
Prefetching with Adaptive Cache Culling for Striped Disk Arrays

Sung Hoon Baek and Kyu Ho Park
Korea Advanced Institute of Science and Technology

shbaek@core.kaist.ac.kr,kpark@ee.kaist.ac.kr

Abstract

Conventional prefetching schemes regard prediction ac-
curacy as important because useless data prefetched by
a faulty prediction may pollute the cache. If prefetch-
ing requires considerably low read cost but the predic-
tion is not accurate, it may or may not be beneficial de-
pending on the situation. However, the problem of low
prediction accuracy can be dramatically reduced if we
efficiently manage prefetched data by considering the to-
tal hit rate for both prefetched data and cached data. To
achieve this goal, we propose an adaptive strip prefetch-
ing (ASP) scheme, which provides low prefetching cost
and evicts prefetched data at the proper time by using
differential feedback that maximizes the hit rate of both
prefetched data and cached data in a given cache man-
agement scheme. Additionally, ASP controls prefetch-
ing by using an online disk simulation that investigates
whether prefetching is beneficial for the current work-
loads and stops prefetching if it is not. Finally, ASP pro-
vides methods that resolve both independency loss and
parallelism loss that may arise in striped disk arrays. We
implemented a kernel module in Linux version 2.6.18 as
a RAID-5 driver with our scheme, which significantly
outperforms the sequential prefetching of Linux from
several times to an order of magnitude in a variety of
realistic workloads.

1 Introduction
Prefetching is necessary to reduce or hide the latency be-
tween a processor and a main memory as well as between
a main memory and a storage subsystem that consists
of disks. Some prefetching schemes for processors can
be applied to prefetching for disks by means of a slight
modification. And many prefetching techniques that are
dedicated to disks have been studied. We focus on disk
prefetching, especially for striped disk arrays.

The frequently-addressed goal of disk prefetching is
to make data available in a cache before the data is con-
sumed; in this way, computational operations are over-
lapped with the transfer of data from the disk. The other
goal is to enhance the disk throughput by aggregating
multiple contiguous blocks as a single request. Prefetch-
ing schemes for a single disk cause problems is used in
striped disk arrays. There is a need for a special scheme

for multiple disks, in which the characteristics of striped
disk arrays [7] are considered.

1.1 Five Problems
The performance disparity between processor speed and
the disk transfer rate can be compensated for via the disk
parallelism of disk arrays. Chen et al. [7] described six
types of disk arrays and termed them redundant disk ar-
rays of independent disks (RAID). In these arrays, blocks
are striped across the disks, and the striped blocks pro-
vide the parallelism of multiple disks, thereby improv-
ing access bandwidth. Many RAID technologies have
focused on the following: reliability of RAID [1, 5, 16,
34, 40], the write performance [3, 12, 46], multimedia
streaming with a disk array [15, 21, 27], RAID manage-
ment [45, 47], and so on [20, 41].

However, prefetching schemes for disk arrays have
been rarely studied. Some offline prefetching schemes
(described in Section 1.2.3) take load balancing among
disks into account, though they are not practical since
they require complete knowledge of future I/O refer-
ences.

For multiple concurrent reads, the striping scheme
of RAID resolves the load balancing among disks [7].
The greater number of concurrent reads implies more
evenly distributed reads across striped blocks. As a re-
sult, researchers are forced to address five new problems
that substantially affect the prefetching performance of
striped disk arrays as follows:

1.1.1 Parallelism
If the prefetch size is much less than the stripe size and
the number of concurrent reads is much less than the
number of the member disks that compose a striped disk
array, some of disks become idle, thereby losing paral-
lelism of the disks. This case exemplifies what we call
parallelism loss.

In sequential prefetching (described in Section 1.2.4),
a large prefetch size laid across multiple disks can pre-
vent parallelism loss. For the worst case of a single
stream, the prefetch size must be equal to or larger
than the stripe size. However, this method gives rise to
prefetching wastage [10] for multiple concurrent sequen-
tial reads, which are common in streaming servers. A
streaming server that serves tens of thousands of clients,

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 363

Block 0

Block 1

Block 2

Block 3

Block 16

Block 17

Block 18

Block 19

Block 4

Block 5

Block 6

Block 7

Block 20

Block 21

Block 22

Block 23

Block 8

Block 9

Block 10

Block 11

Block 24

Block 25

Block 26

Block 27

Block 12

Block 13

Block 14

Block 15

Block 28

Block 29

Block 30

Block 31

Parity0,0

Parity0,1

Parity0,2

Parity0,3

Parity1,0

Parity1,1

Parity1,2

Parity1,3

Strip 0 Strip 1 Strip 2 Strip 3

Strip 4

Parity Strip

Stripe 0

Strip 5 Strip 6 Strip 7Parity Strip

Stripe 1

.
.
.

Disk 0 Disk 1 Disk 2 Disk 3 Disk 4

Stripe 3

Strip 9 Parity Strip Strip 10 Strip 11Strip 8

Figure 1: The data organization and terminologies of a
RAID-5 array

requires several gigabytes of prefetching memory. If
the server does not have an over-provisioned memory,
thrashing occurs as the prefetched pages are replaced too
early by massive prefetches before they are used.

1.1.2 Independency
Traditional prefetching schemes have focused on paral-
lelism or the load balance of disks. However, this paper
reveals that the independency of disks is more important
than parallelism for concurrent reads of large numbers of
processes in striped disk arrays, whereas parallelism is
only significant when the number of concurrent accesses
is roughly less than the number of member disks.

A strip is defined by the RAID Advisory Board [39] as
shown in Fig. 1, which illustrates a RAID-5 array con-
sisting of five disks. The stripe is divided by the strips.
Each strip is comprised of a set of blocks.

Figure 2(a) shows an example of independency loss.
The prefetching requests of conventional prefetching
schemes are not aligned in the strip; therefore, a single
prefetching request may be split across several disks. In
Fig. 2(a), three processes request sequential blocks for
their own files. A preset amount of sequential blocks
are aggregated as a single prefetching request by the
prefetcher. If each prefetch request is not dedicated to
a single strip, it is split across two disks, and each disk
requires two accesses. For example, if a single prefetch
request is for Block 2 to Block 5, the single prefetch re-
quest generates two disk commands that correspond to
Block 2 & 3 belonging to Disk 0 and Block 4 & 5 be-
longing to Disk 1. This problem is called independency
loss. In contrast, if each prefetching request is dedicated
to only one disk, as shown in Fig. 2(b), independency
loss is resolved.

To resolve independency loss, each prefetching re-
quest must be dedicated to a single strip and not split
to multiple disks. The strip size is much less than the
stripe size and, as a result, suffers parallelism loss for
small numbers of concurrent reads. The two problems,

Disk 1 Disk 2 Disk 3

Req.A Req.B Req.C

Disk prefetcher

Proc. A Proc. B Proc. C

(a)

Disk 1 Disk 2 Disk 3

Req.A Req.B Req.C

Disk prefetcher

Proc. A Proc. B Proc. C

(b)

Figure 2: (a) Independency loss: prefetch requests are
split across multiple disks so that each prefetch requires
two disk accesses. (b) No independency loss: each
prefetch request is dedicated to one disk.

independency loss and parallelism loss, conflict with one
other. In the traditional prefetching schemes, if one prob-
lem is resolved, the other arises.

We propose an adaptive strip prefetching (ASP)
scheme that eliminates almost all demerits of a new strip
prefetching scheme, as discussed in Section 2.1. The
proposed strip prefetching prefetches all blocks of a strip
of a striped disk array on a cache miss. The strip is
a set of contiguous blocks dedicated to only one disk,
ASP including strip prefetching resolves independency
loss. Parallelism loss is resolved by combining ASP with
our earlier work, massive stripe prefetching (MSP) [2],
which maximizes parallelism for sequential reads of a
small number of processes.

1.1.3 Non-Sequential Read and Small Files
Sequential prefetching is a widely used practical
prefetching scheme. However, it is never beneficial to
non-sequential reads, although they may exhibit some
spatial locality. In addition, the prefetch size of sequen-
tial prefetching is restricted by file size. Although a sin-
gle process sequentially reads contiguous small files, the
small prefetch size of sequential prefetching causes par-
allelism loss. Such workloads are common in real sys-
tems but there is no scheme that has the advantages of
being; (1) beneficial to them, (2) practical for real sys-
tems, (3) of low overhead, (4) transparent to applications,
and (5) convenient to use.

