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Abstract

Loopy propagation provides for approximate reasoning with Bayesian networks. In pre-
vious research, we distinguished between two different types of error in the probabilities
yielded by the algorithm; the cycling error and the convergence error. Other researchers
analysed an equivalent algorithm for pairwise Markov networks. For such networks with
just a simple loop, a relationship between the exact and the approximate probabilities was
established. In their research, there appeared to be no equivalent for the convergence er-

ror, however. In this paper, we indicate that the convergence error in a Bayesian network
is converted to a cycling error in the equivalent Markov network. Furthermore, we show
that the prior convergence error in Markov networks is characterised by the fact that the
previously mentioned relationship between the exact and the approximate probabilities
cannot be derived for the loop node in which this error occurs.

1 Introduction

A Bayesian network uniquely defines a joint
probability distribution and as such provides
for computing any probability of interest over
its variables. Reasoning with a Bayesian net-
work, more specifically, amounts to comput-
ing (posterior) probability distributions for the
variables involved. For networks without any
topological restrictions, this reasoning task is
known to be NP-hard (Cooper 1990). For net-
works with specific restricted topologies, how-
ever, efficient algorithms are available, such as
Pearl’s propagation algorithm for singly con-
nected networks. Also the task of computing
approximate probabilities with guaranteed error
bounds is NP-hard in general (Dagum and Luby
1993). Although their results are not guaran-
teed to lie within given error bounds, various ap-
proximation algorithms are available that yield
good results on many real-life networks. One of
these algorithms is the loopy-propagation algo-
rithm. The basic idea of this algorithm is to ap-
ply Pearl’s propagation algorithm to a Bayesian
network regardless of its topological structure.
While the algorithm results in exact probabil-

ity distributions for a singly connected network,
it yields approximate probabilities for the vari-
ables of a multiply connected network. Good
approximation performance has been reported
for this algorithm (Murphy et al 1999).

In (Bolt and van der Gaag 2004), we stud-
ied the performance of the loopy-propagation
from a theoretical point of view and argued that
two types of error may arise in the approximate
probabilities yielded by the algorithm: the cy-
cling error and the convergence error. A cycling
error arises when messages are being passed
on within a loop repetitively and old informa-
tion is mistaken for new by the variables in-
volved. A convergence error arises when mes-
sages that originate from dependent variables
are combined as if they were independent.

Many other researchers have addressed the
performance of the loopy-propagation algo-
rithm. Weiss and his co-workers, more specif-
ically, investigated its performance by study-
ing the application of an equivalent algorithm
on pairwise Markov networks (Weiss 2000, and
Weiss and Freeman 2001). Their use of Markov
networks for this purpose was motivated by the
relatively easier analysis of these networks and



justified by the observation that any Bayesian
network can be converted into an equivalent
pairwise Markov network. Weiss (2000) derived
an analytical relationship between the exact and
the computed probabilities for the loop nodes
in a network including a single loop. In the
analysis of loopy propagation in Markov net-
works, however, no distinction between differ-
ent error types was made, and on first sight
there is no equivalent for the convergence er-
ror. In this paper we investigate this difference
in results; we do so by constructing the simplest
situation in which a convergence error may oc-
cur, and analysing the equivalent Markov net-
work. We find that the convergence error in
the Bayesian Markov network is converted to a
cycling error in the equivalent Markov network.
Furthermore, we find that the prior convergence
error in Markov networks is characterised by the
fact that the relationship between the exact and
the approximate probabilities, as established by
Weiss, cannot be derived for the loop node in
which this error occurs.

2 Bayesian Networks

A Bayesian network is a model of a joint prob-
ability distribution Pr over a set of stochas-
tic variables V, consisting of a directed acyclic
graph and a set of conditional probability dis-
1. Each variable A is represented by
a node A in the network’s digraph?. (Condi-
tional) independency between the variables is
captured by the digraph’s set of arcs accord-
ing to the d-separation criterion (Pearl 1988).
The strength of the probabilistic relationships
between the variables is captured by the con-
ditional probability distributions Pr(A | p(A)),
where p(A) denotes the instantiations of the
parents of A. The joint probability distribution

tributions

Variables are denoted by upper-case letters (A), and
their values by indexed lower-case letters (a;); sets of
variables by bold-face upper-case letters (A) and their
instantiations by bold-face lower-case letters (a). The
upper-case letter is also used to indicate the whole range
of values of a variable or a set of variables.

