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ABSTRACT

Many data sources are naturally modeled by multiple weight a
signments over a set of keys: snapshots of an evolving dsgaba
at multiple points in time, measurements collected overtiplal
time periods, requests for resources served at multiplatitots,
and records with multiple numeric attributes. Over suchtarec
weighted data we are interested in aggregates with respectet
set of weights, such as weighted sums, and aggregates oiter mu
ple sets of weights such as the difference.

Sample-based summarization is highly effective for datsitbat
are too large to be stored or manipulated. The summaryttei
approximate processing queries that may be specified h&eum-
mary was generated. Current designs, however, are gearedtéo
sets where a singkecalarweight is associated with each key.

We develop a sampling framework basecdtoordinated weighted
sampleghat is suited for multiple weight assignments and obtain
estimators that arerders of magnitude tightehan previously pos-
sible. We demonstrate the power of our methods through an ex-
tensive empirical evaluation on diverse data sets rangom 1P
network to stock quotes data.

We distinguish between data sources withlocatedor dispersed
weights. A data source hafispersed weightsif entries of the
weight vector of each key occur in different times or locasio(i)
Snapshots of a database that is modified over time (eachtstaps
is a weight assignment, where the weight of a key is the valae o
numeric attribute in a record with this key.) (ii) measureseof
a set of parameters (keys) in different time periods (wedgisign-
ments). (iii) number of requests for different objects &epro-
cessed at multiple servers (weight assignments). A datesdas
co-located weightswhen a complete weight vector is “attached”
to each key: (i) Records with multiple numeric attributestsas
IP flow records generated by a statistics module at an IP route
where the attributes are the number of bytes, number of pgcke
and unit. (i) Document-term datasets, where keys are deatsn
and weight attributes are terms or features (The weightevaflia
term in a document can be the respective number of occusgnce
(i) Market-basket datasets, where keys are baskets arghta-
tributes are goods (The weight value of a good in a basketeds b
multiplicity). (iv) Multiple numeric functions over one {(anore)
numeric measurement of a parameter. For example, for neasur
mentz we might be interested in both first and second moments, in
which case we can use the weight assignmersadz?.

1. INTRODUCTION A very useful common type of query involves properties siib-

Many business-critical applications today are based censite populationof the monitored data that aselditiveover keys. These
use of computing and communication network resources. €rhes aggregates can be broadly categorized as S{agle-assignment
systems are instrumented to collect a wide range of diffeygres aggregates, defined with respect to a single attribute, aadhe
of data. Examples include performance or environmentaborea weighted sum or selectivity of a subpopulation of the keys.e&-
ments, traffic traces, routing updates, or SNMP traps in ametP ample over IP flow records is the total bytes of all IP traffi¢hwi
work, and transaction logs, system resource (CPU, memsggeu a certain destination Autonomous System [21, 1, 34, 12, {3].
statistics, service level end-end performance statigticGn end- Multiple-assignmentiggregates include similarity or divergence met-
service infrastructure. Retrieval of useful informatiaworh this rics such as thé,; difference between two weight assignments or
vast amount of data is critical to a wide range of compellipglia maximum/minimum weight over a subset of assignments [33, 18
cations including network and service management, trathiolet- 7, 17]. Figure 1 (A) shows an example of three weight assigiise
ing and root cause analysis, capacity provisioning, sgcuand over a set of keys and key-wise values for multiple-assigrirag-
sales and marketing. gregates including the minimum or maximum value of a key over

Many of these data sources produce data sets consisting of nu subset of assignments and the distance. The aggregate value

meric vectors \{eight vectors associated with a set of identifiers

(keys or equivalently as a set @feight assignmentsverkeys Ag-
gregates over the data are specified using this abstraction.
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scanner activity. A network security application mightckathe variance and be biased. Another approach is to concurreoihy

increase in traffic to a customer site that originates fronergam pute multiple weighted samples, one for each assignmerthign

suspicious network or geographic area. case, single-assignment aggregates can be computed eves-th
Exact computation of such aggregates can be prohibitieslgurce- spective sample but no unbiased estimators for multipdéggament

intensive: Data sets are often too large to be either stanelbiig aggregates were known. Moreover, such a summary is wagteful

time periods or to be collated across many locations. Comgut  terms of storage as different assignments are often ctece{auch

multiple-assignment aggregates may require gleaningrirdgton as number of bytes and number of IP packets of an IP flow).

across data sets from different times and locations. Westbier We consider summaries where the set of included keys embeds

aim at concise summaries of the data sets, that can be cainpute  a weighted sample with respect to each assignment. The ept-of

a scalable way and facilitate approximate query processing bedded samples can be independent or coordinated. Such-a sum

Sample-based summaries [31, 51, 6, 5, 9, 26, 27, 2, 20, 28, 13,mary can be computed in a scalable way by a stream algorithm or
22, 10, 14] are more flexible than other formats: they nalpral  distributively.

facilitate subpopulation queries by focusing on sampledkbat o \we derive estimators, which we refer to iaslusive estimators
are members of the subpopulation and are suitable when the ex ¢ ilize all keys included in the summary. An inclusiie

act query of interest .is not known .beforehand or when theee ar . 5ior of a single-assignment aggregate applied to a sumtiary
multiple attributes of interest. Existing methods, howeaee de-  gmpeds a certain weighted sample from that assignmentri-sig
signed for one set of weights and are either not applicablgeor jcantly tighter than an estimator directly applied to thebeaided
form poorly on multiple-assignment aggregates. sample. Moreover, inclusive estimators are applicable uttipte-
Contributions assignment aggregates, such asitie, max, and_L;.

e \We show that when the embedded samples are coordinated, the

We develop sample-based summarization framework for wecto o : R
number of distinct keys in the summary is minimized.

weighted data that supports efficient approximate aggmwatThe o . _ N
challenges differ between the dispersed and co-locate@imdde Empirical evaluation. We performed a comprehensive empirical

to the particular constraints imposed on scalable sumatioiz evaluation using IP packet traces, movies’ ratings dat@etNet-
flix Challenge [39]), and stock quotes data set. These ddta se

and queries also demonstrate potential applications. iBpedsed

data we achieverders of magnitudeeduction in variance over
previously-known estimators and estimators applied tejpesdent

weighted samples. The variance of these estimators is aivlpa
to the variance of a weighted sum estimator of a single weight
signment.