ASP improves the performance of such workloads be-
cause strip prefetching exploits the principle of the spa-
tial locality by implicitly prefetching data that is likely to
be referenced in the near future.

1.1.4 Prefetched Data Management
Traditional prefetching schemes regard prediction accu-
racy as important because there is no efficient and practi-
cal cache management scheme for uselessly prefetched
data that pollute the cache. Strip prefetching requires
considerably low read cost but its prefetching prediction
is not so accurate. Consequently, the overall through-
put of strip prefetching may or may not be beneficial de-

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association364

pending on the situation. However, the problem of low
prediction accuracy can be dramatically reduced if we ef-
ficiently manage prefetched data by considering the total
hit rate for both prefetched data and cached data.

We need to divide the traditional meaning of cache hit
into prefetch hit and the narrow interpretation of cache
hit. The prefetch hit is a read request on a prefetched
data that has not yet been referenced by the host since
it was prefetched. The cache hit is defined as a read
request on a cached data that was loaded by the host’s
past request.

With the absence of efficient cache management for
prefetched data, the low prediction accuracy of strip
prefetching exhausts the cache memory. To resolve this
problem, ASP early evicts (culls) prefetched data that is
less valuable than the least-valuable cached data in an
adaptive manner with differential feedback so that the
sum of the cache hit rate and the prefetch hit rate of ASP
is maximized in a given cache management scheme. The
differential feedback has similar features with the adap-
tive scheme based on marginal utility used in the sequen-
tial prefetching in adaptive replacement cache (SARC)
[11]. However, there are several differences between
SARC and our scheme, which are discussed at the end
of Section 2.3.

Several approaches for balancing the amount of mem-
ory given to cached data and prefetched data were taken
by Patterson et al’s transparent informed prefetching [35]
and its extension [42]. However, there are many signifi-
cant differences between them and our scheme. Section
1.2.5 addresses these in more detail.

ASP does not decide which cached data should be
evicted and most cache replacement schemes do not take
the prefetch hit into account. Hence, ASP may perform
well with any of the recent cache replacement policies in-
cluding RACE [48], ARC [29], SARC [11], AMP [10],
and PROMOTE [9].

1.1.5 Prefetching Cost

As well as requiring prefetched data management,
prefetching must spend less time in reading the requested
data from disks. Hence, ASP include a simple on-
line disk simulation to estimate whether strip prefetch-
ing requires a larger read cost than no prefetching for
the current workload. ASP activates or deactivates strip
prefetching depending on this comparison.

If a workload exhibits neither prefetch hits nor cache
hits, it is apparent that strip prefetching has a greater cost
than no prefetching. In this case, any prefetching should
be deactivated, even though ASP efficiently culls use-
lessly prefetched data. For real workloads, ASP exploits
an online disk simulation to estimate the two read costs.

1.2 Related Work

1.2.1 History-Based Prefetching
History-based prefetching, which predicts future ac-
cesses by learning the stationary past accesses, has been
proposed in various forms. Palmer and Zdonik proposed
an associated memory that recognizes access patterns by
repeated training [33]. Grimsrud et al. provided an adap-
tive table, in which an entry is associated with each clus-
ter (of one or more disk blocks) on the disk; furthermore,
each entry contains the next cluster for the best prefetch-
ing candidate and weight [14]. Griffioen and Appleton
suggested a file-level prediction that prefetches files early
based on the past file activity [13]. Prefetching with a
Markov predictor, which is based on the transition fre-
quency of reference strings, has also been studied [18].
Recording and analyzing past accesses requires a signifi-
cant amount of memory; hence, several studies have been
proposed to reduce the required amount of memory for
their history-based prefetching [23, 25, 44].

History-based prefetching, which records and mines
the extensive history of past accesses, is cumbersome and
expensive to maintain in practical systems. It also suffers
from low predictive accuracy, and the resultant unneces-
sary reads can degrade performance. Furthermore, it is
effective only for stationary workloads.

1.2.2 Application-Hint-Based Prefetching
When a small number of processes or a single process
generates a non-sequential access, a small number of
concurrent I/Os may not fully exploit disk parallelism in
the disk array. In order to solve this problem, Patterson
et al. suggested a disclosure hint interface [35], This in-
terface must be exploited by an application programmer
so that information about future accesses can be given
through an I/O-control (ioctl) system call. The state-of-
art interface, the asynchronous I/O of Linux 2.6 [4], may
replace the ioctl system call. The disclosure hint forces
programmers to modify applications so that the applica-
tions issue hints. Some applications involve significant
code restructuring to include disclosure hints.

Speculative execution provides application hints with-
out modifying the code [6]. A copy of the original thread
is speculatively executed without affecting the original
execution in order to predict future accesses. However,
the speculative thread consumes considerable computa-
tional resources and can cause misprediction if the future
accesses rely on the data of past accesses.

1.2.3 Offline Optimal Prefetching
Traditional buffer management algorithms that minimize
cache misses are substantially suboptimal in parallel
I/O systems where multiple I/Os can proceed simultane-
ously [19]. Analytically optimal prefetching and caching

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 365

schemes have been studied with respect to situations in
which future accesses are given [19, 22]. These schemes
are optimal in terms of cache hit rate and disk paral-
lelism. As a metric value, however, the cache hit rate
may not accurately reflect the real performance because
a sequential read for tens of blocks can achieve a much
higher disk throughput than random reads for two blocks
[8]. Furthermore, offline prefetching does not resolve
the two conflicting problems of parallelism loss and in-
dependency loss.

1.2.4 Sequential Prefetching
The most common form of prefetching is sequential
prefetching (SEQP), which is widely used in a variety of
operating systems because sequential accesses are com-
mon in practical systems.

The Atropos volume manager [36] dramatically re-
duces disk positioning time for sequential accesses to
two dimensional data structures by means of new data
placement in disk arrays. However, Atropos does not
give no solution at all to the five problems addressed in
Introduction.

Table-based prefetching (TaP) [26] detects these se-
quential patterns in a storage cache without any help of
file systems, and dynamically adjusts the cache size for
sequentially prefetched data, namely prefetch cache size,
which is adjusted to an efficient size that obtains no more
prefetch hit rate above the preset level even if the prefetch
cache size is increased. However, TaP fails to consider
both prefetch hit rate and cache hit rate.

MSP, which was proposed in our earlier work [2], de-
tects semi-sequential reads at the block level. A sequen-
tial read at the file level exhibits a semi-sequential read
at the block level because reads at the block level require
both metadata access and data access throughout in dif-
ferent regions and the file may be fragmented. If a long
semi-sequentiality is detected, the prefetch size of MSP
becomes a multiple of the stripe size, and the prefetching
request of MSP is aligned in the stripe; as a result, MSP
achieves perfect disk parallelism.

Although sequential prefetching is the most popu-
lar prefetching scheme in practical systems, sequential
prefetching and its variations have until now failed to
consider independency loss and they are not at all ben-
eficial to non-sequential reads.

1.2.5 Prefetching and Caching
Among offline prefetching schemes, Kallahalla [19] and
Kimbrel [22] took both prefetched data and cached data
into account in order to increase cache hit rate. How-
ever, their approaches are not realizable in actual sys-
tems since they require complete knowledge of future
accesses. Patterson et al. [35, 42] provided practical
schemes known as TIP and TIPTOE (TIP with Temporal

Overload Estimators, an extension of TIP), TIP and TIP-
TOE estimate the read service time of prefetched data,
the hinted cache, and the shrinkage of the cached data.
They then choose the globally least-costly block cache
for the victim of eviction.

Distinguishing prefetched data from cached data is the
common part of TIP, TIPTOE, and our ASP. However,
there are notable differences between the first two and
ASP. (1) While their eviction policy does not manage
uselessly prefetched data, ASP can manage inaccurately
prefetched data that are prestaged by strip prefetching.
This provides noticeable benefits if the workload ex-
hibits spatial locality. (2) They are based on an approxi-
mate I/O service time model to assess the costs for each
prefetched block. This deterministic cost estimation may
be different from the real costs and cause errors, while
ASP uses an adaptive manner that measures and utilizes
the instantaneous real cost of prefetched data and cached
data. (3) They must scan block caches to find the least-
valuable one, while ASP has a negligible overhead with
O(1) complexity.

2 Adaptive Strip Prefetching
To resolve the five problems mentioned in Introduction,
we propose adaptive strip prefetching (ASP), which in-
cludes three new schemes, strip prefetching, adaptive
cache culling, and an online disk simulation.