2The terms node and variable will be used inter-
changeably.

is presented by

Pr(V) = ] Pr(4|p(A))
AeV

For the scope of this paper we assume all vari-
ables of a Bayesian network to be binary. We
will often write a for A = a7 and a for A = as.
Fig. 1 depicts a small binary Bayesian network.

e Pr(a) ==

(c|ab) =7 Pr(h | a) =
Pric | ab) = s O Préb aizﬁ
Pr(c|ab) =t
Pr(c|ab) =u @

Figure 1: An example Bayesian network.

A multiply connected network includes one or
more loops. We say that a loop is simple if none
of its nodes are shared by another loop. A node
that has two or more incoming arcs on a loop
will be called a convergence node of this loop.
Node C is the only convergence node in the net-
work from Fig. 1. Pearl’s propagation algorithm
(Pearl 1988) was designed for exact inference
with singly connected Bayesian networks. The
term loopy propagation used throughout the lit-
erature, refers to the application of this algo-
rithm to networks with loops.

3 The Convergence Error in
Bayesian Networks

When applied to a singly connected Bayesian
network, Pearl’s propagation algorithm results
in exact probabilities. When applied to a multi-
ply connected network, however, the computed
probabilities may include errors.
work we distinguished between two different
types of error (Bolt and van der Gaag 2004).
The first type of error arises when messages
are being passed on in a loop repetitively and
old information is mistaken for new by the vari-
ables involved. The error that thus arises will
be termed a cycling error. A cycling error can
only occur if for each convergence node of a loop
either the node itself or one of its descendents
is observed. The second type of error originates
from the combination of causal messages by the

In previous



convergence node of a loop. A convergence node
combines the messages from its parents as if the
parents are independent. They may be depen-
dent, however, and by assuming independence,
a convergence error may be introduced. A con-
vergence error may already emerge in a network
in its prior state. In the sequel we will denote
the probabilities that result upon loopy prop-
agation with Pr to distinguish them from the
exact probabilities which are denoted by Pr.

Moreover, we studied the prior convergence
error. Below, we apply our analysis to the ex-
ample network from Figure 1. For the network
in its prior state, the loopy-propagation algo-
rithm establishes

Pr(c) = Y _ Pr(c| AB) - Pr(A) - Pr(B)

A,B

as probability for node C'. Nodes A and B, how-
ever, may be dependent and the exact probabil-
ity Pr(c) equals

Pr(c) =Y Pr(c| AB)-Pr(B | A) - Pr(A)

A,B

The difference between the exact and approxi-
mate probabilities is

Pr(c)—Pr(c) =z -y- 2z
where
= Pr(c|ab) —Pr(c| ab) — Pr(c | ab) + Pr(c| ab)

= Pr(b|a)—Pr(b]|a)
= Pr(a)— Pr(a)®

ISENS I

The factors that govern the size of the prior
convergence error in the network from Figure 1,
are illustrated in Figure 2; for the construction
of this figure we used the following probabilities:
r=1,s=0,t=0,u=1,p=04,¢g=0.1 and
x = 0.5. The line segment captures the exact
probability Pr(c) as a function of Pr(a); note
that each specific Pr(a) corresponds with a spe-
cific Pr(b). The surface captures Pr(c) as a func-
tion of Pr(a) and Pr(b). The convergence error
equals the distance between the point on the

Pr(c)
0.65
0.5

Figure 2: The probability of ¢ as a function of
Pr(a) and Pr(b), assuming independence of the
parents A and B of C (surface), and as a func-
tion of Pr(a) (line segment).

line segment that matches the probability Pr(a)
from the network and its orthogonal projection
on the surface. For Pr(a) = 0.5, more specif-
ically, the difference between Pr(c) and ﬁ(c)
is indicated by the vertical dotted line segment
and equals 0.65 — 0.5 = 0.15. Informally speak-
ing:

e the more curved the surface is, the larger
the distance between a point on the line
segment and its projection on the surface
can be; the curvature of the surface is re-
flected by the factor x;

e the distance between a point on the seg-
ment and its projection on the surface de-
pends on the orientation of the line seg-
ment; the orientation of the line segment is
reflected by the factor y;

e the distance between a point on the line
segment and its projection on the surface
depends its position on the line segment;
this position is reflected by the factor z.