For co-located data, we demonstrate that the size of our com-
bined sample is significantly smaller than the sum of thessafe
independent samples one for each weight assignment. We also
demonstrate that even for single assignment aggregategstiu
mators which use the combined sample are much tighter tlean th
estimators that use only a sample for the particular assghm

Organization. The remainder of the paper is arranged as follows.
Section 2 reviews related work, Section 3 presents key lvaokg
concepts and Section 4 presents our sampling approacioséct
presents our estimators and Section 6 provides bounds aartihe
ance. Section 7 presents the evaluation results. Finalgtic 8

e Scalability: The processing of each assignment is a simple adap- concludes the paper. Details including derivations anafgroan

Dispersed weights model:A challenge is that any scalable algo-
rithm must decouple the processing of different assignsermbl-
lating dispersed-weights data to obtain explicit key/gesteight
representation is too expensive. Hence, processing of €sigra
ment can not depend on other assignments.

We propose summaries basedamordinated weighted samples
The summary contains a “classic” weighted sample taken rgith
spect to each assignment: we can tailor the sampling to lss@i
k-mins, or order (bottonk) sampling. In all three cases, sampling
is efficient on data streams, distributed data, and metiia [
11, 23, 12] and there are unbiased subpopulation weigmatirs
that have variance that decreases linearly or faster witlséimple
size [9, 22, 49, 13]. Order samples [42, 46, 43, 9, 13, 40,\2h,
the advantage of a fixed sample size, emerge as a better choice
Coordination loosely means that a key that is sampled under o
assignment is more likely to be sampled under other assignme
Our design has the following important properties:

tation of single-assignment weighted sampling algoriti@oordi- be found in [15].
nation is achieved by using the same hash function acrogmass
ments. 2. RELATED WORK

¢ Weighted sample for each assignmentOur design is especially ~ Sample coordination. Sample coordination was used in survey
appealing for applications where sample-based summangeala sampling for almost four decades\egative coordinatiorin re-

ready used, such as periodic (hourly) summaries of IP floarosc peated surveys was used to decrease the likelihood thatthe s
The use of our framework versus independent sampling ieriff  subject is surveyed (and burdened) multiple timBssitive coor-
ent periods facilitates support for queries on the relabicihe data dination was used to make samples as similar as possible when
across time periods. parameters change in order to reduce overhead. Coordiniatio
e Tight estimators: We provide a principled generic derivation of ~Obtained using the PRN (Permanent Random Numbers) method
estimators, tailor it to obtain tight unbiased estimatorstfie min, for Poisson samples [4] and order samples [45, 41, 43]. PRN re
max, andZL, and bound the variance. sembles our “shared-seed” coordination method. The ciggle

of massive data sets, however, are different from those megu
Colocated weights model: For colocated data, the full weight sampling and in particular, we are not aware of previousigtig

vector of each key is readily available to the summarizasiyo- unbiased estimators for multiple-assignment aggregatsamor-
rithm and can be easily incorporated in the summary. We discu  dinated weighted samples.
the shortcomings of applying previous methods to summahizse Coordination (of Poissork-mins, and order samples) was (re-

data. One approach is to sample records according to oneypart )introduced in computer science as a method to support gagre
weight assignment. Such a sample can be used to estimat aggr tions that involve multiple sets [6, 5, 9, 26, 27, 2, 13, 2§, ©bor-
gates that involve other assignments, but estimates maylaaye dination addressed the issue that independent samplefesedt



sets over the same universe provide weak estimators foipteult
set aggregates such as intersection size or similarityitively,
two large but almost identical sets are likely to have digjaide-
pendent samples — the sampling does not retain any infasmati
the relations between the sets.

This previous work, however, considered restricted wengbd-
els: uniform where all weights ar@/1, andglobal weightswhere
a key has the same weight value across all assignments vikere i
weight is strictly positive (but the weight can vary betwé&ys).
Allowing the same key to assume different positive weightdif-
ferent assignments is clearly essential for our applicatio

the application, may include corresponding key identifaard at-
tribute values.

When weights of keys are uniformkamins sample is the result
of k uniform draws with replacement, ordersamples aré: uni-
form draws without replacements, and Poissosamples are in-
dependent Bernoulli trials. The particular famfly matters when
weights are not uniform. Two families with special propestare:

e ExPranks:f,(z) = we™"* (Fy(z) = 1—e™ %) are exponentially-

distributed with parameten (denoted byexpP[w]). Equivalently,
if w € U[0,1] then —In(u)/w is an exponential random vari-

While these methods can be applied with general weights, by able with parametew. ExP[w] ranks have the property that the

ignoring weight values and performing coordinated unifaam-
pling, resulting estimators are weak. Intuitively, unifosampling
performs poorly on weighted data because it is likely to éeamt
keys with dominant weights. Weighted sampling, where kel w
larger weights are more likely to be represented in the sanipl
essential for boundable variance of weighted aggregates.
Sketches that are not samplesSketches that are neample based
[36, 7, 8, 47, 16, 32, 37, 17, 25] are effective point solwidor
particular metrics such as max-dominance [17]er[25] differ-
ence. Their disadvantage is less flexibility in terms of sujsul
aggregates and in particular, no support for aggregateselected
subpopulations of keys: we can estimate the ovdraltifference
between two time periods but we can not estimate the diféeren
restricted to a subpopulation such as flows to particulatirgson
or certain application. There is also no mechanism to oljtajn
resentatives” keys[48].

Bloom filters [3, 24] also support estimation of similaritetrics
but summary size is not tunable and grows linearly with thalner
of keys.

3. PRELIMINARIES

A weighted se{, w) consists of a set of keysand a function
w assigning a scalar weight valug(i) > 0 to each key € I. We
review components of sample-based summarizations of aweslg
set: sample distributions, respectisketchesthat in our context
are samples with some auxiliary information, and assowai-
justed weightsvith sampled keys that are used to answer weight
queries. Sample distributions are defined throtagidom rank as-
signmentd9, 43, 12, 22, 13, 14] that map each keyo a rank
valuer(z). The rank assignment is defined with respect to a family
of probability density functions.,, (w > 0), where eachr(i) is
drawn independently according fg;). We say thaf,, (w > 0)
aremonotonef for all w1 > ws, for all z, Fu, () > Fu,(x)
(whereF', are the respective cumulative distributions). For ajset
and a rank assignmentwe denote by-;(.J) theith smallest rank
of a key inJ, we also abbreviate and writ€.J) = r1(J).

e A PoissonT sample ofJ is defined with respect to a rank assign-
mentr. The sample is the set of keys witl;) < 7. The sample
hasexpectedizek = Y, F,,;) (7). Keys have independent inclu-
sion probabilities. The sketch includes the pdirs:), w(i)) and
may include key identifiers with attribute values.

e An order-k (bottom#) sample ofJ contains the: keysii, . .., ix
of smallest ranks /. The sketchs;,(J, ) consists of the: pairs
(r(iz),w(iz)), 5 = 1,...,k, andrey1(J). (If |J| < k we store
only |J] pairs.), and may include the key identifiersand addi-
tional attributes.

e A k-mins samplef J C I is produced fronk independent rank
assignmentsy™V ..., 7). The sample is the set of (at madst
keys) with minimum rank values™) (.J), ™ (J), ..., #®)(J).
The sketch includes the minimum rank values and, depending o

e IPPsranks: £, is the uniform distributior/[0, 1/w] (Fu(x)

minimum rankr(J) has distributionexpP[w(.J)], wherew(J)
> e, w(i) This property is useful for designing estimators and ef-
ficiently computing sketches [9, 11, 23, 12, 13]. THxenins sam-
ple [9] of a setis a sample drawvith replacemenin ik draws where

a key is selected with probability equal to the ratio of it3ghe and
the total weight. An ordek sample is the result d such draws
performedwithout replacementwvhere keys are selected according
to the ratio of their weight and the weight of remaining ke¥2,[
29, 43].

min{1, wz}). This is the equivalent to choosing rank valugw,
whereu € UJ0, 1]. The Poisson- sample is anPPssample [29]
(Inclusion Probability Proportional to Size). The ordesample is
a priority sample [40, 22]HRI).

