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Self-Avoiding Walks on the hexagonal lattice H:

a

Conjecture (Flory, 1948; Nienhuis, 1982)

Precise asymptotics for the mean-square displacement

and for the number

cn of SAWs of length n:

〈
|ω(n)|2

〉
∼ Dn2ν as n −→∞,

cn ∼ Anγ−1µ n
c as n −→∞

where ν := 3/4

and µc :=
√

2 +
√

2, γ := 43/32

.

γ and ν are universal; µc is lattice-dependent.
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Theorem (H. Duminil-Copin, S. Smirnov, 2010)

The connective constant satisfies µc := limn→∞ c
1
n

n =
√

2 +
√

2.

Easy observations:

cn+m < cn · cm ⇒ ∃ µc := lim
n→∞

c
1
n

n ,

2n/2 ≤ cn ≤ 3 · 2n−1 ⇒
√

2 ≤ µc ≤ 2 .

The generating function (diverges µ < µc , converges µ > µc):

G (µ) :=
∑
ω

µ−`(ω) =
∑

n

cn · µ−n.

It is expected that G (µ) ∼ (µc − µ)−γ .

Try to count simpler objects,
bridges: Walks that never go below
the first step and above the last one.
The number of bridges grows at the
same (exponential) speed as walks. a
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Definition

A self-avoiding bridge is a SAW ω such that the first site is of minimal
second coordinate and the last one of maximal second coordinate. Let bn

be the number of self-avoiding bridges of length n.

0

Proposition (Hammersley 1961)

µc is the same for bottom-top bridges, bottom-bottom bridges, loops.

γ is expected to be different: 9/16, 9/16, −1/2.

bn ≤ cn for obvious reasons. Moreover, cn ≤ r2
n bn where rn is the

number of partitions of n into increasing positive integers. Since
rn ≤ Cec

√
n, we obtain that bn and cn are logarithmically equivalent.
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Definition

The winding Wω(a, b) of a curve ω between a and b is the rotation (in
radians) of the curve between a and b.

Wγ(a, b) = 2πWγ(a, b) = 0

a a
bb

With this definition, we can define the parafermionic operator for a ∈ ∂Ω
and z ∈ Ω:

F (z) = F (a, z , µ, σ) :=
∑

ω⊂Ω: a→z

e−iσWω(a,z)µ−`(ω).

Lemma (Discrete integrals on elementary contours vanish)

If µ = µ∗ =
√

2 +
√

2 and σ = 5
8 , then F satisfies the following relation

for every vertex v ∈ V (Ω),

(p − v)F (p) + (q − v)F (q) + (r − v)F (r) = 0

where p, q, r are the mid-edges of the three edges adjacent to v.
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We write c(ω) for the contribution of the walk ω to the sum.

One can partition the set of walks ω finishing
at p, q or r into pairs and triplets of walks:

γ1 γ2 γ1 γ2 γ3

In the first case,

c(ω1) + c(ω2) = (q − v)e−iσWω1
(a,q)µ−`(ω1) + (r − v)e−iσWω2

(a,r)µ−`(ω2)

= (p − v)e−iσWω1
(a,p)µ−`(ω1)

(
ei 2π

3 e−iσ·−4π
3 + e−i 2π

3 e−iσ· 4π
3

)
In the second case,

c(ω1) + c(ω2) + c(ω3)

= (p − v)e−iσWω1
(a,p)µ−`(ω1)

(
1 + µ−1ei 2π

3 e−i 5
8 ·
−π

3 + µ−1e−i 2π
3 e−i 5

8 ·
π
3

)
.
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(
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8 ·
−4π
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3 e−i 5

8 ·
4π
3

)
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In the second case, providing µ = µ∗ :=
√

2 +
√

2,

c(ω1) + c(ω2) + c(ω3)

= (p − v)e−iσWω1
(a,p)µ∗

−`(ω1)
(
1 + µ−1

∗ ei 2π
3 e−i 5

8 ·
−π

3 + µ−1
∗ e−i 2π

3 e−i 5
8 ·

π
3

)
= 0.
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If µ = µ∗ then
∮

F (z)dz = 0 along an elementary contour

q

r
v p

Proposition ((partial) Discrete holomorphicity)

If Ω is simply connected, then
∮
Γ
F (z)dz = 0 for any discrete contour Γ.