We recall that the convergence error originates
from combining messages from dependent nodes
as if they were independent. The factors y and
z now in essence capture the degree of depen-
dence between the nodes A and B; the factor x
indicates to which extent this dependence can
affect the computed probabilities.



4 Markov Networks

Like a Bayesian network, a Markov network
uniquely defines a joint probability distribu-
tion over a set of statistical variables V. The
variables are represented by the nodes of an
undirected graph and (conditional) indepen-
dency between the variables is captured by the
graph’s set of edges; a variable is (conditionally)
independent of every other variable given its
Markov blanket. The strength of the probabilis-
tic relationships is captured by clique potentials.
Cliques C' are subsets of nodes that are com-
pletely connected; UC' = V. For each clique, a
potential function ¥ (A¢) is given that assigns
a non-negative real number to each configura-
tion of the nodes A of C. The joint probability
is presented by:

Pr(V) = 1/Z - [[ ¢e(Ac)
c

where Z = Y v [[o%c(Ac) is a normalising
factor, ensuring that ) y, Pr(V) = 1. A pair-
wise Markov network is a Markov network with
cliques of maximal two nodes.

For pairwise Markov networks, an algorithm
can be specified that is functionally equivalent
to Pearl’s propagation algorithm (Weiss 2000).
In this algorithm, in each time step, every node
sends a probability vector to each of its neigh-
bours. The probability distribution of a node is
obtained by combining the steady state values
of the messages from its neighbours.

In a pairwise Markov network, the transition
matrices MAB and M B4 can be associated with
any edge between nodes A and B.

MP = (A =a;, B =1b))

Note that matrix M B4 equals M ABT

Example 1 Suppose we have a Markov net-
work with two binary nodes A and B, and
suppose that f_or this network the pote_ntials
¥(ab) = p, Y(ab) = g, ¥(ab) = r and Y(ab) = s
are specified, as in Fig. 3 . We then as-
V% T

;L]
with the link from A to B and its transpose
MBA = { f Z ] with the link from B to A. O

sociate the transition matrix M4E =

Figure 3: An example pairwise Markov network
and its transition matrices.

The propagation algorithm now is defined
as follows. The message from A to B equals
MAB .y after normalisation, where v is the vec-
tor that results from the component wise mul-
tiplication of all message vectors sent to A ex-
cept for the message vector sent by B. The
procedure is initialised with all message vectors
set to (1,1,...,1). Observed nodes do not re-
ceive messages and they always transmit a vec-
tor with 1 for the observed value and zero for
all other values. The probability distribution for
a node, is obtained by combining all incoming
messages, again by component wise multiplica-
tion and normalisation.

5 Converting a Bayesian Network
into a Pairwise Markov Network

In this section, the conversion of a Bayesian net-
work into an equivalent pairwise Markov net-
work is described (Weiss 2000). In the con-
version of the Bayesian network into a Markov
network, for any node with multiple parents,
an auxiliary node is constructed into which the
common parents are clustered. This auxiliary
node is connected to the child and its parents
and the original arcs between child and parents
are removed. Furthermore, all arc directions in
the network are dropped. The clusters are all
pairs of connected nodes. For a cluster with an
auxiliary node and a former parent node, the
potential is set to 1 if the nodes have a simi-
lar value for the former parent node and to 0
otherwise. For the other clusters, the potentials
are equal to the conditional probabilities of the
former child given the former parent. Further-
more, the prior probability of a former root node
is incorporated by multiplication into one of the
potentials of the clusters in which it takes part.



W(ab) = pz
w(ab) = (1 - p)a
w(ab) = q(1 — o)

P(a,a’d’) =1 - P(b,a'b') =1
WlayaB) = 1 p(ab) = (1 - q)(1 — x) Wb, a'b') = 0
Y¥(a,a’b’) =0 Y(b,a’t’) =1
P(a,a’d’) =0 A P(b,a’d’) =0
P(a,a’d’) =0 P(b,a’b’) =0
(@, a'b) =0 Y(b,a'd’) =1
P(a,a’d’) =1 @ P(b,a’b’) =0
P(a,a’d’) =1 P(b,a’d’) =1
X

P(a'b,c)=r P(a’d’,e) = (1—-7r)
P(a'b,c) =s Y(a'b,e) = (1—s)

P(@'v',e) = (1-t)

PY(@'v',c) =t
P(@'d,c) =u @
Figure 4: A pairwise Markov network that rep-

resents the same joint probability distribution
as the Bayesian network from Figure 1.

