

So we can replace F by the sum of Boltzman weights.

$$1 = \frac{\sqrt{2-\sqrt{2}}}{2}A(T,L,\mu_*) + B(T,L,\mu_*) + \frac{1}{\sqrt{2}}E(T,L,\mu_*).$$

$$1 = \frac{\sqrt{2-\sqrt{2}}}{2}A(T,L,\mu_*) + B(T,L,\mu_*) + \frac{1}{\sqrt{2}}E(T,L,\mu_*),$$

$$1 = \frac{\sqrt{2-\sqrt{2}}}{2}A(T,L,\mu_*) + B(T,L,\mu_*) + \frac{1}{\sqrt{2}}E(T,L,\mu_*),$$

implies

$$\frac{2}{\sqrt{2-\sqrt{2}}} \geq A(T,L,\mu_*).$$

$$1 = \frac{\sqrt{2-\sqrt{2}}}{2}A(T,L,\mu_*) + B(T,L,\mu_*) + \frac{1}{\sqrt{2}}E(T,L,\mu_*),$$

implies

$$\frac{2}{\sqrt{2-\sqrt{2}}} \geq A(T,L,\mu_*).$$

Send $T, L \rightarrow \infty$

$$\infty > rac{2}{\sqrt{2-\sqrt{2}}} \geq G_{ ext{bottom-bottom bridges}}(\mu_*) \; ,$$

$$1 = \frac{\sqrt{2-\sqrt{2}}}{2}A(T,L,\mu_*) + B(T,L,\mu_*) + \frac{1}{\sqrt{2}}E(T,L,\mu_*),$$

implies

$$\frac{2}{\sqrt{2-\sqrt{2}}} \geq A(T,L,\mu_*).$$

Send $T, L \rightarrow \infty$

$$\infty > rac{2}{\sqrt{2-\sqrt{2}}} \geq G_{ ext{bottom-bottom bridges}}(\mu_*) \; ,$$

hence $\mu_c \leq \mu_*$.

A lower bound on μ_c :

$$1 = \frac{\sqrt{2-\sqrt{2}}}{2}A(T,L,\mu_*) + B(T,L,\mu_*) + \frac{1}{\sqrt{2}}E(T,L,\mu_*).$$

A lower bound on μ_c :

$$1 = \frac{\sqrt{2-\sqrt{2}}}{2}A(T,L,\mu_*) + B(T,L,\mu_*) + \frac{1}{\sqrt{2}}E(T,L,\mu_*).$$

As $L \to \infty$, A and B increase to their limits $A(T, \mu_*)$ and $B(T, \mu_*)$. Hence E decreases to its limit $E(T, \mu_*)$.

A lower bound on μ_c :

$$1 = \frac{\sqrt{2-\sqrt{2}}}{2}A(T,L,\mu_*) + B(T,L,\mu_*) + \frac{1}{\sqrt{2}}E(T,L,\mu_*).$$

As $L \to \infty$, A and B increase to their limits $A(T, \mu_*)$ and $B(T, \mu_*)$. Hence E decreases to its limit $E(T, \mu_*)$.

$$G(\mu_*) \geq \sum_L E(T, L, \mu_*) = \infty$$
.

Therefore $\mu_c \geq \mu_*$.

A lower bound on μ_c :

$$1 = \frac{\sqrt{2-\sqrt{2}}}{2}A(T,L,\mu_*) + B(T,L,\mu_*) + \frac{1}{\sqrt{2}}E(T,L,\mu_*).$$

As $L \to \infty$, A and B increase to their limits $A(T, \mu_*)$ and $B(T, \mu_*)$. Hence E decreases to its limit $E(T, \mu_*)$.

If $E(T, \mu_*) > 0$ for some T, then

$$G(\mu_*) \geq \sum_L E(T, L, \mu_*) = \infty$$
.

Therefore $\mu_c \geq \mu_*$.

$$1 = \frac{\sqrt{2-\sqrt{2}}}{2}A(T,\mu_*) + B(T,\mu_*).$$

$$1 = \frac{\sqrt{2-\sqrt{2}}}{2}A(T,\mu_*) + B(T,\mu_*).$$

$$1 = \frac{\sqrt{2-\sqrt{2}}}{2}A(T,\mu_*) + B(T,\mu_*).$$

Also clearly

$$A(T+1,\mu_*) \leq A(T,\mu_*) + B(T,\mu_*)^2$$
.

$$1 = \frac{\sqrt{2-\sqrt{2}}}{2}A(T,\mu_*) + B(T,\mu_*).$$

Also clearly

$$A(T+1,\mu_*) \leq A(T,\mu_*) + B(T,\mu_*)^2$$
.

We conclude that

$$B(T+1,\mu_*) \geq B(T,\mu_*) - \frac{\sqrt{2-\sqrt{2}}}{2} \cdot B(T,\mu_*)^2$$

$$1 = \frac{\sqrt{2-\sqrt{2}}}{2}A(T,\mu_*) + B(T,\mu_*).$$

Also clearly

$$A(T+1,\mu_*) \leq A(T,\mu_*) + B(T,\mu_*)^2$$
.