Will be used to show µc = µ∗. Take a trapezoid contour ST ,L:

0

ST,L
ε ε̄

β

αa

T cells

L cells

0 = −
∑
z∈α

F (z) +
∑
z∈β

F (z) + ei 2π
3

∑
z∈ε

F (z) + e−i 2π
3

∑
z∈ε̄

F (z)
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0
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β
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We know the winding on the boundary!
So we can replace F by the sum of Boltzman weights.

1 =

√
2−

√
2

2
A(T , L, µ∗) + B(T , L, µ∗) +

1√
2

E (T , L, µ∗).

Hugo Duminil-Copin & Stanislav Smirnov The self-avoiding walk on the hexagonal lattice



0

ST,L
ε ε̄

β

αa

T cells

L cells

0 = −
∑
z∈α

F (z) +
∑
z∈β

F (z) + ei 2π
3

∑
z∈ε

F (z) + e−i 2π
3

∑
z∈ε̄

F (z)

1 = cos

(
3π

8

) ∑
ω:a→α

µ
−`(ω)
∗ +

∑
ω:a→β

µ
−`(ω)
∗ + cos

(π

4

) ∑
ω:a→ε∪ε̄

µ
−`(ω)
∗ .

We know the winding on the boundary!
So we can replace F by the sum of Boltzman weights.

1 =

√
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√
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An upper bound on µc :

1 =

√
2−

√
2

2
A(T , L, µ∗) + B(T , L, µ∗) +

1√
2

E (T , L, µ∗),

implies

2√
2−

√
2
≥ A(T , L, µ∗) .

Send T , L →∞

∞ >
2√

2−
√

2
≥ Gbottom-bottom bridges(µ∗) ,

hence µc ≤ µ∗.
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A lower bound on µc :

1 =

√
2−

√
2

2
A(T , L, µ∗) + B(T , L, µ∗) +

1√
2

E (T , L, µ∗).

As L →∞, A and B increase to their limits A(T , µ∗) and B(T , µ∗).
Hence E decreases to its limit E (T , µ∗).

If E (T , µ∗) > 0 for some T , then

G (µ∗) ≥
∑

L

E (T , L, µ∗) = ∞ .

Therefore µc ≥ µ∗.

If E (T , µ∗) = 0 for all T , then

1 =

√
2−

√
2

2
A(T , µ∗) + B(T , µ∗) .
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A lower bound on µc (continued):

1 =

√
2−

√
2

2
A(T , µ∗) + B(T , µ∗) .

Also clearly

A(T + 1, µ∗) ≤ A(T , µ∗) + B(T , µ∗)
2 .

We conclude that

B(T + 1, µ∗) ≥ B(T , µ∗)−
√

2−
√

2

2
· B(T , µ∗)

2 ,

hence

B(T , µ∗) ≥ const
const + T

,

Therefore G (µ∗) ≥
∑

T B(T , µ∗) = ∞ and µc ≥ µ∗.
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DONE

Determined the connective constant.

Introduced a discrete holomorphic parafermion.

TO DO

What to do next?

What not to do next?

Hugo Duminil-Copin & Stanislav Smirnov The self-avoiding walk on the hexagonal lattice



DONE

Determined the connective constant.

Introduced a discrete holomorphic parafermion.

TO DO

What to do next?

What not to do next?

Hugo Duminil-Copin & Stanislav Smirnov The self-avoiding walk on the hexagonal lattice



What to do next? The case of the self-avoiding walk.

Conjecture (Nienhuis, 1982; Flory, 1948)

Combinatorial question: Up to no(1) (up to a multiplicative
constant?) we have:

cn ∼ nγ−1

(√
2 +

√
2

)n

as n −→∞

where γ = 43/32 should be universal.