Adjusted weights. A technique to obtain estimators for the weights
of keys is by assigning an adjusted weiglit) > 0 to each keyi

in the sample (adjusted weighti) = 0 is implicitly assigned to
keys not in the sample). The adjusted weights are assigrad su
that E[a(i)] = w(i), where the expectation is over the random-
ized algorithm choosing the sample. We refer to the (randaria v
able) that combines a weighted sampld hfw) together with ad-
justed weights as aadjusted-weights summagiW-summary) of
(I,w). An AW-summary allows us to obtain an unbiased esti-
mate on the weight o&ny subpopulation/ C I. The estimate
2ier ald) =2 e ja0>0 ald) is easily computed from the sum-
mary provided that we have sufficient auxiliary informattortell

for each key in the summary whether it belongs/tor not. More-
over, for any secondary numeric functiéf) over keys’ attributes
such thath(:) > 0 = w(4) > 0 and any subpopulatiod,

2 jelat>0 @(7)h()/w(j) is an unbiased estimate ®f ; _ ; A(j).
Horvitz-Thompson (HT). Let Q2 be the distribution over samples
such that ifw(i) > 0 thenp? (i) = Pr{i € s|s € Q} is posi-
tive. If we knowpY (i) for everyi € s, we can assign to € s

the adjusted weight(i) = % . Sincea(7) is 0 wheni ¢ s,
E[a(i)] = w(4) (a(i) is an unbiased estimator af(z)). These
adjusted weights are called the Horvitz-Thompson (HT)nessti
tor [30]. For a particulag?, the HT adjusted weights minimize
VAR[a(i)] for all ¢ € I. The HT adjusted weights for Poisson
7-sampling arex(i) = w(i)/F ) (7). Poisson sampling with
IPPsranks and HT adjusted weights are known to minimize the
sumy ., VAR(a(4)) of per-key variances over all AW-summaries
with the same expected size.

HT on a partitioned sample spaceKITp) [13]. This is a method
to derive adjusted weights when we cannot detering € s|s €
Q} from the information contained in the sketelalone. For ex-
ample, ifs is an orderk sample of(1, w), thenPr{i € s|s € Q}
generally depends on all the weighi$i) for ¢ € I and therefore
cannot be determined from

For each keyi we consider a partition of2 into equivalence
classes. For a sketehlet P(s) C © be the equivalence classof



This partition must satisfy the following requirement: &is such
thati € s, we can compute the conditional probabiljt(s) =
Pr{i ¢ s’ | s € P'(s)} from the information included ia.

We can therefore compute for dlle s the assignmeni(i) =
w(i)/p'(s) (implicitly, a(i) = 0 fori ¢ s.) Itis easy to see that
within each equivalence clasE[a(i)] = w(¢). Therefore, also
overQ we haveE[a ()] = w(i).

Rank Conditioning (RC) is an HTp method designed for an order-
k sketch [13]. For each and possible rank value we have an
equivalence clasB? containing all sketches in which tti¢h small-
est rank value assigned to a key other thar. Note that ifi € s
then this is the(k 4 1)st smallest rank which is included in the
sketch. Itis easy to see that the inclusion probabilityiofa sketch
in P; ispi = Fw(i) (7’)

Assumes containsii, ..., ix and the(k + 1)st smallest rank

valueri41. Then for keyi;, we haves € Py anda(i;) =
w(ij)
Fw(ij)(fkﬂ)'

We subsequently use the notatiafi, ) for the probability sub-
space of rank assignments that contains all rank assigsmiehat
agree onr for all keys inI \ {i}.

The RC estimator for ordée-samples withPpsranks [22] has
a sum of per-key variances that is at most that of an HT estimat
applied to a Poisson sample wittPsranks and expected sizet- 1
[49]. Order sampling emerges as superior to Poisson sagplin
since it matches its estimation quality per expected sasipéeand
has the desirable property of a fixed sample size.

Sum of per-key variancesDifferent AW-summaries are compared
based on theiestimation quality Variance is the standard metric
for the quality of an estimator for a single quantity. For agap-
ulation J and AW-summaries:(), the variance is/AR[a(J)] =
Ela(J)]* — w(J)?. Since our application is for arbitrary subpopu-
lations that may not specified a priori, the notion of a goodrime
is more subtle. Clearly there is no single AW-summary thabido
nates all others of the same size (minimizes the variancglifd.

RC adjusted weights hawero covariancesthat is, for any two
keysi, j, covla(i),a(j)] = Ela(i)a(j)] — w(i)w(j) = 0 [13].
This property extends to applications of the RC method tadieo
nated sketches with global weights [14]. HT adjusted weidbt
Poisson sketches have zero covariances (this is immedbsueifi-
dependence). When covariances are zero, the varianog/pfor
a particular subpopulatios is equal to) _; ;. ; covia(i), a(j)] =
> ics VAR[a(i)]. For AW-summaries with zero covariances, the
sum of per-key variance8V[a] = >, ; VAR[a(i)], also mea-
sures average variance over subpopulations of certairhivigg).

We are interested in aggregates of the f@ﬂd(i):1 f(i) where
d is a selection predicate arfdis a numeric function, both defined
over the set of key$. f(¢) andd(i) may depend on the attribute
values associated with kéyand on the weight vectap™) (;).

We say that the functiorf/predicated is single-assignmernif it
depends onv® (i) for a singleb € W. Otherwise we say that it
is multiple-assignment The relevant assignmentsf f andd are
those necessary for determining all kéysuch thatd(i) = 1 and
evaluatingf (z) for these keys.

The maximumand minimumwith respect to a set of assignments
R C W, are defined byf () as follows:

w ™R (7) w ™R (7) = minw® () .

beR

@)

The relevant assignments férin this case ar&. Sums over these
f’s are also known as threax-dominancandmin-dominanc@&orms
[17, 18] of the selected subset.