Strip prefetching resolves independency loss by dedi-
cating each prefetching request to a single disk, and re-
solves parallelism loss when combined with MSP [2].
Adaptive cache culling eliminates the inaccurate predic-
tion of strip prefetching by providing an optimal point
that improves both cache hit rate and prefetch hit rate.
To guarantee no performance degradation, ASP enables
or disables strip prefetching by using a simple online disk
simulation. The following sections describe the three
new components comprising ASP.

2.1 Strip Prefetching
To resolve independency loss and to be beneficial for
non-sequential reads as well as sequential reads, we pro-
pose strip prefetching. Whenever the block requested by
the host is not in the cache, strip prefetching reads all
blocks of the strip to which the requested block belongs.
By grouping consecutive blocks of each strip into a sin-
gle prefetch unit, strip caches exploit the principle of spa-
tial locality by implicitly prefetching data that is likely to
be referenced in the near future. Because each strip is
dedicated to only one disk, each prefetch request is not
laid across multiple disks; as a result, the problem of in-
dependency loss is resolved.

However, strip prefetching has two drawbacks. First,
strip prefetching may degrade memory utilization by
prefetching useless data. Hence, we propose adaptive

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association366

Upstream (U)

�U: the maximum number of strip caches in U Downstream (D)

Upstream Bottom (Ub) Global Bottom (Gb)

Ghost

Cache hit

Request

Request

M
R
U

L
R
U

Cached block Prefetched block Empty block

Ghost strip cache holding

no memory except for the

past request states

M
R
U

L
R
U

Fully occupied strip cache holding both prefetched data and cached data

Partially occupied strip cache holding only cached data

N
ew

ly
al
lo
ca
te
d
st
ri
p
ca
ch
e

evictionculling

Cache miss

Figure 3: The cache management of ACC: the cache is partitioned into the upstream U and the downstream D. The
upstream bottom Ub is a bottom portion of U . The global bottom Gb is a bottom portion of the global list consisting
of U and D. ACC changes the variable NU , the maximum number of strip caches that U can accommodate, in an
adaptive manner. If the number of strip caches in U exceeds NU , ACC evicts (culls) the prefetched block caches of
the LRU strip cache of U and moves the strip cache into the MRU position of D.

cache culling to improve strip prefetching. Adaptive
cache culling evicts (culls) prefetched and unused data
at the proper time in an adaptive manner; as a result, the
sum of the cache hit rate and the prefetch hit rate of ASP
is guaranteed to be equal to or larger than those of either
strip prefetching or no prefetching.

Second, the read service time of strip prefetching may
be longer than that of no prefetching. Hence, ASP
activates or deactivates strip prefetching by estimating
whether the read cost of is less than not prefetching for
the current workload. The estimation can be performed
by an online disk simulation with low overhead.

2.2 Adaptive Cache Culling
To efficiently manage data prefetched by strip prefetch-
ing, as a component of ASP, we propose an adaptive
cache culling (ACC) scheme, which maximizes the sum
of the cache hit rate and the prefetch hit rate (see Sec-
tion 1.1.4 for this terminology) of ASP in a given cache
management scheme.

Figure 3 illustrates the cache structure that is managed
in strip caches, each of which consists of four blocks.
ACC manages the cache in strip units. Each strip cache
holds the data blocks of a strip. The data block can be
a cached block holding cached data, a prefetched block
holding prefetched data, or an empty block holding nei-
ther memory nor data.

To evict prefetched data earlier than cached data at the
proper time in an adaptive manner (described in Section
2.3), as shown in Fig. 3, strip caches are partitioned into
the upstream U and the downstream D. U can include
both prefetched blocks and cached blocks but D excludes
prefetched blocks. Newly allocated strip cache that may
hold both prefetched blocks and cached blocks is inserted
into U . If the number of strip caches in U exceeds the

maximum number of strip caches that U can accommo-
date, the LRU strip cache of U moves to D, and ACC
culls (evicts) the prefetched blocks of this strip cache.

A host request that is delivered to a prefetched block
changes it into a cached block. All cached or prefetched
blocks make their way from upstream toward down-
stream like a stream of water. If a prefetched block
flows downstream, the prefetched block is changed into
an empty block by culling, which deallocates the mem-
ory holding the prefetched data but retains the informa-
tion that the block is empty in D. Thus, blocks requested
by the host remain in the cache for a longer time than
prefetched and unrequested blocks. The average life-
time of prefetched blocks is determined by the size of
U , which is dynamically adjusted by measuring instant
hit rates.

ACC changes a variable NU , the maximum number
of strip caches that U can accommodate, in an adaptive
manner. If NU decreases, the prefetch hit rate decreases
due to a reduced amount of prefetched data but the cache
hit rate increases, otherwise, vice versa. The system per-
formance depends on the total hit rate that is the sum of
the prefetched hit rate and the cache hit rate. Section 2.3
describes a control scheme for NU to maximize the total
hit rate, while this section describes the cache manage-
ment and structure of ACC.

The LRU strip cache of all is evicted under memory
pressure. A cache hit for a strip cache of U and D moves
the corresponding strip cache to the MRU position of U
and D, respectively, like the least recently used (LRU)
policy. An evicted strip cache can be a ghost strip cache,
which is designed to improve the performance using re-
quest history. The ghost strip cache has a loose relation-
ship with the major culling process. Hence, ACC can
perform even if we do not manage the ghost strip cache.

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 367

The next section describes the ghost strip cache and some
issues.

2.2.1 Issues
The stream management of ACC prevents the cache hits
in D from moving the hit strip cache to U . If a par-
tially occupied strip cache (including an empty block)
of D can move to U , the memory space occupied by U
is shrunk because the partially occupied strip cache may
evict another fully occupied strip cache from U to keep
the number of strip caches of U from being equal to NU .
This process breaks the optimal partition of U and D.

Sibling strip caches are the strip caches corresponding
to the strips that belong to the same stripe. Destaging
dirty blocks from the RAID cache is more efficient when
it is managed in stripes than in blocks or strips [12]. The
stripe cache contains sibling strip caches belonging to the
stripe. Hence, although a strip cache is evicted, its stripe
cache is still alive if at least one sibling strip cache is
alive. Therefore, the stripe cache can easily maintain an
evicted strip cache as a ghost strip cache.

When all blocks of a strip cache are evicted from the
cache, the strip cache becomes a ghost strip cache if one
of its sibling strip caches is still alive in the cache. Ghost
strip caches hold no memory except for request states
of the past. The request states indicate which blocks of
the strip cache were requested by the host. When an I/O
request is delivered for a ghost strip, the ghost strip be-
comes alive as a strip cache that retains the past request
states. This strip cache that was a ghost is called a rein-
carnated strip cache, but which has no distinction with
the other strip caches except for the past request states.

The past request states of the ghost strip cache works
like a kind of history-based prefetching. The past request
states remain even after the ghost strip cache is reincar-
nated. The past cached block, which had not been re-
quested before the block became a ghost, has high pos-
sibility of being referenced by the host in the near future
although it has not yet been referenced since it was rein-
carnated. Thus, the culling process does not evict past
cached blocks as well as cached blocks.

The cache replacement policy in our implementation
is to evict the LRU strip cache of all. However, ACC
does not determine a cache replacement policy that may
evict any cached block in U or D. A new policy for ACC
or a combination of a state-of-the-art cache replacement
policy as referenced in Section 1.1.4 and ACC may pro-
vide better performance than the LRU scheme. The exact
cache replacement policy is not within the scope of this
paper.

2.2.2 Summary of Operation
Whenever a request from the host is delivered to the disk
array, the two lists, U and D, are managed by the follow-

�U

H
it
ra
te

slope=0

slope>0 slope<0

Total hit rate (P+C)

Prefetch hit rate P
Cache hit rate C

U

dC

d�
−

U

dP

d�

()
Slope

U

d P C

d�

+

=

Cross point

Figure 4: The function of total hit rate (P + C) with
respect to NU : when the slope of the function is zero,
the total hit rate is at the maximum.

ing rules:

• A cache hit or prefetch hit occurring in U : The strip
cache that corresponds to the hit moves to the MRU
position of U .

• A cache hit occurring in D: The strip cache moves
to the MRU position of D.

• A request for a ghost strip cache or an empty block
of alive strip caches: The corresponding strip is
read from the disk by controlled strip prefetching
(as described in Section 2.4, strip prefetching can be
deactivated by the decision algorithm of ASP with
an online disk simulation.), and its strip cache is in-
serted into the MRU position of U .