We conclude that

$$B(T+1,\mu_*) \geq B(T,\mu_*) - \frac{\sqrt{2-\sqrt{2}}}{2} \cdot B(T,\mu_*)^2$$

hence

$$B(T, \mu_*) \geq \frac{\text{const}}{\text{const} + T}$$
,

Therefore $G(\mu_*) \geq \sum_T B(T, \mu_*) = \infty$ and $\mu_c \geq \mu_*$.

DONE

- Determined the connective constant.
- Introduced a discrete holomorphic parafermion.

DONE

- Determined the connective constant.
- Introduced a discrete holomorphic parafermion.

TO DO

- What to do next?
- What not to do next?

What to do next? The case of the self-avoiding walk.

Conjecture (Nienhuis, 1982; Flory, 1948)

• **Combinatorial question:** Up to $n^{o(1)}$ (up to a multiplicative constant?) we have:

$$c_n \sim n^{\gamma-1} \left(\sqrt{2+\sqrt{2}}
ight)^n ext{ as } n \longrightarrow \infty$$

where $\gamma = 43/32$ should be *universal*.

What to do next? The case of the self-avoiding walk.

Conjecture (Nienhuis, 1982; Flory, 1948)

• **Combinatorial question:** Up to $n^{o(1)}$ (up to a multiplicative constant?) we have:

$$c_n \sim n^{\gamma-1} \left(\sqrt{2+\sqrt{2}}
ight)^n ext{ as } n \longrightarrow \infty$$

where $\gamma = 43/32$ should be *universal*.

• **Geometric question:** Let $\omega(N)$ be the *N*-th point of the walk, and $|\cdot|$ denote the Euclidean distance, then there exists D such that:

$$\mathbb{E}_n[|\omega(n)|^2] \sim Dn^{2\nu}$$
 as $n \longrightarrow \infty$

where $\nu = 3/4$.

What to do next? The case of the self-avoiding walk.

Conjecture (Nienhuis, 1982; Flory, 1948)

• **Combinatorial question:** Up to $n^{o(1)}$ (up to a multiplicative constant?) we have:

$$c_n \sim n^{\gamma-1} \left(\sqrt{2+\sqrt{2}}
ight)^n ext{ as } n \longrightarrow \infty$$

where $\gamma = 43/32$ should be *universal*.

• **Geometric question:** Let $\omega(N)$ be the *N*-th point of the walk, and $|\cdot|$ denote the Euclidean distance, then there exists D such that:

$$\mathbb{E}_n[|\omega(n)|^2] \sim Dn^{2\nu} \text{ as } n \longrightarrow \infty$$

where $\nu = 3/4$.

Would follow from the following conjecture

The SAW has a **conformally invariant** scaling limit – SLE(8/3).

The SAW has a **conformally invariant** scaling limit – SLE(8/3).

The SAW has a **conformally invariant** scaling limit - SLE(8/3).

• For $\delta>0$, we define a probability measure on self-avoiding paths from a_δ to b_δ by assigning a weight proportional to $\mu_c^{-\ell(\omega)}$. When $\delta\to 0$, the sequence converges to a **random continuous curve**.

The SAW has a **conformally invariant** scaling limit - SLE(8/3).

• For $\delta>0$, we define a probability measure on self-avoiding paths from a_δ to b_δ by assigning a weight proportional to $\mu_c^{-\ell(\omega)}$. When $\delta\to 0$, the sequence converges to a **random continuous curve**.

The SAW has a **conformally invariant** scaling limit - SLE(8/3).

• For $\delta>0$, we define a probability measure on self-avoiding paths from a_δ to b_δ by assigning a weight proportional to $\mu_c^{-\ell(\omega)}$. When $\delta\to 0$, the sequence converges to a **random continuous curve**.

The SAW has a **conformally invariant** scaling limit – SLE(8/3).

• For $\delta>0$, we define a probability measure on self-avoiding paths from a_δ to b_δ by assigning a weight proportional to $\mu_c^{-\ell(\omega)}$. When $\delta\to 0$, the sequence converges to a **random continuous curve**.

A strategy to tackle this problem?

- (1) Precompactness of the family of curves
- (2) Conformally invariant martingales which are given by the ratio of two parafermionic observables: $F(a, z, \Omega)/F(a, b, \Omega)$.