The ratio}", ., w™*R) (4) /3, w™R)(j) when|R| = 2 is
theweighted Jaccard similaritgf the assignment® onJ. TheL;
difference can be expressed as a sum aggregate by chof{ging
to be

= ®) (s
= maxw (7)

(LlR)( ) (maxR)( ) w(minn)(i) )

@

For the example in Figure 1, the max dominance norm over even
keys (specified by a predicadghat is true foriz, 4, i) and assign-
mentsR = {1,2,3} is wmax{1:230) (5,) 4 qp(maxti.23D) Gy 4
w23 (5) = 15 4 20 4 10 = 45, the L; distance between
assignment®R = {2, 3} over keysii, iz, i3 is wF1{23) (4;) +

w 23D (4,) 4 w123 (55) = 10 + 5 + 3 = 18.

This classification of dispersed and colocated modelsréifit:-
ates the summary formats that can be computed in a scalagle wa
With colocated weights, each key is processed once, andleamp
for different assignments € YV are generated together and can be
coupled. Moreover, the (full) weight vector can be easikyoimpo-
rated with each key included in the final summary. With dispdr
weights, any scalable summarization algorithm must ddectine
sampling for differenb € W. The process and result fore W
can only depend on the valueéb)( ) fori € I. The final summary
is generated from the results of these disjoint processes.

Random rank assignments for(Z,V). A random rank assign-
mentfor (I, W) associates a rank valu&” (i) for eachi € I and
beW. If w® (i) =0, r® (i) = +oo. Therank vectorof i € I,
) (4), has entries ") (i) ordered byb € W. The distributiort
is defined with respect to a monotone family of density fuorcdi
fw (w > 0) and has the following properties: (i) For alland:

¥V [a] hence serves as a balanced performance metric [22, 13] andsuch thatw'® (i) > 0, the distribution ofr(*) (i) is f; w®) - (i)

we use it in our performance evaluation.
Estimators for Poissork-mins, and order sketches witxp or

IPPsranks haveXV[a] < % (wherek is the (expected)
sample size) [9, 12, 22, 49]. This bound is tight when keyshav
uniform weights and: < |I|, butXV [a] is smaller for order and
Poisson sketches when the weight distribution is skewedq2p
For a subpopulatio with expected:’ samples in the sketch, the
variance on estimating(.J) is bounded byw(J)?/(k’ — 2).

4. MODEL AND SUMMARY FORMATS

We model the data using a set of kelyand a se¥V of weight
assignment®ver I. For eachb € W, w® T — R>0 maps
keys to nonnegative reals. Figure 1 shows a data set ivith
{i1,...,i6} andW = {1,2,3}. Fori € [ andR C W, we
use the notatiom ™ (i) for theweight vectomith entriesw® (1)
ordered by € R.

Therank vectorsr™™) (i) for i € I are independent. (iii) For all
i € I, the distribution of the rank vecter"") (i) depends only on
the weight vectorw™) (7).

It follows from (i) and (ii) that for eacth € W, {r®)(3)|i € I}
is a random rank assignment for the weighted (Jetv®) with
respect to the familfy, (w > 0). The distribution? is specified
by the mapping (iii) from weight vectors to distributions @k
vectors specifie§.

Independent or consistent ranks. If for each keyi, the entries

r® @) (b € W) of the rank vector of are independent we say
that the rank assignment haslependent ranksin this case is
the product distribution of independent rank assignmeftsfor
(L, w®) (b ew).

A rank assignment haonsistent rank# for each key: € I and
any two weight assignments, b2 € W,

(bl)( ) > w(bz)( ) = 7,(171)( ) < r(b2)( ).



Consistent shared-seedpPsranks:

keys: I = {ih .o.yi6) key: | i i2 i3 " e i
weight assignmentszw(!), w(2), w(3) % [ 022 075 [007 092 [055 037
assignment/key| i1 | i2 | i3 | ia | 5 | i6 + D | 0.0147 | oo 0.007 0.184 | 0.055 0.037 order3-samples:
1 N N N N N 1 . . .
“’EQ; 151 01101 51101 101 | ) | 9011 | 0.075 | 0.0583 | 0.046 | +00 | 0.037 “{2; i3, 11, U6
we 201101121201 01 10| | .3 | 0022 | 0.05 | 0.0047 | 400 | 0.0367 | 0.037 w o e i
w? | 10]15]15] 0] 15| 10| 'ndependentippsranks: w® g, iy, 5
Example functions f (3, ) key: | i1 T2 s i = 6
wmax{12}) 120 110 [ 1220 10] 10| [, [0.22 0.75 | 0.07 | 092 | 055 |037
wlmax1:231) 1 20 | 15| 15 | 20 | 15 | 10 | | (1) | 00147 | 400 | 0007 | 0.184 | 0.055 | 0.037 | Crderi-samples:
wimint2h) 1115 | 0110 | 01 0110\ T 047 o058 |071 | 084 | 025 | 032 wEQ; Lt
wimdl:231) 1 10 1 01201 0| 01101 | .2 | 00235 | 0.058 | 0.0502 | 0.042 | too | 0.032 | Y b0
w2 5110 | 2115|110 O =@ 063 092 ]008s |059 |032 | 080 W e
Li{2,3 . : : . . . .
w239 10| 5] 3]120[15] O |, | 0063 | 0.0613 | 0.0053 | +oo | 0.0213 | 0.08
(A) ®)

Figure 1: (A): Example data set with keys! = {i1,...

,is} and weight assignmentsv™, w® w® and per-key values for example

aggregates. (B): random rank assignments and correspondin3-order samples.

(in particular, if entries of the weight vector are equalntto®rre-
sponding rank values are equal, thatig®’ (i) = w2 (i) =
r(bl)(i) — r(b2)(i).)
e Shared-seedindependently, for each keye I:
e u(i) < U[0,1] (whereU|0, 1] is the uniform distribution on
0,1].)
[- Fo]rb eW,r® () — F;(lb)(i)(u(i)).

That is, fori € I, 7™ (i) (b € W) are determined using the
same “placement™((4)) N F ) ;-
Consistency of this construction is an immediate consecpieh
the monotonicity property df,,.
Shared-seed assignment fiepsranks isr(*) (i) = (i) /w™® (i)
and forexp ranks, isr® (i) = — Inu(i) /w® ().
e Independent-differencesis specific toExp ranks. Recall that
EXP[w] denotes the exponential distribution with parameteiin-
dependently, for each key
Let w®) (i) < ...
vector ofi.
eForj e 1...h,dj — explw®) (i) —w®-1)(:)], where
w® (i) = 0 andd, are independent.
eForje1...h,r®)(i) — min/_, d;.