• A cache miss on neither alive nor ghost strip
caches: A new strip cache is allocated for the re-
quested block, read by the controlled strip prefetch-
ing, and inserted into the MRU position of U .

• If the number of strip caches exceeds NU , the LRU
strip cache of U moves to the MRU position of D,
and the prefetched blocks except for the past cached
blocks are culled (evicted).

2.3 Differential Feedback of ACC
Finding the optimal value of NU , the maximum number
of strip caches occupying U , is the most important part
of ACC. We regard NU as optimal when it maximizes
the total hit rate, which is the sum of the prefetch hit rate
P and the cache hit rate C. Fig. 4 illustrates a function of
the total hit rate with respect to NU . When the slope of
the function is zero, the total hit rate is at the maximum.

As NU increases, P increases but the incremental rate
of P declines. As NU decreases, C increases and the
incremental rate of C declines. Therefore, the derivative
of P with respect to NU , dP/dNU , is a monotonically
decreasing function and so is the negative derivative of
C with respect to NU , −dC/dNU . Then, there is zero
or one cross point of these derivatives. The function of
P + C with respect to NU can form a hill shape or be
an monotonically increasing or deceasing function, these
three types of functions have only one peak point.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association368

U
�∆

P∆ �

U
�α− ∆

C∆ �DU
P P∆ ≈ ∆ �

U
�∆

/C C α∆ = ∆ �

U
�∆

Additional Allocation Shrunk portion by the increased U

D to be shrunk

Figure 5: The derivative of P with respect to NU is simi-
larly equal to the increased number of prefetch hits in Ub

when NU increases slightly. The derivative of C is nega-
tively proportional to the decreased number of cache hits
in Gb when the size of U increases.

If we can determine the instant value of the slope for
the current NU , the optimal NU can be achieved us-
ing the following feedback with the instant value of the
slope.

NU ← NU + C × slope, (1)

where C is a constant value that determines the speed of
the feedback.

When NU is on the left side of Fig 4, the feedback
increases NU by the positive value of the slope. If NU

increases so much that the slope becomes negative, the
feedback with the negative slope decreases NU so that
the total hit rate is near the peak. Even if P + C is an in-
creasing or decreasing function, the above feedback finds
the optimal value of NU .

The function of the slope is the derivative of the total
hit rate P +C, which is the sum of the two derivatives of
P and C with respect to NU as the following equation.

slope =
d(P + C)

dNU

=
dP

dNU

+
dC

dNU

. (2)

An approximated derivative can be measured as shown
in Fig. 5. By the definition of differential, the deriva-
tive of P is similarly equal to the number of prefetch
hits ∆Ṗ that, during a time interval, occur in the ∆NU

strip caches additionally allocated to U . The additional
prefetch hit rate ∆Ṗ is similar to ∆P , which is the
prefetch hit rate of the strip caches of the upstream bot-
tom that is adjacent to the additionally allocated strip
caches. Therefore, the derivative of the prefetch hit rate
with respect to NU can be approximated with the follow-
ing equation.

dP

dNU

'
∆Ṗ

∆NU

'
∆P

∆NU

. (3)

If the upstream U increases by ∆NU , the downstream
D decreases by α∆NU . The coefficient α is determined
by the occupancy ratio of the non-empty blocks in both
the expanded portion of U and the shrunk portion of D
(see Eq. (6)). The derivative of the cache hit rate with

respect to NU is similar to the cache hit rate ∆Ċ that
occurs in the α∆NU strip caches of the global bottom.
If we want to monitor the cache hit rate, ∆C, in a fixed
size of the global bottom, the derivative of the cache hit
rate can be approximated with the following equation.

dC

dNU

' −
∆Ċ

∆NU

' −
α∆C

∆NU

. (4)

The differential value (slope) of the current partition
can be obtained by monitoring the number of prefetch
hits ∆P occurring in the upstream bottom and the num-
ber of cache hits ∆C occurring in the global bottom dur-
ing a time interval.

slope ∝ ∆P − α∆C. (5)

The upstream bottom Ub is the bottom portion of U ,
where the number of strip caches of Ub is predetermined
as 20% of the maximum number of strip caches of the
simple strip prefetching policy. Similarly, the global bot-
tom Gb is the bottom portion of the global list (the com-
bination of U and D). At an initial stage or in some other
cases, D contains no strip cache or too small number of
strip caches. Hence, Gb can overlap with Ub. Gb accom-
modates the same number of strip caches as Ub.

By combining Eqs. (1) and (5), the final feedback op-
eration that achieves the maximum hit rate can be written
as in the following process.

α =
the number of all blocks in Ub

the number of cached blocks in Gb

. (6)

NU ← NU + S(∆P − α∆C). (7)

Whenever a hit occurs in Ub or Gb, ACC adjusts NU us-
ing this process. The constant S of Eq. (7) determines
the speed of the adaptation. In our experiment, S was
speculatively chosen as two. We select the time interval
to measure ∆P and ∆C to be the time difference be-
tween two successive hits occurring in either Ub or Gb.
∆P and ∆C are hence zero or one.

The upstream size NU is initially set to the cache
size over the strip size. Until the cache is fully filled
with data, ASP activates strip prefetching and NU is not
changed by the feedback. At the initial time, D does not
exist, and thus, Gb is identical to Ub.

We do not let NU fall below the size of Ub to retain the
fixed size of Ub. If NU shrinks to the size of Ub, ACC
deactivates strip prefetching until NU swells to twice the
size of Ub to make a hysteresis curve. The reason of this
deactivation is that too small NU indicates strip prefetch-
ing is not beneficial in terms of not only hit rate but also
read service time.

The differential feedback has similar features with
the adaptive manner based on marginal utility used in
the sequential prefetching in adaptive replacement cache

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 369

(SARC) [11]. However, we present a formal method that
finds an optimal point using the derivatives of cache hit
rate and prefetch hit rate. Only our analytical approach
can explain the feedback coefficient α. Furthermore,
there are several differences between the two algorithms:
(1) while SARC does not distinguish prefetched blocks
from cached blocks, our scheme takes care of the evic-
tion of only prefetched blocks that are ignored in SARC,
(2) SARC relates to random data and sequential data,
whereas the proposed scheme considers both prefetch
hits and cache hits in a prefetching scenarios, and (3)
our scheme manages the caches in terms of strips for an
efficient management of striped disk arrays, while SARC
has no feature for disk arrays.

2.4 The Online Cost Estimation
For example, if NU decreases to the minimum value due
to the lack of prefetch hits, ASP must deactivate strip
prefetching. The deactivation, however, cannot rely on
the minimum size of NU because NU may not shrink if
both the prefetch hit rate and cache hit rate are zero or
extremely low. Therefore, ASP employs an online disk
simulation, which investigates whether strip prefetching
requires a greater read cost than no prefetching.

Whenever the host requests a block, ASP calculates
two read costs, Cn and Csp, by using an online disk sim-
ulation with a very low overhead. The disk cost Csp is
the virtual read time spent in disks for all the blocks of
the cache by pretending that strip prefetching has always
been performed. Similarly, the disk cost Cn is the vir-
tual read time spent in disks for all blocks of the current
cache by pretending that no prefetching has ever been
performed.

Whenever the host requests a block that is not in the
cache, ASP compares Cn with Csp. If Cn is less than
Csp, ASP deactivates strip prefetching for this request
because strip prefetching is estimated to have provided
slower read service time than no prefetching for all recent
I/Os that have affected the current cache.

If a block hits the cache as a result of strip prefetching,
the block must be one of all the blocks in the cache. The
gain of strip prefetching is therefore correlated with all
blocks in the cache that contains the past data. Hence, all
blocks in the cache are exploited to determine whether
strip prefetching provides a performance gain.

The cache is managed in terms of strips and consists
of Ns strip caches, and each strip cache, Si, has two vari-
ables, cn(Si) and csp(Si), which are updated by the on-
line disk simulation for every request from the host to
the strip cache Si. The variable cn(Si) is the virtual read
time spent in Si if we assume that no prefetching has ever
been performed. The variable csp(Si) is the virtual read
time spent in Si if we assume that strip prefetching has
always been performed. Then we can express Cn and

Csp as follows:

Cn ≡

Ns∑

i=1

cn(Si), Csp ≡

Ns∑

i=1

csp(Si), (8)

where Si is an i-th strip cache and {Si|1 ≤ i ≤ Ns} is
the entire cache that consists of Ns strip caches.