Geometric question: Let ω(N) be the N-th point of the walk, and
| · | denote the Euclidean distance, then there exists D such that:

En[|ω(n)|2] ∼ Dn2ν as n −→∞

where ν = 3/4.

Would follow from the following conjecture
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Conjecture (Lawler, Schramm, Werner, 2001)

The SAW has a conformally invariant scaling limit – SLE(8/3).

For δ > 0, we define a probability measure on self-avoiding paths

from aδ to bδ by assigning a weight proportional to µ
−`(ω)
c . When

δ → 0, the sequence converges to a random continuous curve.

A strategy to tackle this problem?

(1) Precompactness of the family of curves
(2) Conformally invariant martingales which are given by the ratio of

two parafermionic observables: F (a, z ,Ω)/F (a, b,Ω).
Main missing point: show that F is fully discrete holomorphic
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What to do next? O(n) models (1).

The O(n) model is a model on closed loops lying on a finite
subgraph of the hexagonal lattice. The probability of a
configuration is equal to

x# edgesn# loops

Zx ,n,G
.

Representation of the spin O(n) model.
Physicist Nienhuis studied the model for n ∈ (0, 2] and
suggested the following phase diagram

z = 1√
2+
√

2−n

critical phase 2: SLE( 4π
arccos(−n/2))

critical phase 1: SLE( 4π
2π−arccos(−n/2))

sub-critical phase

z

n2

0 1/
√

2 +
√

2

1/
√

2

1/
√

3
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What to do next? O(n) models (2).

In the case n = 1 of the Ising model, a similar fermionic
observable F is discrete holomorphic at criticality:

F (a, z , x) =
∑

ω with a curve ω from a to z

e−i 1
2
Wω(a,z)x#edges.

For O(n) models, the parafermionic observable

F (a, z , x , σ) :=
∑

ω with a curve ω from a to z

e−iσWω(a,z)x#edgesn#loops

should be discrete holomorphic for x = xc and 2 cos(4σπ
3 ) = −n.

So far only partial discrete holomorphicity observed.
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What to do next? O(n) models (3).

Conjecture

For n ∈ [0, 2] and x = xc(n), the interface between two points a and b
(on the boundary) converges, as the lattice step goes to zero, to SLE(κ)
where

κ =
4π

2π − arccos(−n/2)
.

Known only for the Ising model, n = 1 (Chelkak & Smirnov). In this
case, Discrete Holomorphicity + Boundary Conditions determine F .

Conjecture

For n ∈ [0, 2] and x > xc(n), the interface between two points a and b
(on the boundary) converges, as the lattice step goes to zero, to SLE(κ)
where

κ =
4π

arccos(−n/2)
.

Known only for the critical percolation, n = 1, x = 1 (Smirnov) via a
different observable.
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DONE

Determined the connective constant.

Introduced a holomorphic parafermion.

What to do next?

TO DO

What not to do next?

Hugo Duminil-Copin & Stanislav Smirnov The self-avoiding walk on the hexagonal lattice



DONE

Determined the connective constant.

Introduced a holomorphic parafermion.

What to do next?

TO DO

What not to do next?

Hugo Duminil-Copin & Stanislav Smirnov The self-avoiding walk on the hexagonal lattice



What not to do next? O(n) models (3).

Do not work with the square lattice self-avoiding walk!

Consider a more general model on the square lattice, with the following
weights

x1 x2 x3 x4 x5 x6

There are only two families of solutions: one possesses negative
weights, the other is exactly equivalent to the hexagonal O(n)
model at criticality.

The solutions correspond to integrable points of the model (when
the Yang-Baxter condition applies).
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Conclusion

We can introduce parafermionic observables for a wide variety of
models: O(n)-models, random-cluster models, self-avoiding walks...

We can extract information from these operators in order to study
the critical phase (example of the connective constant of the
hexagonal lattice).

In some cases, the information is total – universality class of the
Ising model – and we can derive conformal invariance.

Question: Can we do the same for other models?
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Thank you
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