Y@'b',e)=(1-wu)

Example 2 The Bayesian network from Figure
1 can be converted into the pairwise Markov
network from Figure 4 with clusters AB, AX,
BX and XC. Node X is composed of A’ and
B’ and has the values a'b/, a'b/, @b and a'¥t'.
Given that the prior probability of root node
A is incorporated in the potential of cluster
AB, the network has the following potentials:
W(AB) = Pr(B | A)-Pr(A); $(XC) = Pr(C |
AB): Y(AX) =1if A’ = A and 0 otherwise
and; ¢ (BX) =1 if B = B and 0 otherwise.

6 The Analysis of Loopy
Propagation in Markov Networks

Weiss (2000) analysed the performance of the
loopy-propagation algorithm for Markov net-
works with a single loop and related the approx-
imate probabilities found for the nodes in the
loop to their exact probabilities. He noted that
in the application of the algorithm messages
will cycle in the loop and errors will emerge
as a result of the double counting of informa-
tion. The main idea of his analysis is that for a
node in the loop, two reflexive matrices can be
derived; one for the messages cycling clockwise
and one for the messages cycling counterclock-
wise. The probability distribution computed by
the loopy-propagation algorithm for the loop
node in the steady state, now can be inferred
from the principal eigenvectors of the reflexive

matrices plus the other incoming vectors. Sub-
sequently, he showed that the reflexive matrices
also include the exact probability distribution
and used those two observations to derive an an-
alytical relationship between the approximated
and the exact probabilities.

Figure 5: An example Markov network with just
one loop.

More in detail, Weiss considered a Markov
network with a single loop with n nodes L'...L™
and with connected to each node in the loop,
an observed node O'...O™ as shown in Figure 5.
During propagation, a node O! will constantly
send the same message into the loop. This vec-
tor is one of the columns of the transition ma-
trix MO'L" In order to enable the incorporation
of this message into the reflexive matrices, this
vector is transformed into a diagonal matrix D?,
with the vector elements on the diagonal. For

example, suppose that MO'F = {p T} and

q s
suppose that the observation O = o} is made,

then D' = [g 2 } Furthermore, M! is the

transition matrix for the message from L' to
L2 and M1" the transition matrix for the mes-
sage from L? to L' etc. The reflexive matrix
C for the transition of a counterclockwise mes-
sage from node L' back to itself is defined as
MY D2 M1 Dr M DL The message that
L? sends to L' in the steady state now is in
the direction of the principal eigenvector of C.
The reflexive matrix C? for the transition of a
clockwise message from node L' back to itself
is defined as M"D"M" D" 1 _M!'D!. The
message that node L" sends to L! in the steady
state is in the direction of the principal eigen-
vector of C?. Component wise multiplication of



the two principal eigenvectors and the message
from O! to L', and normalisation of the result-
ing vector, yields a vector of which the com-
ponents equal the approximated values for L'
in the steady state. Furthermore, Weiss proved
that the elements on the diagonals of the re-
flexive matrices equal the correct probabilities
of the relevant value of L1 and the evidence, for
example, C1 1 equals Pr(l1,0). Subsequently, he
related the exact probabilities for a node A in
the loop to its approximate probabilities by

MPr(a;) + 32, PN Pyt
Pr(a;) = SN
j AN

in which P is a matrix that is composed of the
eigenvectors of C', with the principal eigenvector
in the first column, and Ay...); are the eigenval-
ues of the reflexive matrices, with A1 the max-
imum eigenvalue. We note that from this for-
mula it follows that correct probabilities will be
found if A\; equals 1 and all other eigenvalues
equal 0.