From Eq.(8), Csp can be obtained by the sum of
csp(Si) for all strip caches. It seems to require a great
overhead. However, an equivalent operation with O(1)
complexity can be achieved as follows: (1) Whenever
the host causes a cache miss on a new block whose strip
cache is not in U , calculate the disk cost to read all blocks
of the requested strip and add it to both csp(Si) and
Csp; (2) whenever a read request accesses to a prefetched
block or misses the cache, calculate the virtual disk cost
to access to the block even though the request hits the
cache, and add the disk cost to both Cn and cn(Si) of the
strip cache Si to which the requested block belongs; and
(3) subtract csp(Si) from Csp and subtract cn(Si) from
Cn when the strip cache Si is evicted from the cache.

2.5 Combination of ASP and MSP
ASP suffers parallelism loss when there are only a small
number of sequential reads. In other words, disks are se-
rialized for a single stream because each request of ASP
is dedicated to only one disk. However, the combina-
tion of ASP and massive stripe prefetching (MSP), which
was briefly described in Section 1.2.4, resolves the par-
allelism loss of ASP without interfering with the ASP
operation and without losing the benefit of ASP.

To combine ASP with MSP, we need the following
rules: The reading by MSP does not change any of the
cost variables of ASP. When ASP tries to reference a
block prefetched by MSP, ASP updates Csp and Cn as
if the block has not been prefetched. MSP excludes
blocks which are already in the cache or being read or
prefetched by ASP or MSP from blocks that are as-
signed to be prefetched by MSP. ASP culls strip caches
prefetched by MSP as well as strip prefetching.

3 Performance Evaluation
3.1 Experimental Setup
We implemented the functions of ASP and MSP in Linux
kernel 2.6.18 x86 64 and added them into the RAID
driver introduced in our previous work [3], which shows
that the RAID driver outperforms the software-based
RAID of Linux (MultiDevice) and a hardware-based
RAID. We revised our earlier version of the RAID driver
for a fine granularity of cache management, and disabled
the contiguity transform function of our previous work
for all experiments.

The system in the experiments uses dual 3.0 GHz
64-bits Xeon processors, 1 GiB of main memory, two

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association370

Adaptec Ultra320 SCSI host bus adapters, and five
ST373454LC disks, each of which has a speed of 15,000
revolutions per minute (rpm) and a 75 Gbyte capacity -
GiB is the abbreviation of gibibyte, as defined by the In-
ternational Electrotechnical Commission. 1 GiB refers
to 230 bytes, whereas 1 GB refers to 109 bytes. [17]. The
five disks comprise a RAID-5 array with a strip size of
128 KiB. A Linux kernel (version 2.6.18) for the x86 64
architecture runs on this machine; the kernel also hosts
the existing benchmark programs, the ext3 file system,
the anticipatory disk scheduler, and our RAID driver,
namely, the Layer of RAID Engine (LORE) driver. Apart
from the page cache of Linux, the LORE driver has its
own cache memory of 500 MiB just as hardware RAIDs
have their own cache. The block size is set to 4 KiB.

In our experiments, we compare all possible combi-
nations of our scheme (ASP) and the existing schemes
(MSP and SEQP): namely ASP, MSP, SEQP, ASP+MSP,
ASP+SEQP, MSP+SEQP, and ASP+MSP+SEQP. The
method of combining ASP and MSP is described in Sec-
tion 2.5. ASP and MSP operate in the LORE driver while
SEQP is performed by the virtual file system (VFS) that
is independent of the LORE driver. By simply turning on
or off the SEQP of VFS, we can easily combine SEQP
with ASP or MSP without any rules.

In all the figures of this paper, SEQPX denotes a SEQP
with X kibibytes of the maximum prefetch size. For ex-
ample, SEQP128 indicates that the maximum prefetch
size is 128 KiB. All the experimental results are obtained
from six repetitions. For some of the results that ex-
hibit significant deviation, each standard deviation is dis-
played in its graph.

3.2 PCMark: Evaluation of Culling
PCMarkr05 records a trace of disk activity during usage
of typical applications and bypasses the file system and
the operating system’s cache [31]. This makes the mea-
surement independent of the file system overhead or the
current state of the operating system. Because PCMark
is a program for MS-Windows, we recorded the traces
of PCMark and replayed the traces three times in Linux
with direct IO that makes IOs bypass the operating sys-
tem’s cache.

Figure 6 is the results of the general hard disk drive
usage of PCMark that contains disk activities from us-
ing several common applications. In this experiment, we
compare ASP, strip prefetching (SP), and no prefetch-
ing. SP exhibits the highest prefetch hit rate while no
prefetching provides the highest cache hit rate. ASP out-
performs both SP and no prefetching at all of the cases in
Fig. 6. With an over-provisioned memory, the through-
put of SP is similar with that of ASP. However, ASP is
significantly superior to SP with 400 MiB or less of the
RAID cache. At the bast case, ASP outperforms SP by 2

Figure 6: The experimental results of PCMark.

32 64 128

0

50

100

150

200

250

300

350

400

T
h
ro
u
g
h
p
u
t
[M
B
/s
]

The number of clients

ASP

ASP w/o ghost

SP

ASP+MSP

SP+MSP

ASP+MSP+SEQP128

SP+MSP+SEQP128

ASP+SEQP128

SP+SEQP128

SEQP32

SEQP128

SEQP512

SRCU42X (HW)

Figure 7: The experimental results of DBench (System
Memory : RAID Memory = 512 MiB : 512 MiB). ASP
outperforms a hardware-based RAID (Intel SRCU42X)
by 11 times for 64 clients

times and no prefetching by 2.2 times with 400 MiB of
the RAID cache.

3.3 Dbench
The benchmark Dbench (version 3.04) [43] produces a
local file system load. It does all the same read and write
calls that the smbd server in Samba [37] would produce
when confronted with a Netbench [30] run. Dbench gen-
erates realistic workloads consisting of so many cache
hits, prefetch hits, cache misses, and writes that the abil-
ity of ASP can be sufficiently evaluated.

Figure 7 shows the results of Dbench. We divided the
main memory of 1 GiB into 512 MiB for the Linux sys-
tem, 500 MiB for the RAID cache, 12 MiB for the RAID
driver. It took 10 minutes for each run.

Both ASP and ASP+MSP rank the highest in Fig. 7
and outperform strip prefetching (SP) by 20% for 128
clients. In this experiment, Csp was always less than Cn;
hence, the gain of ASP over SP originated from ACC.
ASP outperforms SEQP32 by 2 times for 128 clients and
a hardware-based RAID by 11 times for 64 clients and
by 7.6 times for 128 clients. The hardware-based RAID,
which is an Intel SRCU42X with a 512 MiB memory, has
write-back with a battery pack, cached-IO, and adaptive
read-ahead capabilities.

For a fair comparison, the memory of the Linux sys-

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 371

0.6 0.8 1.0 1.2 1.4
2

4

8

16

32

64

T
h
ro
u
g
h
p
u
t
[M
B
/s
]

Aggregate file size [GiB]

ASP

SP

SEQP128

(a) Throughput

0.6 0.8 1.0 1.2 1.4
2

4

8

16

32

64

T
h
ro
u
g
h
p
u
t
[M
B
/s
]

Aggregate file size [GiB]

ASP+MSP

ASP+MSP+SEQP128

MSP

SEQP512

(b) Throughput interfered by MSP

0.6 0.8 1.0 1.2 1.4

0.5

1.0

1.5

2.0

2.5

3.0

C
P
U
lo
a
d
/
th
ro
u
g
h
p
u
t
[%

s
/M
B
]

Aggregate file size [GiB]

ASP+SEQP128

SEQP128

(c) CPU load over throughput

0.6 0.8 1.0 1.2 1.4
0

20

40

60

80

100

120

M
a
x
im
u
m
la
te
n
c
y
[m
s
]

Aggregate file size [GiB]

ASP

SP

SEQP128

(d) Maximum latency

Figure 8: Various metrics with varied aggregate file sizes. Tiobench was used to generate random reads with 4 threads
and 40,000 read transactions.

tem for the hardware-based RAID was given the same
size (512 MiB) as in the case of our RAID driver, and to
compensate the memory occupied by the firmware of the
hardware RAID, the cache of our RAID driver is tuned to
500 MiB that is slightly smaller than the internal mem-
ory of the hardware RAID. The sequential prefetching of
Linux is turned on for the hardware RAID.