< w®) (i) be the entries of the weight

For these ranks consistency is immediate from the congiruct
Since the distribution of the minimum of independent exjbiad
random variables is exponential with parameter that is leguae
sum of the parameters, we have that fomadl W, i € I,7 (i) is
exponentially distributed with parametef® (7).

Coordinated and independent sketches.Coordinated sketches
are derived from assignments with consistent ranks ancpamde
dent sketches from assignments with independent rakksins
sketches: An ordered setfank assignments f@#, VW) defines a
set of|[W| k-mins sketches, one for each assignnieat)V. Order
and Poisson sketches: A single rank assignmeot (1, V) de-
fines an ordef: sketch (and a Poissati”’-sketch) for each € W,
(using the rank value§r" (i)|i € I}). Figure 1 shows examples
of independent and shared-seed consistent rank assignfoetite
example data set and the corresponding oBesamples.

In the sequel we mainly focus on ordeisketches. Derivations
are similar (but simpler) for Poisson sketches. We shalbtiebhy
S(r) the summary consisting ¢fV| order sketches obtained us-
ing a rank assignmenmt

k-mins sketches derived from rank assignments with indegr@nd
differences consistent ranks have the following property:

THEOREM 4.1. For any b1, b2 € W, the probability that both
assignments have the same minimum-rank key is equal to itletec:
Jaccard similarity of the two weight assignments.

Therefore, the fraction of common keys in the tivanins sketches
is an unbiased estimator of the weighted Jaccard similafitys
generalizes the estimator for unweighted Jaccard siryilgg].

The following theorem shows that shared-seed consistektra
maximizes the sharing of keys between sketches. We proee it f
Poisson sketches and conjecture that it holds also for @naik-
mins sketches.

THEOREM 4.2. Consider all distributions of rank assignments
on (I,») obtained using a family',,. Shared-seed consistent
ranks minimize the expected number of distinct keys in toa wof
the sketches fafl, w™®), b € W.

Sketches for the maximum weight ForR C W, letr(™n®) (7) =

min,er r(* (7). The following holds for all consistent rank assign-
ments:

LEMMA 4.1. Letr be a consistent rank assignment {dt W)
with respect tof,, (w > 0). LetR € W. Thenr(™"®)(j) is a
rank assignment for the weighted $étw (™**=)) with respect to
fu, (w > 0).

A consequence of Lemma 4.1 is the following:

LEMMA 4.2. From coordinated Poisson(®-/order k-/k-mins
sketches folR C VW, we can obtain a Poissamin,cr 7®_jorder
k-Ik-mins sketch fof I, w(ma*=)),

Fixed number of distinct keys for colocated dataThe number
of distinct keys in coordinated sizZe-sketches is at mogiV|k.

It is smaller when weight assignments are more correlatdte T
size varies by the rank assignment whers fixed. A different
natural goal is instead of fixing, to fix the number of distinct keys
to be betweerdW|(k — 1) + 1,|W]|k] distinct keys. For a rank
assignment, we define/ to be the largest such that there are at
most|W]|k distinct keys in the union of the ordérsketches with
respect tor® (b € W). As a result, we have varying > k
but sample size iffW|(k — 1) + 1, [W|k]. This sample can be
computed by a simple adaptation of the stream samplingitigor
for the fixed% variant.

Computing coordinated sketches. Coordinated order sketches
can be computed by a small modification of existing order $izgp
algorithms. If weights are colocated the computation igpdénfor



both shared-seed and independent-differences), as each ke-
cessed once. For dispersed weights and shared-seed, raagbm
functions must be used to ensure that the samews@égds used for
the keyi in different assignments. We apply the common practice
of assuming perfect randomness of the rank assignment antile
ysis. This practice is justified by a general phenomenon 384,
that simple heuristic hash functions and pseudo-randombaum
generators [2] perform in practice as predicted by this §frag
analysis. This phenomenon is also supported by our evatuati
Independent-differences are not suited for dispersedhigias
they require range summable universal hash functions @5, 4

5. ESTIMATORS

Consider(I,¥), a rank assignment € €2, and a correspond-
ing summaryS(r). The input to our generic estimator is a numeric
function f and a predicaté, defined for each key ifi. Our esti-
mator assigns adjustetiweightsa/) (i) to a subses* (r) of the
keys included inS(r). An estimate fory _; ,,_, f(i) is obtained
by summing the adjustettweights of keys ir5* (r) that satisfy the
predicated. A handy property is that the same adjusfedeights
can be used for different selection predicatés

Recall that the probability subspa€¥i, ) consists of all rank
assignments’ such thatvb € W, andVj € I\ {i}, 7" (j) =
r® (j). Let p(i,r) denote the probability that is included in
S*(r') forr’ € Q(i, ) we apply HTPand use'") (i) = f(i)/p(i, ).

S*(r) is selected to be as inclusive as possible such that we can

evaluated(i), f(i), andp(i,r) for all i € S*(r) based on the
information inS(r).

5.1 Colocated Weights

The summaryS(r) contains all keys € I such that for at least
oneb € W, 7 (i) < i) (I) and the full weight vectorw ™) (i)
for each included key. Hence, arfyandd can be evaluated for all
1€ S(r).

We use the generic estimator wifi (r) = S(r) and refer to
this asinclusiveestimators. (We use the term inclusive since they
use all keys in the union of the ordérsamples.) Inclusive estima-
tors are applicable whefi andd satisfy the conditionf (:)d (i) >
0 = w™W)(;) > 0foralli € I, which simply means that
any key with a positive contribution to the aggregate hassitipe
probability of being sampled. The probability thas included in
S(r') forr’ € Q(i,r)is

p(i,r) = PREb € W, 7' (i) < rO (I\ {i}) " € Q,7)] . (3)

To compute (3), the summary should include, for each W,
the rank valuesff’)(l) andrffﬂl(l) and for eachi € S(r) andb €
W, whetheri is included in the ordek-sketch ofb (that is, whether
r® (i) < r) (I)). This information allows us to determine the
valuesr("” (I'\ {i}) forall i € I andb € W: if i is included in the
sketch forb thenr\” (I\ {i}) = r\"), (I). Otherwise, itis-\" (I).

We provide explicit expressions foi(i, ) (Eq. (3)), fori €
S(r), for the rank distributions which we consider. Since we can
evaluatep(i, r), f(i), andd(:) for all i € S(r), we can indeed
apply the generic estimator witsi" (r) = S(r).