Main missing point: show that F is fully discrete holomorphic

The O(n) model is a model on **closed loops** lying on a finite subgraph of the hexagonal lattice. The probability of a configuration is equal to

$$\frac{x^{\# \text{ edges}} n^{\# \text{ loops}}}{Z_{x,n,G}}.$$

The O(n) model is a model on **closed loops** lying on a finite subgraph of the hexagonal lattice. The probability of a configuration is equal to

$$\frac{x^{\text{\# edges}} n^{\text{\# loops}}}{Z_{x,n,G}}$$

- Representation of the spin O(n) model.
- Physicist Nienhuis studied the model for $n \in (0, 2]$ and suggested the following phase diagram

The O(n) model is a model on **closed loops** lying on a finite subgraph of the hexagonal lattice. The probability of a configuration is equal to

$$\frac{x^{\text{\# edges}} n^{\text{\# loops}}}{Z_{x,n,G}}.$$

- Representation of the spin O(n) model.
- Physicist Nienhuis studied the model for $n \in (0, 2]$ and suggested the following phase diagram

 \P In the case n=1 of the **Ising model**, a similar fermionic observable F is discrete holomorphic at criticality:

So far only partial discrete holomorphicity observed.

In the case n = 1 of the **Ising model**, a similar fermionic observable F is discrete holomorphic at criticality:

$$F(a,z,x) = \sum_{\omega \text{ with a curve } \omega \text{ from a to } z} e^{-i\frac{1}{2}W_{\omega}(a,z)} x^{\#\text{edges}}.$$

So far only partial discrete holomorphicity observed.

 \P In the case n=1 of the **Ising model**, a similar fermionic observable F is discrete holomorphic at criticality:

$$F(a,z,x) = \sum_{\omega \text{ with a curve } \omega \text{ from a to } z} e^{-i\frac{1}{2}W_{\omega}(a,z)} x^{\#\text{edges}}.$$

For O(n) models, the parafermionic observable

$$F(a,z,x,\sigma) := \sum_{\omega \text{ with a curve } \omega \text{ from a to } z} e^{-i\sigma W_\omega(a,z)} x^{\#\text{edges}} n^{\#\text{loops}}$$

should be discrete holomorphic for $x = x_c$ and $2\cos(\frac{4\sigma\pi}{3}) = -n$.

So far only partial discrete holomorphicity observed.

Conjecture

For $n \in [0,2]$ and $x = x_c(n)$, the interface between two points a and b (on the boundary) converges, as the lattice step goes to zero, to $SLE(\kappa)$ where

$$\kappa = \frac{4\pi}{2\pi - \arccos(-n/2)}.$$

Conjecture

For $n \in [0,2]$ and $x = x_c(n)$, the interface between two points a and b (on the boundary) converges, as the lattice step goes to zero, to $SLE(\kappa)$ where

$$\kappa = \frac{4\pi}{2\pi - \arccos(-n/2)}.$$

Known only for the Ising model, n = 1 (Chelkak & Smirnov). In this case, **Discrete Holomorphicity** + **Boundary Conditions** determine F.

Conjecture

For $n \in [0,2]$ and $x = x_c(n)$, the interface between two points a and b (on the boundary) converges, as the lattice step goes to zero, to $SLE(\kappa)$ where

$$\kappa = \frac{4\pi}{2\pi - \arccos(-n/2)}.$$

Known only for the Ising model, n = 1 (Chelkak & Smirnov). In this case, **Discrete Holomorphicity** + **Boundary Conditions** determine F.

Conjecture

For $n \in [0,2]$ and $x > x_c(n)$, the interface between two points a and b (on the boundary) converges, as the lattice step goes to zero, to $\mathsf{SLE}(\kappa)$ where

$$\kappa = \frac{4\pi}{\arccos(-n/2)}.$$

Known only for the critical percolation, n = 1, x = 1 (Smirnov) via a different observable.

DONE

- Determined the connective constant.
- Introduced a holomorphic parafermion.
- What to do next?

DONE

- Determined the connective constant.
- Introduced a holomorphic parafermion.
- What to do next?

TO DO

• What not to do next?

Do not work with the square lattice self-avoiding walk!

Consider a more general model on the square lattice, with the following weights

Do not work with the square lattice self-avoiding walk!

Consider a more general model on the square lattice, with the following weights

• There are only two families of solutions: one possesses negative weights, the other is exactly equivalent to the hexagonal O(n) model at criticality.

Do not work with the square lattice self-avoiding walk!

Consider a more general model on the square lattice, with the following weights

- There are only two families of solutions: one possesses negative weights, the other is exactly equivalent to the hexagonal O(n) model at criticality.
- The solutions correspond to integrable points of the model (when the Yang-Baxter condition applies).

• We can introduce parafermionic observables for a wide variety of models: O(n)-models, random-cluster models, self-avoiding walks...

- We can introduce parafermionic observables for a wide variety of models: O(n)-models, random-cluster models, self-avoiding walks...
- We can extract information from these operators in order to study the critical phase (example of the connective constant of the hexagonal lattice).

- We can introduce parafermionic observables for a wide variety of models: O(n)-models, random-cluster models, self-avoiding walks...
- We can extract information from these operators in order to study the critical phase (example of the connective constant of the hexagonal lattice).
- In some cases, the information is total universality class of the Ising model – and we can derive conformal invariance.

Question: Can we do the same for other models?

Thank you