Sequential prefetching (SEQP) itself and combina-
tions with SEQP significantly degrade throughput by
causing independency loss. Furthermore, because redun-
dant prefetched data that exist in both the RAID cache
with ASP and the page cache of Linux with SEQP ineffi-
ciently consume cache memory. The addition of SEQP to
ASP is inferior to ASP due to independency loss and re-
dundant prefetched data. In addition, the adaptive culling
operates inefficiently because prefetched data that are re-
quested by SEQP of the host are considered cached data
from the viewpoint of the RAID cache with ASP. Al-
though ASP+SEQP128 is inferior to ASP, it outperforms
SEQP128 by 67% for 128 clients.

SEQP with a large prefetch size suffers from cache
wastage for a large number of processes. As shown in
Fig. 7, SEQP32 outperforms SEQP512 by 4% for 64
clients and by 15% for 128 clients. In contrast, Fig. 9(a)
shows that an increase in the maximum prefetch size of
SEQP improves disk parallelism for a small number of
processes.

“ASP w/o ghost” in Fig. 7 indicates the improved
culling effect with the past cached block. ASP outper-
forms ASP without the ghost by 14% for 128 clients. The

addition of MSP to ASP slightly degrades ASP. How-
ever, the addition of MSP can resolve parallelism loss for
small numbers of processes or a single process. Section
3.5 shows the evaluation of parallelism loss.

3.4 Tiobench: Decision Correctness
We used the benchmark Tiobench (version 0.3.3) [24] to
evaluate whether the disk simulation of ASP makes the
right decision on the basis of the workload property. Fig-
ure 8(a) shows the throughput of random reads with four
threads, 40,000 read transactions, and 4 KiB of the block
size in relation to a varied aggregate file size (workspace
size). A random read with a small workspace size of 0.6
GiB exhibits such high spatial locality that ASP outper-
forms SEQP128. With a workspace size of 0.8 GiB, ASP
outperforms both SP and SEQP. When the workspace
size is equal to or larger than 1 GiB, ASP outperforms SP
and show the same throughput as SEQP by deactivating
SP. For random reads, SEQP does not prefetch anything.
This random read with the large workspace generates so
few cache hits that the adaptive cache culling does not
improve the throughput of ASP.

Figure 8(b) shows that when combined with other
prefetching schemes MSP is effectively disabled with-
out interfering with the combined prefetching scheme for
random reads.

Figure 8(c) shows the CPU load over throughput and
the standard deviation for the random reads. Although
ASP+SEQP128 requires a greater computational over-
head than SEQP128, Fig. 8(c) shows that the CPU load

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association372

1 2 4 8 16

0

50

100

150

200

250

300

T
h
ro
u
g
h
p
u
t
[M
B
/s
]

The number of processes

ASP

ASP+MSP

ASP+MSP+SEQP128

MSP+SEQP128

SEQP32

SEQP128

SEQP512

(a) Forward read

1 2 4 8 16

0

20

40

60

80

100

120

140

160

T
h
ro
u
g
h
p
u
t
[M
B
/s
]

The number of processes

ASP

ASP+MSP

ASP+MSP+SEQP128

MSP+SEQP128

SEQP32

SEQP128

SEQP512

(b) Reverse read

1 2 4 8 16

0

5

10

15

20

T
h
ro
u
g
h
p
u
t
[M
B
/s
]

The number of processes

ASP

ASP+MSP

ASP+MSP+SEQP128

MSP+SEQP128

SEQP32

SEQP128

SEQP512

(c) Stride read: the stride distance is set to 7 blocks

0 2 4 6 8 10 12 14 16

0

20

40

60

80

100

120

T
h
ro
u
g
h
p
u
t
[M
iB
/s
]

The number of processes

ASP

ASP+MSP

ASP+MSP+SEQP128

MSP+SEQP128

SEQP32

SEQP128

SEQP512

(d) Stride read: the stride distance is set to 3 blocks

Figure 9: Throughput obtained from the benchmark IOzone for three types of concurrent sequential reads: the forward
read, the reverse read, and the stride read. The Throughput is shown in relation to the number of processes, ranging
from 1 to 16, with a fixed aggregate file size of 2 GiB and a block size of 4 KiB.

over throughput of ASP+SEQP128 is less than or almost
equal to that of SEQP128. Thus, the computational over-
head of ASP is too low to be measured.

In spite of its throughput gain, SP may cause the la-
tency to increase because it reads more blocks than no
prefetching. However, the performance enhancement by
the gain of SP decreases the latency. Figure 8(d) shows
that the maximum latency of SEQP128 is longer than that
of SP and ASP when SP is beneficial.

This section evaluates the decision correctness and
overhead of ASP for the two types of workloads, which
may or may not be beneficial to SP. However, because
many types of reads exhibit spatial locality, many real-
istic workloads are beneficial to SP. The next sections
show the performance evaluation for various workloads
that exhibit spatial locality.

3.5 IOzone: Parallelism and Independency

We used the benchmark IOzone (version 3.283) [32] for
the three types of concurrent sequential reads: the for-
ward read, the reverse read, and the stride read. We vary
the number of processes from one to 16 with a fixed ag-
gregate file size of 2 GiB and a block size of 4 KiB.

As shown in Fig. 9(a), MSP boosts and dominates the
forward sequential throughput when the number of pro-
cesses is two or four as well as one. The combination
of ASP and MSP (ASP+MSP) shows 5.8 times better
throughput than ASP for a single stream because ASP

suffers the parallelism loss. When the number of pro-
cesses is four, ASP+MSP also outperforms ASP by 76%.

When the number of process is one, ASP+MSP out-
performs SEQP512 by 134% and SEQP32 by 379%.
SEQP, If sequential prefetching has the larger prefetch
size, it may resolve the parallelism loss for a small num-
ber of streams. However, this approach causes cache
wastage and independency loss for concurrent multiple
sequential reads. When the number of streams is 16,
ASP+MSP outperforms ASP+MSP+SEQP128 by 33%
because a combination with SEQP gives rise to indepen-
dency loss.

For the reverse sequential reads shown in Fig. 9(b),
MSP and SEQP do not prefetch any block and, as a con-
sequence, severely degrade the system throughput. ASP
is the best for the reserve reads and outperforms SEQP
by 41 times for 16 processes.

Figure 9(c) and 9(d) show the throughput results of the
stride reads; these results were obtained with IOzone. A
stride read means a sequentially discontiguous read with
a fixed stride distance that is defined by the number of
blocks between discontiguous reads. Stride reads cause
additional revolutions in some disk models, thereby de-
grading the throughput. This problem was unveiled in
[3]. The stride reads shown in Fig. 9 are significantly
beneficial to MSP and ASP because they prefetch con-
tiguous blocks regardless of stride requests.

Figures 9(c) and 9(d) show that as the stride distance

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 373

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

0

50

100

150

200

250

300

T
u
rn
a
ro
u
n
d
ti
m
e
[s
e
c
]

The Queries of TPC-H

ASP

ASP+MSP

ASP+MSP+SEQP128

ASP+SEQP128

SEQP32

SEQP128

SEQP512

SRCU42X

Figure 10: The turnaround time for the queries of TPC-H running on a MySQL database system.

decreases, the throughput of the combinations with ASP
increases, whereas the throughput of SEQP decreases.
ASP+MSP outperforms any of SEQPs by 84.6 times for
a single process when the stride distance is three blocks.
As the number of processes increases, MSP is deacti-
vated and ASP dominates the throughput of the stride
reads. In Fig. 9(d), the combinations with ASP out-
perform the combinations without ASP by at least 9.44
times when the number of processes is 16.

3.6 The TPC Benchmark™H
The TPC Benchmark™H (TPC-H) is a decision support
benchmark that runs a suite of business-oriented ad-hoc
queries and concurrent data modifications on a database
system. Figure 10 shows the results of the queries of
TPC-H running on a MySQL database system with the
scale factor of one.

Most read patterns of TPC-H are stride reads and
non-sequential reads with spatial locality [48], which
are highly beneficial to ASP but not to SEQP. ASP
and ASP+MSP outperform SEQP128 by 1.7 times and
2.2 times, respectively, on average for the 12 queries.
ASP+MSP and ASP+MSP+SEQP are the best for all the
12 queries of TCP-H. Query four (Q4) delivers the best
performance of ASP+MSP with 8.1 times better through-
put than that of SEQP128.

The MySQL system with TPC-H exhibits neither in-
dependency loss nor enough cache hits at the global bot-
tom. Hence, most of ASP’s superior performance orig-
inates from the principle of the spatial locality of SP. In
the experiments in the next section, we do not compare
ASP with SP for the same reason.