Independent ranks (independent ordek-sketches): The proba-
bility over Q(i,7) thati is included in the ordek- sketch ofb is
F o () (I\ {i})). Itis included inS(r') if and only if it is
included for at least one @fc W. Sincer’® (i) are independent,

plir) =1- [ =Fomun@l T\ D). @)

bew

For Exp ranks: p(i,7) = 1 — [T,eo (1 — exp(—w® (@)r? (I \
{i}))) and foriPPsranks,

p(i,r) = 1= TTepw(d = min{1,w® @)r(1\ {i})}).
Shared-seed consistent rank&oordinated ordek-sketches)i is
included in the sketch df for v’ € Q(i,r) if and only if u(i) <
Fw<b><i)(r$)(l \ {i})). The probability that it is included for at
least one ob € W is

pli,7) = max{F o ) (" T\ {i})} - (5)
For exp ranks:
p(i,r) = exp(—minpew{w® (i)r,ib)(l \ {i})}) and foriPPs

ranks:p(i, ) = min {1, maxpew {w® (i)r,ib)(l \ {z})}} .

Independent-differences consistent rankgcoordinated ordek-
sketches): Letw (i) < --- < w®»)(i) be the entries of the
weight vector ofi. Recall that-(®) (i) — min’ _, d; whered; —
exP[w®) (i) — w®-1)(4)] (we definew® (i) = 0 andexp|0] =
0).

We also defineM, = max!"_,r{"* (I \ {i}) (¢ € [A]), and
the eventA; to consist of all rank assignments such tfas the
smallest index for whichi; < M;. Clearly the eventsd; are
disjoint andp(i,7) = 3}_, PRIA(].

The probabilitieR[A,] can be computed using a linear pass on
the sorted weight vector af

5.2 Dispersed weights

Let r be a rank assignment f@¢¢, W). The summaryS(r) is
the set of ordef sketchessy, (1,7*) for b € W. In the dispersed
weights modeko® () (for i € I,b € W) is included inS(r) if
and only ifi € sy (I,7").

ForR ¢ Wandi € I, letw™>R) () = maxyer w'® (),
bmaxR) () = arg maxper w'® (i) (the weight assignment from
R which maximizes’s weight), and-™"?) (;) = minyecx r* (i)
(the smallest rank value thatassumes fob € R). If r is con-
sistent then-(™in®) (7). = 2= ()} (smallest rank value for
1 is assumed on the assignment with largest weight). Simlarl
w™R) (7)) = minger w® (i), B™PR) (4) = arg minper w® (3),
andr(™®®) (j) = maxyer 7* (7). When the dependency Giis
clear from context, it is omitted.

We also useﬂ,i‘f;‘fﬁ)(l) = minper 7’;821([) and denote the

weight and rank vectors afe I by ™) (i) andw (™ (i).

We apply the generic derivation using the following guidek:

(1) If f can be expressed as a linear combination of the form
f(@) = fi(@) + f2(4) + ..., we estimate each summatrfg sep-
arately. This allows for weaker conditions in the genericwde
tion, resulting in more inclusive sets of applicable sampad
tighter estimates. In some cases it is necessary to express
a linear combination in order to facilitate estimation, lasré are
f = f1 + f2 such that the generic estimator is not applicabl¢ to
but is applicable tgf; and f».

(2) We determine a seR C W of relevant assignmentfor
fandd. The setS*(r) of applicable samples is a subset of
User sk(1 T(b))-

(3) We consider the dependencefofndd on the weight vector
w™®) . We derive estimators for two families gfandd’s that in-
clude the cases whereis w™in R (™axR) or 4, (F1R) which
we used in our empirical evaluation. Our methodology is iappl
ble to other interesting’s such as quantiles over assignments.

We say thatf andd aremin-dependerif

w ™R () = 0 = f(i)d(i) = 0.



key, weight S, V6 T w®@E) T w2 (G) 5 LN ) s Fi 2D ()
destIP, 4tuple 5.42 x 10°  5.54 x 10° 7.47 x 10° 3.49 x 10° 3.98 x 10°
destlP, bytes 2.08 x 10°  2.17 x 10° 3.26 x 10° 9.96 x 108 2.26 x 10°
srclPt-destlP, packety 4.61 x 10°  4.61 x 10° 7.61 x 10° 1.61 x 10° 6.00 x 10°
srclP4-destlP, bytes | 2.08 x 10°  2.17 x 10° 3.49 x 10° 7.65 x 108 2.72 x 10°
Table 1: IP datasetl
months 1 2 3 1 5 6 7 3 9 10 11 12 12 16 1-12
distinct movies 10%) | 1.54 1.58 1.61 1.64 1.66 1.68 1.70 1.73 1.73 1.77 1.73 1.73 | 1.60 1.71 1.77
ratings (x 10°) 470  4.10 4.31 416 4.39 530 4.95 5.26 4.91 516 3.61 241 | 8.80 27.0 53.3
min (x10°) 372 297 168
max (x10°) 508 679 7.95
Ly (x10%) 135 382 6.27

Table 2: Netflix data set. Distinct movies (number of movies Vth at least one rating) and total number of ratings for each nonth

(1,...,12)in 2005 and for periodsR = {1,2}, R ={1,...
> w™>R) (7), and > w R (5).

It is easy to see thaf(i) = w™™"®) (i) and any predicate are
min-dependent, buf(i) = w™*%)(7) and anyd which selects
itemsi for which w(™*=)(7) > 0 is not. We derive estimators
for all min-dependentf, d for both coordinated and independent
sketches.

We say thatf andd aremax-dependent

P (), b 3)
( (maxy) (’L) b(maxR)(i))
(i) f(i) = 0.

In particular,f (i) = w™*%)(;) and any attribute-based predicate
d are max-dependent. We derive estimators for max-deperfdent
andd for coordinated sketches. We also argue that it is not plessib
to obtain unbiased nonnegative estimatesfig) = w™&%®) ()
over independent sketches.

W) =0 =

5.2.1 Max-dependence

Max-dependence estimator (coordinated sketches):

o 5%(r) « {i|3b e R,r®) (i) < rTR) (1)}
e Fori € S*(r):
w™R) (1) —  max{w® (i) | be R,i € sp(I,r®)}
b(maXR)(i) — arg max w® ()
beR|i€sy (I,r(®))
p(i,r) Fw(mamz)( )(7«l(€fillnn)(1))
Fos f(w(maxn)(z)’b(maxR)(i))
a’ (i) -
p(i,7)
° Outputzies*(T)‘dw(maxm (i),(maxR) (3)) al ()

As a special case fof (i) = w™>*™(;) andi € S*(r) we
obtain the adjusted weights:
(maxg) (;
a(maXR)(i) _ w ( ) (6)

(ming)
Fw(ma"R)(i) (Tk+l

(1))
5.2.2 Min-dependence

Min-dependence I-set estimator:

o S —{il Aper r® @) <7 (1D}
o Vie Si(r),

pe(i,r) — PRVD € R,r'()(4) < Tk+1(1) [ e Q)]

,6},andR ={1,...,

12}. For these periods, we also shoy, w(™"®) (4),

S;(r) is the set of keys that are included in | orderk
sketches.