In the above analysis, all nodes O are con-
sidered to be observed. Note that given unob-
served nodes outside the loop, the analysis is
essentially the same. In that case a transition

matrix ML = { g g ] will result in the diag-

p+r 0
0 q+s |’

(1)

onal matrix D = {

7 The Convergence Error in Markov
Networks

As discussed in Section 3 in Bayesian networks,
a distinction could be made between the cycling
error and the convergence error. In the previ-
ous section it appeared that for Markov network
such a distinction does not exist. All errors re-
sult from the cycling of information and, on first
sight, there is no equivalent for the convergence
error. However, any Bayesian network can be
converted into an equivalent pairwise Markov
network on which an algorithm equivalent to
the loopy-propagation algorithm can be used.
In this section, we investigate this apparent in-
compatibility of results and indicate how the
convergence error yet is embedded in the anal-
ysis of loopy propagation in Markov networks.

We do so by constructing the simplest situation
in which a convergence error may occur, that is,
the Bayesian network from Figure 1 in its prior
state, and analysing this situation in the equiv-
alent Markov network. The focus thereby is on
the node that replaces the convergence node in
the loop. We then argue that the results have a
more general validity.

Consider the Bayesian network from Fig-
ure 1. In its prior state, there is no cy-
cling of information, and exact probabilities
will be found for nodes A and B. In node
C, however, a convergence error may emerge.
The network can be converted into the pair-
wise Markov network from Figure 4. For
this network we find the transition matrices

XA __ 1 1 0 0 XB __ 1 0 1 0
M= = { 00 1 1 ]’ M=E = { 010 1 },

xXc _ T s t U AB
M = l1-r 1-s 1-t 1-u | M -
{ (1 f:;)x (1 E(]l))zlx_) 2) ] and their transposes.

In the prior state of the network, C' will send the
message MCX . (1,1) = (1,1,1,1) to X. In or-
der to enable the incorporation of this message
into the reflexive loop matrices it is transformed
into DX which, in this case, is the 4x4-identity
matrix.

We first evaluate the performance of the loopy
propagation algorithm for the regular loop node
A. This node has the following reflexive matri-
ces for its clockwise and counterclockwise mes-
sages respectively:

MOA — XA . pCX  \yBX gaB_ | T l-w
T 1—-2

with eigenvalues 1 and 0 and principal eigenvec-
tor (1,1) and

T xT

MOA — \pBA. pfXB . pOX AX _
1—=x 1—=x

with eigenvalues 1 and 0 and principal eigenvec-
tor (z,1—x). Note that the correct probabilities
for node A indeed are found on the diagonal of
the reflexive matrices. Furthermore, Ay = 1 and
Ao = 0 and therefore correct approximations are



expected. We indeed find that the approxima-
tions (1-x,1-(1 —z)) equal the exact probabil-
ities. Note also that, as expected, the messages
from node A back to itself do not change any
more after the first cycle. As in the Bayesian
network, for node A no cycling of information
occurs in the Markov network. For node B a
similar evaluation can be made.

We now turn to the convergence node C. In
the Bayesian network in its prior state a conver-
gence error may emerge in this node. In the con-
version of the Bayesian network into the Markov
network, the convergence node C' is placed out-
side the loop and the auxiliary node X is added.
For X, the following reflexive matrices are com-
puted for the clockwise and counterclockwise
messages from node X back to itself respec-
tively:

MOX _ MBX X MAB X MXA X DCX —

pT pT q(1 —xz) q(1 —xz)
1-pz (A-pz (A-90-z) (A-91—-=z)

pT pT q(1 —xz) q(1 —z)
l-pz (A-pz (A-qgl-=z) 1-q(l—2)

with eigenvalues 1, 0, 0, 0; principal eigenvector
((pr+q(1—2))/(1-p)z+(1—-q)(1-2)),1, (pr+
a(1 — 2)/((1 = p)a + (1 — )1 — 2)),1) and
other eigenvectors (0,0,—1,1), (=1,1,0,0) and
(0,0,0,0).

MOX — AfAX | ayBA . AfXB . CX _

pT (1-p)z pT (I1-p)z

pT (1-p)z pT (I-p)z
gl—z) (Q-q)l—-2) ql-2z) (1-q(1—-mx)
gl-z) (Q-91-2) q1l-2z) @Q-91-2)

with eigenvalues 1, 0, 0, 0; principal eigenvector
(x/(1—x),x/(1—x),1,1) and other eigenvectors
(0,—1,0,1), (—1,0,1,0) and (0,0,0,0).