3.7 Real Scenarios: Cscope, Glimpse,
Link, and Booting

This section presents the results of cscope [38], glimpse
[28], link, and booting as real applications.

The developer’s tool cscope, which is used for brows-
ing source code, can build the symbol cross-reference
of C source files and allow users to browse through the
C source files. Figure 11 shows the turnaround time

cscope1 cscope2
0

5

10

15

20

25

30

T
u
rn
a
ro
u
n
d
ti
m
e
[s
e
c
]

ASP ASP+MSP

ASP+MSP+SEQP128

ASP+SEQP128

MSP MSP+SEQ128

SEQP32 SEQP64

SEQP128 SEQP256

SEQP512 SRCU42X

Figure 11: The turnaround time for cscope to build the
symbol cross-reference of Linux kernel source files.

that is required for cscope to index the symbol cross-
reference of the Linux kernel (2.6.18) source files. In
Fig. 11, cscope1 means that the symbol indexing is per-
formed without object files that are the results of com-
pilation. The symbol indexing of cscope2 is performed
with source files and object files.

Because cscope is an application that uses a single
thread, SEQP does not cause independency loss. Hence,
ASP+MSP+SEQP128 shows the best performance and
ASP+MSP shows the next best performance. However,
ASP+MSP+SEQP128 slightly outperforms ASP+MSP
by 0.65% for cscope1 and 1.2% for cscope2. In addition,
ASP+MSP outperforms SEQP by 2.1 times in cscope1
and by 38 % in cscope2.

In the cscope2 experiment with both the source files
and the object files, the performance gap between
ASP+MSP and SEQP decreases. In other words, ASP
prefetches unnecessary data because the required source
files and the unnecessary object files are interleaved.
However, ASP+MSP outperforms SEQP by at least 41%.

Figure 12 shows the execution time needed for
glimpse, a text information retrieval application from
the University of Arizona, to index the text files in
“/usr/share/doc” of Fedora Core 5 Release. The results of
glimpse resemble the results of cscope1. ASP+MSP and
ASP+MSP+SEQP128 outperform SEQP128 by 106%.

The link of Fig. 12 shows the turnaround time for gcc
to link the object files of the Linux kernel. The results
are obtained by executing “make vmlinux” in the ker-

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association374

glimpse link
0

10

20

30

40

50

60

70

80

T
u
rn
a
ro
u
n
d
ti
m
e
[s
e
c
]

ASP ASP+MSP

ASP+MSP+SEQP128

ASP+SEQP128

MSP MSP+SEQP128

SEQP32 SEQP64

SEQP128 SEQP256

SEQP512 SRCU42X

Figure 12: The turnaround time for glimpse to index the
text files in “/usr/share/doc” and for gcc to link the object
files of the Linux kernel.

��

��

��

��

��

��

��

��

�
�
��
�
�
��
�
	

�
	
�

�	
���

�	
���

��

��

���
�

Figure 13: Linux booting speed for the run level 3: Phase
1 is the time that elapses from just before the running of
the “init” process to just before the remounting of the
root file system with the read-write mode. Phase 2 is the
time that elapses from the end of Phase 1 to just after the
completion of all the booting scripts (/etc/rc3.d/S* files).

nel source directory after executing “make vmlinux” and
“rm vmlinux”. The link operation requires a high com-
putational overhead and small reads that inspect the mod-
ification date of the source files. However, ASP+MSP
outperforms SEQPs by at least 10%.

Figure 13 shows the Linux booting speed. The Linux
booting consists of partially random reads for scattered
applications and script files. We partitioned the booting
sequence into two phases. Phase 1 shown in Fig. 13 is
the time that elapses from just before the running of the
“init” process to just before the remounting of the root
file system in read-write mode. Phase 2 is the time that
elapses from the end of Phase 1 to just after the comple-
tion of all the booting scripts (/etc/rc3.d/S* files).

Phase 1 consists of CPU-bounded operations rather
than I/O-bounded operations. Hence, the gain of ASP
is small. Phase 2, on the other hand, requires I/O
bounded operations. Because Linux booting does not
produce multiple concurrent reads and consequently
causes no independency loss, the best scheme for
the Linux booting is ASP+MSP+SEQP128 rather than
ASP+MSP. However, the performance gap is negligible.
In Phase 2, ASP+MSP outperforms SEQP128 by 46%
and SEQP512 by 34%.

4 Conclusion
We introduced five prefetching problems for striped disk
arrays in Section 1.1. The five problems are resolved by
our scheme as follows: ASP (1) resolves independency
loss by aligning the read request in strips that are not laid
across disks, (2) resolves parallelism loss by combin-
ing with our earlier MSP scheme, which uses the stripe
size as the prefetch size to get parallelism only for small
numbers of concurrent sequential reads, (3) is beneficial
for non-sequential reads as well as sequential reads by
exploiting the principle of spatial locality, (4) resolves
the inefficient memory utilization of strip prefetching
through differential feedback that maximizes the total hit
rate in a given cache management scheme, (5) and us-
ing an online disk simulation, guarantees less I/O service
time than no prefetching.

From the results of Dbench and IOzone, we see that
SEQP suffers both parallelism loss and independent loss,
but ASP and ASP+MSP are free from them. Addition-
ally, the results of Dbench show that ASP efficiently
manages prefetched data. As a result, the sum of the
prefetch hit rate and cache hit rate is equal to or greater
than that of strip prefetching and no prefetching. The ex-
periments using Tiobench show that ASP has a low over-
head and wisely deactivates SP if SP is not beneficial to
the current workload. In the results of Dbench, ASP out-
performs SEQP128 by 2.3 times and a hardware RAID
controller (SRCU42X) by 11 times. The experimental
result with PCMark shows that ASP is 2 times faster than
SP due to the culling scheme. From the experiments us-
ing TPC-H, cscope, link, glimpse, and Linux booting,
we can perceive that many realistic workloads exhibit
high spatial locality. ASP+MSP is 8.1 times faster than
SEQP128 for the query four of TPC-H, and outperforms
SEQP by 2.2 times on average for the 12 queries of TPC-
H.

Among all the prefetching schemes and combinations
presented in this paper, ASP and ASP+MSP rank the
highest. We implemented a RAID driver with our
schemes in a Linux kernel. Our schemes have a low
overhead, and can be used in various RAID systems
ranging from entry-level to enterprise-class.

. B .
The source code of our RAID driver is downloadable

from http://core.kaist.ac.kr/dn/lore.dist.tgz, but you may vio-
late some patent rights belonging to KAIST if you commer-
cially use the code.

USENIX ’08: 2008 USENIX Annual Technical ConferenceUSENIX Association 375

References
[1] BAEK, S. H., KIM, B. W., JOUNG, E. J., AND PARK, C. W. Reliability

and performance of hierarchical RAID with multiple controllers. In Proc.
of the 20th ACM Symposium on Principles of Distributed Computing (Aug.
2001), pp. 246–254.

[2] BAEK, S. H., AND PARK, K. H. Massive stripe cache and prefetching
for massive file I/O. In Proc. of IEEE Int’l Conf. on Consumer Electronics
(Jan. 2007), pp. 5.3–5.

[3] BAEK, S. H., AND PARK, K. H. Maxtrix-stripe-cache-based contiguity
transform for fragmented writes in RAID-5. IEEE Trans. on Computers
56, 8 (Aug. 2007), 1040–1054.

[4] BHATTACHARYA, S., TRAN, J., SULLIVAN, M., AND MASON, C. Linux
AIO performance and robustness for enterprise workloads. In Proc. of
Linux Symposium (July 2004), pp. 63–78.

[5] BLAUM, M., BRADY, J., AND MENON, J. EVENODD: An efficient
scheme for tolerating double disk failures in raid architectures. IEEE Trans.
on Computers 44, 2 (Feb. 1995), 192–201.

[6] CHANG, F., AND GIBSON, G. A. Automatic I/O hint generation through
speculative execution. In Proc. of the 3rd Symposium on Operating Systems
and Design and Implementation (Feb. 1999), pp. 1–14.

[7] CHEN, P. M., LEE, E. K., GIBSON, G. A., KATZ, R. H., AND PATTER-
SON, D. A. RAID: High-performance, reliable secondary storage. ACM
Computing Surveys 26, 2 (June 1994), 145–185.

[8] DING, X., JIANG, S., AND CHEN, F. A buffer cache management scheme
exploiting both temporal and spatial localities. ACM Trans. on Storage 3, 2
(June 2007).