pe(i, ) for shared-seed consistent ranks is:

. . b
pe(i,r) = min F 00 (ri, (1)) @)

For ExpP ranks,

; — () (b)
pe(iyr) = 1 —exp(—minw™ (§)ry, (1))
and forippsranks,p(i, ) = min{1, minyer {w® (i)ry"), (1)}}.
For independent-differences consistent rapksi, ') is expressed
as a simultaneous bound on all prefix-sums of a set of indgpend
exponentially-distributed random variables.
For independent ranks:

)= [ Fuw (D).
beER
By contrasting (7) and (8) we can see that the respective-incl
sion probability can be exponentially smaller (iR|) for indepen-
dent sketches than with coordinated sketches. Since thenear
VAR[a(i)] is proportional tol—— — 1), we can have exponen-
tially larger variance.
Let a{™"®) (i) be the adjusted weight fof(i) = w™ ") (i)
of the I-set estimator using shared-seed consistent ramic et
(minr) ;) be the adjusted weight fof (i) = w™"®) (i) of the
|-set estimator using independent ranks.
We can also use a smaller set of samples as follows.
Min-dependence s-set estimator:

o S:(r) — {i| Aper 7 () < rTER) (1)}
o Vie Si(r),
ps(iyr) — PRVD € R, 70 (3) <

Pe (i7 T (8)

i) (Z )

rR)(1) | € Q)]

S (r) is the set of keys that are included in @8| sketches with

rank value at most,?i‘l“ﬁ)( ). The advantage of the s-set estimator
is that for coordinated sketches the inclusion probaeditiave a

simpler formula which is easier to compute namely

ps(isr) = (1))

The s-set estimator can be used with independent ranksdret th
is no advantage in doing so. .

As a special case, we obtain adjusted weightg foy = w™"®) (i)
by

(ming)
Fw(minR)(i) (Tk+l ~

w(minR) ( )

(ming) .\ _
as (7') - min ’ (9)
Fw(mm ’R)( )(Tl(vr:l R)

(1))



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

open 1.81 1.80 1.75 1.68 1.65 1.55 1.56 1.42 1.50 1.61 1.54 1.47 1.48 1.52 1.52 1.48 1.45 1.37 1.38 1.38 1.42 1.46 1.47
high 1.85 1.83 1.81 1.72 1.70 1.63 1.61 1.54 1.61 1.67 1.57 1.53 1.57 1.57 1.56 1.52 1.49 1.44 1.43 1.45 1.49 1.50 1.54
low 1.78 1.73 1.70 1.57 1.57 1.50 1.45 1.33 1.46 1.52 1.45 1.40 1.44 1.49 1.49 1.42 1.38 1.34 1.34 1.33 1.39 1.42 1.44
close 1.82 1.75 1.72 1.65 1.59 1.56 1.48 1.46 1.58 1.57 1.47 1.50 1.50 1.55 1.51 1.45 1.44 1.40 1.36 1.42 1.44 1.48 1.51
adj.close 1.81 1.74 1.72 1.64 1.58 1.55 1.47 1.45 1.57 1.56 1.46 1.49 1.50 1.54 1.51 1.44 1.43 1.39 1.36 1.42 1.43 1.47 1.50
volume 1.52 1.66 1.82 2.26 1.96 2.44 2.10 3.14 1.93 2.22 1.80 2.27 1.84 1.42 1.43 1.73 2.05 1.84 1.55 1.99 1.96 1.71 1.75

Table 3: Daily totals for 23 trading days in October, 2008. Pices (open, high, low, close, adjustedlose) arex10°. Volumes are

inx10'°,

for everyi € S;(r), andagmi“R)(z’) = 0 otherwise. Approximation quality of multiple-assignment estimators. The
s-set versus |-set estimatorsThe I-set estimators have lower vari-  quality of the estimate depends on the relation betwgand the
ance than the s-set estimators: weight assignment(s) with respect to which the weightedpdiaign

is performed. We refer to these assignmentp@sary. Vari-

LEMMA 5.1. For any weight functiorf and: € I, . = ) ?
ywelg u ! ance is minimized wherf (i) are the primary weights but often

var[a!" ()] < var[al" ()] f must besecondary f may not be known at the time of sam-
. pling, the number of different functionéthat are of interest can be
5.3 L, difference. large — to estimate all pairwise similarities we ne€q') different
For a consistent, we define thev“1 ™) adjusted weights “weight-assignments”. For dispersed weights, even if kmapri-
) maxs) . N ori, weighted samples with respect to some multiple-asséagrt f
") = a"RI(d) — o) () (10) cannot, generally, be computed in a scalable way. We boumnd th
a(ngR) (i) = a™¥R)() — a(g"‘i“R)(i), (11) variance of outnin, max, andL; estimators.

Colocatedmin, max, and L; estimators. We bound the variance
of inclusive estimators famin, max, andL; using the variance of
inclusive estimators for the respective primary weightgrssents.

We use the notatiop™*=) (i, r), p™"=) (i, r), andp{™ ™™= (i, )
for the respective inclusion probabilities. We use the tioiay (™" R) |
a1 R pminr) \when the statement applies to both the respective

s-set and |-set estimators. o LEMMA 6.2. For f € {maxz,ming, L1 R}, leta'’) (i) be the
We show that for coordinated sketches, a7 adjusted adjustechw ") -weights for co-located summaries computed by our
weights are “well behaved,” in the sense that they are naativeg estimator (usings* (r) = S(r) and inclusion probabilities (3)).
LEMMA 5.2. For consistent- with IPPSor ExP ranks,Vi € I, (ming) /- . ),
aF1R)(3) > 0. VAR|[a (1) = min VAR[a"" (i)] ,
(maxpR) /- _ (b)(:
VAR = VAR ,
6. VARIANCE PROPERTIES ™G] = maxvarla ()]
We conjecture that the estimators we presented have zeao-cov vAR[a 1R (1)) < vaR[a™MR) (4)] .
ances. Thatis, forall # j € I, E[a'”(1)a'" (5)] = fG)f (). . . . .
This conjecture is consistent with empirical observatiand with The following relations are an immediate corollary of Lemén2:
properties of related RC estimators [13, 14]. With zero deva
. (f) . . .
ances, the.varlancem[a (J)] is thg sum oyen e J .Of the 2V[a<m‘“72)] < min EV[Q(b)]y Ev[a(maxn)] < max EV[Q(b)]y
per-key variancesar[a'") (i)]. Hence, if two adjusted-weights es- bER bER

timatorsa: andas havevAR[a1(7)] > VAR[az2(7)] for all ¢ € I,
then the relations holds for all C I. SV ™) < 2V [a™*R)] < maxZV[a] .
We use the notation|’” (i) for the RC f-adjusted weights as- bER
signed by an Rc(lb)estlmators applied to a ordesketch of(Z, f). Relative variance bound formax: For both the dispersed and the
We also writetlg” )(i) astg’) (2) for short. colocated models, we show that the variance ofritag: estimator
We measure the variance of an adjusted weight assignment is at most that of an estimator applied to a weighted samjknta
using=V(a] = >,.; VAR[a(i)]. To establish variance relation  with max being the primary weight. More precisely;™*%) (i)

between two estimators, it suffices to establish it for eagpik has at most the variance of an RC estimator applied to an-order
Furthermore, if the estimators are defined with respectés#me k sketch of(I,w(™2*®)) (obtained with respect to the sarfig
distribution of rank assignments then it suffices to essabliari- (w > 0)). Hence, the relative variance bounds of single-assiginme

ance relation with respect to sorfi¥:, r). (Since these subspaces order# sketch estimators are applicable [12, 13, 22].
partitionQ2 and our estimators are unbiased on each subspace).