On the diagonal of the reflexive matrices of X
we find the probabilities Pr(AB). As the correct
probabilities for a loop node are found on the
diagonal of its reflexive matrices, these probabil-
ities can be considered to be the exact probabil-
ities for node X. The normalised vector of the
component wise multiplication of the principal
eigenvectors of the two reflexive matrices of X
equals the vector with the normalised probabil-
ities Pr(A)-Pr(B). Likewise, these probabilities
can be considered to be the approximate prob-
abilities for node X.

A first observation is that A1 equals 1 and the
other eigenvalues equal 0, but the exact and the
approximate probabilities of node X may differ.
This is not consistent with Equation 1. The ex-
planation is that for node X, the matrix P, is
singular and therefore, the matrix P~!, which
is needed in the derivation of the relationship
between the exact and approximate probabili-
ties, does not exist. Equation 1, thus isn’t valid
for the auxiliary node X. We note furthermore
that the messages from node X back to itself
may still change after the first cycle. We there-
fore find that, although in the Bayesian network
there is no cycling of information, in the Markov
network, for node X information may cycle, re-
sulting in errors computed for its probabilities.

The probabilities computed by the loopy-
propagation algorithm for node C equal the nor-
malised product MXC .- v, where v is the vec-
tor with the approximate probabilities found at
node X. It can easily be seen that these ap-
proximate probabilities equal the approximate
probabilities found in the equivalent Bayesian
network. Furthermore we observe that if node
X would send its exact probabilities, that is,
Pr(AB), exact probabilities for node C' would
be computed. In the Markov network we
thus may consider the convergence error to be
founded in the cycling of information for the
auxiliary node X.

In Section 3, a formula for the size of the prior
convergence error in the network from figure 1
is given. We there argued that this size is de-
termined by the factors y and z that capture
the degree of dependency between the parents
of the convergence node and the factor z, that
indicates to which extent the dependence be-
tween nodes A and B can affect the computed
probabilities. In this formula, = is composed
of the conditional probabilities of node C. In
the analysis in the Markov network we have a
similar finding. The effect of the degree of de-
pendence between A and B is reflected in the
difference between the exact and the approxi-
mate probabilities found for node X. The ef-
fect of the conditional probabilities at node C
emerges in the transition of the message vector
from X to C.



We just considered the small example net-
work from Figure 1. Note, however, that for
any prior binary Bayesian networks with just
simple loops, the situation for any loop can be
’summarised’ to the situation in Figure 1 by
marginalisation over the relevant variables. The
results with respect to the manifestation of the
convergence error by the cycling of information
and the invalidity of Equation 1 for the auxil-
iary node, found for the network from Figure
1, therefore, apply to any prior binary Bayesian
networks with just simple loops.3*

8 Discussion

Loopy propagation refers to the application of
Pearl’s propagation algorithm for exact reason-
ing with singly connected Bayesian networks to
networks with loops. In previous research we
identified two different types of error that may
arise in the probabilities computed by the algo-
rithm. Cycling errors result from the cycling of
information and arise in loop nodes as soon as
for each convergence node of the loop, either the
node itself, or one of its descendents is observed.
Convergence errors result from combining infor-
mation from dependent nodes as if they were in-
dependent and may arise at convergence nodes.
This second error type is found both in a net-
work’s prior and posterior state. Loopy prop-
agation has also been studied by the analysis
of the performance of an equivalent algorithm
in pairwise Markov networks with just a simple
loop. According to this analysis all errors result
from the cyling of information and on first sight
there is no equivalent for the convergence error.
We investigated how the convergence error yet is
embedded in the analysis of loopy propagation
in Markov networks. We did so by constructing
the simplest situation in which a convergence
error may occur, and analysing this situation in
the equivalent Markov network. We found that
the convergence error in the Bayesian network

3Given a loop with multiple convergence nodes, in the
prior state of the network, the parents of the convergence
nodes are independent and effectively no loop is present.

4Two loops in sequence may result in incorrect proba-
bilities entering the second loop. The reflexive matrices,

however, will have a similar structure as the reflexive
matrices derived in this section.

is converted to a cycling error in the equivalent
Markov network. Furthermore, we found that
the prior convergence error is characterised by
the fact that the relationship between the exact
probabilities and the approximate probabilities
yielded by loopy propagation, as established by
Weiss, can not be derived for the loop node in
which this error occurs. We then argued that
these results are valid for binary Bayesian net-
work with just simple loops in general.
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