[9] GILL, B. S. On multi-level exclusive caching: Offline optimality and why
promotions are better than demotions. In Proc. of the 6th USENIX Confer-
ence on File and Storage Technologies (Feb. 2008), pp. 49–65.

[10] GILL, B. S., AND BATHEN, L. A. D. AMP: Adaptive multi-stream
prefetching in a shared cache. In Proc. of the 5th USENIX Conf. on File
and Storage Technologies (2007).

[11] GILL, B. S., AND MODHA, D. S. SARC: Sequential prefetching in adap-
tive replacement cache. In Proc. of USENIX Annual Technical Conference
(Dec. 2005), pp. 293–308.

[12] GILL, B. S., AND MODHA, D. S. WOW: Wise ordering for wrties =
combining spatial and temporal locality in non-volatile caches. In Proc. of
USENIX Conf. File and Storage Technologies (2005), pp. 129–142.

[13] GRIFFIOEN, J., AND APPLETON., R. Reducing file system latency using
a predictive approach. In Proc. of USENIX Summer Technical Conf. (June
1994), pp. 197–208.

[14] GRIMSRUD, K. S., ARCHIBALD, J. K., AND NELSON, B. E. Multiple
prefetch adaptive disk caching. IEEE Trans. on Knowledge and Data En-
gineering 5, 1 (Feb. 1993), 88–103.

[15] HUANG, X.-M., LIN, C.-R., AND CHEN, M.-S. Design and performance
study of rate staggering storage for scalable video in a disk-array-based
video server. IEEE Trans. on Consumer Electronics 50, 4 (Nov. 2004),
1119–1129.

[16] HWANG, K., JIN, H., AND HO, R. S. Orthogonal striping and mirroring
in distributed RAID for I/O-centric cluster computing. IEEE Trans. on
Parallel and Distributed Systems 13, 1 (Jan. 2002), 26–44.

[17] IEC. Prefixes for binary multiples.

[18] JOSEPH, D., AND GRUNWALD, D. Prefetching using markov predictors.
IEEE Trans. on Computers 48, 2 (Feb. 1999), 121–133.

[19] KALLAHALLA, M., AND VARMAN, P. J. PC-OPT: Optimal offline
prefetching and caching for parallel I/O systems. IEEE Trans. on Com-
puters 51, 11 (Nov. 2002), 1333–1344.

[20] KENCHAMMANA-HOSEKOTE, D., HE, D., AND HAFNER, J. L. REO: A
generic RAID engine and optimizer. In Proc. of the 5th USENIX Conf. on
File and Storage Technologies (2007).

[21] KIM, S. H., ZHU, H., AND ZIMMERMANN, R. Zoned-RAID. ACM Trans.
on Storage 3, 1 (Mar. 2007).

[22] KIMBREL, T., TOMKINS, A., PATTERSON, R., BERSHAD, B., CAO, P.,
FELTEN, E., GIBSON, G., KARLIN, A., AND LI, K. A trace-driven com-
parison of algroithms for parallel prefetching and caching. In Proc. of the
2nd Symposium on Operating Systems Design and Implementation (Oct.
1996).

[23] KROEGER, T. M., AND LONG, D. D. E. Design and implementation of a
predictive file prefetching algorithm. In Proc. of the 2001 USENIX Annual
Technical Conference (June 2001), pp. 105–118.

[24] KUOPPALA, M. Threaded I/O bench for Linux, 2002.

[25] LEI, H., AND DUCHAMP, D. An analytical approach to file prefetching.
In Proc. of the 1997 USENIX Annual Technical Conference (Jan. 1997).

[26] LI, M., VARKI, E., BHATIA, S., AND MERCHANT, A. TaP: Table-based
prefetching for storage caches. In Proc. of the 6th USENIX Conference on
File and Storage Technologies (Feb. 2008), pp. 81–96.

[27] LIM, S.-H., JEONG, Y.-W., AND PARK, K. H. Interactive media server
with media synchronized raid storage system (nossdav). In Proc of Int’l
Workshop on Network and Operating System Support for Digital Audio
Video (June 2005), pp. 177–182.

[28] MANBER, U., AND WU, S. GLIMPSE: A tool to search through entire
file systems. In Proc. of USENIX Winter 1994 Technical Conference (San
Fransisco, CA, USA, 1994), pp. 23–32.

[29] MEGIDDO, N., AND MODHA, D. S. ARC: A self-tuning, low overhead
replacement cache. In Proc. of USENIX Conf. on File and Storage Tech-
nologies (Mar. 2003), pp. 115–130.

[30] MEMIK, G., MANGIONE-SMITH, W. H., AND HU, W. NetBench: A
benchmarking suite for network processors. In Proc. IEEE/ACM Int’l Conf.
Computer-Aided Design (ICCAD’01) (2001), pp. 39–43.

[31] NIEMELÄ, S. PCMarkr05 PC Performance Analysis (white paper). Fu-
turemark Corporation, June 2005.

[32] NORCUTT, W. The IOzone filesystem benchmark, 2007.

[33] PALMER, M., AND ZDONIK, S. B. Fido: A cache that learns to fetch.
In Proc. of the 17th International Conf. on Very Large Data Bases (Sept.
1991), pp. 255–264.

[34] PARK, C.-I. Efficient placement of parity and data to tolerate two disk
failures in disk array systems. IEEE Trans. on Parallel and Distributed
Systems 6, 11 (Nov. 1995), 1177–1184.

[35] PATTERSON, R. H., GIBSON, G. A., GINTING, E., STODOLSKY, D.,
AND ZELENKA, J. Informed prefetching and caching. In Proc. of the 15th
Symp. on Operating System Principles (Dec. 1995), pp. 79–95.

[36] SCHINDLER, J., SCHOLSSER, S. W., SHAO, M., AILAMAKI, A., AND

GANGER, G. R. Atropos: A disk array volume manager for orchestrated
use of disks. In Proc. of the 6th USENIX Conference on File and Storage
Technologies (Mar. 2004), pp. 159–172.

[37] SHARPE, R. Just what is SMB?, 2002.

[38] STEFFEN, J. L. Interactive examination of a C program with cscope. In
Proc. of USENIX Winter 1985 Technical Conference (1985), pp. 170–175.

[39] THE RAID ADVISORY BOARD. The RAIDBook: A Source Book for RAID
Technology sixth edition. Lino Lakes MN, 1999.

[40] THOMASIAN, A. Multilevel RAID disk arrays. In Proc. of the 23rd
IEEE/14th NASA Goddard Conf. on Mass Storage Systems and Technolo-
gies (May 2006).

[41] TIAN, L., FENG, D., JIANG, H., ZHOU, K., ZENG, L., CHEN, J., WANG,
Z., AND SONG, Z. PROC: A popularity-based multi-threaded reconstruc-
tion optimization for RAID-structured storage systems. In Proc. of the 5th
USENIX Conf. on File and Storage Technologies (2007).

[42] TOMKINS, A., PATTERSON, R. H., AND GIBSON, G. Informed multi-
process prefetching and caching. In Proc. of the 1997 ACM Int’l Conf. on
Measurement and Modeling of Computer Systems (June 1997), pp. 100–
114.

[43] VIEIRA, M., AND MADEIRA, H. A dependability benchmark for OLTP
application environments. In Proc. of the 29th Int’l. Conf. on Very Large
Data Bases (2003).

[44] VITTER, J. S., AND KRISHNAN, P. Optimal prefetching via data compres-
sion. Joural of the ACM 43, 5 (Sept. 1996), 771–793.

[45] WEDDLE, C., OLDHAM, M., QIAN, J., WANG, A.-I. A., AND KUEN-
NING, G. PARAID: A gear-shifting power-aware RAID. In Proc. of the
5th USENIX Conf. on File and Storage Technologies (2007).

[46] WIKES, J., GOLDING, R., STAELIN, C., AND SULLIVAN, T. The HP
AutoRAID hierarchical storage system. ACM Trans. on Computer Systems
14, 1 (Feb. 1996), 108–136.

[47] ZHANG, G., SHU, J., XUE, W., AND ZHENG, W. SLAS: An efficient
approach to scaling round-robin striped volumes. ACM Trans. on Storage
3, 1 (Mar. 2007).

[48] ZHU, Y., AND JIANG, H. RACE: A robust adaptive caching strategy for
buffer cache. IEEE Tran. Computers 57, 1 (Jan. 2008), 25–40.

USENIX ’08: 2008 USENIX Annual Technical Conference USENIX Association376