The variance of adjustegweightsa'/ (i) for i € I are LEMMA 6.3. Lett™*®) (i) be the adjusted weights of tReC
@) 2 1 1 estimator applied to an ordek-sketch of(7, w™*®)). For any
VARG N = f(@)° | —— — ) maxg) (; maxg) (;
Q(i,r) [CL (Z)] f(l) (p(277_) ) ( ) iel, VAR[G( R)(Z)] < VAR[t](C R)(’L)]

Colocated single-assignment estimatorsVe show that our single-  Dispersed modelmin and L, estimators. We bound the absolute

assignment inclusive estimators for co-located summdinete- variance of oury™i"*R) estimator in terms of the variance of? -
pgndent or coordinated) dominate plain RC estimators based estimators fob € R. Lettgf) be RC adjustealu(b)-weights using
single orderk sketch. the orderk sketch with ranks:*.

LEMMA 6.1. For b € W andi € I, let a” (i) be the ad-
justed weights for co-located summaries computed by oimast
tor (usingS*(r) = S(r) and inclusion probabilities (3)). Then,
VAR[a® (4)] < VAR[t® (4)].

LEMMA 6.4. For shared-seed consistentfor all 7 € I,

vaR[ay™""®) ()] < max VAR[t" (i)
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R = {1,...,5} (October 1-7),R = {1,...,10} (October 1- e I
14),R = {1,...,15} (October 1-21)R = {1,...,23} (October  , iews R
1-31). The following table listS", w™*®) (3), 3, w™™>R)(5), & 0 end B
andy", w1 (4) for these sets of trading days. [~ g 0 ——mamn
: : o
1-2 1-5 h‘ghl(—xl(l)()b) 1-15 1-23 1-2 lfgo‘umelfff}OLU)l—IS 1-23 g 12 é Eggr’gmm—l Dg\i\l‘ g 12 © 'rmjmm,
min | 1.82 1.67 1.48 144 133 | 1.34 133 1.30 1.15 1.13 O o oord L1t 0L e coord max
T | 005 o022 o044 o4s o061 | 041 130 B0 sas 704
le+13
7.2 Dispersed data. o] :
We evaluate our™"®), w™>=) andw(“1R) estimators as 8 weu| . o,
defined in Section 5.2a(™*®), q(™" %) q0MR) (F1R) and e |
a{**® for coordinated sketches anff""® for independent sketcheg. e —— . 5 —
We used shared-seed coordinated sketches and show results f @ = e ’ P oo xpee
theipPsranks (see Section 3). Results foxp ranks were similar. Losgg L0 coord LL ﬁ: Losgg L0 coord LL
We measure performance using the absofiit€a')] and nor- ° 1°°k o ° , e
malizedn 2V [a(P] = 2V [a(PD] /(3. £(i))? sums of per-key vari- ent0 |

ances (as discussed in Section 3), which we approximateday av . -~
aging square errors over multiple (25-200) runs of the samgpl ) ;

algorithm. R N e 2 1e0m e
Coordinated versus Independent sketchedVe compare they ™"=) & 1 m o o I
estimatorsa{™™®) (coordinated sketches) and™i"’ (indepen- oot X %2 Te ) 2 i, e
dent sketches). ) ) 100000 o coord L1-|100 10000 tes0s o coord Lll-‘mu 1000.'*
Figure 2 shows the ratiEV[ag;”;“R)]/EV[aﬁm‘“R)] as a func- K K
tion of k for our datasets. Across data sets, the variance of the
independent-sketches estimator is significantly largetoumany Figure 3: Top row: IP dataset2 key=4tuple weight=bytes
orders of magnitude, than the variance of coordinatecchkstes- ~ hours= {1, 2}; IP dataset2 key=4tuple weight=bytes hours=
timators. The ratio decreases withbut remains significant even  {1,2,3,4}. Middle row: Netflix data set R = {1,2}, R =
when the sample size exceeds 10% of the number of keys. {1,...,12}. Bottom row: Stock dataset, high values: R =
The ratio increases with the number of weight assignments: O {1, 2} (October 1-2, 2008),R = {1,...,23} (all trading days
the Netflix data set, the ratio is 1-3 orders of magnitude fas€gn- in October, 2008).

ments (months) and 10-40 orders of magnitude for 6-12 months (L1R) (minR) )

On IP dataset 2, the gap is 1-5 orders of magnitude for 2 assign Served thanXV(a, ] and nzv[‘_lz_ ] are typically close
ments (hours) and 2-18 orders of magnitude for 4 assignmémnts to nZV[a(b)]. We observe the empirical relatlom/[a?‘”“ﬁ)] <
the stocks data set, the gap is 1-3 ordersf of magni_tude fcrrigra_s zv[ag"‘a"ﬁ)} (with larger gap when thd.; difference is very small),
ments and reaches 150 orders of magnitude. This agreeshaith t Zv[angR)] < ZV[aEZm‘“R)}, andEV[aﬁ,mi“R)} < minper SV[a®)].

exponential decrease of the inclusion probability with muenber Empirically, the variance of our multi-assignment estionatwith
of assignments for independent sketches (see Sectior).STBése respect to single-assignment weights is significantly kavan the
ratios demonstrate the estimation power provided by coatitin. worst-case analytic bounds in Section 6 (Lemma 6.4 and Bd).
Weighted versus unweighted coordinated sketchesWe com- normalized (relative) variances, we observe the “revénsddtions

pare the performance of our estimators to known estimators a nEV[aﬁ,m’“R)} > nEV[aEmaXR)], nsVialf1 ™) > nZV[aEmaXR)],
plicable to unweighted coordinated sketches (coordinsketthes and nzv[aé"‘“‘ﬁ)] > max,cr nEV[a(®] which are explained by
for uniform and global weights [14]). To apply these methaals smaller normalization factors far™i"®?) andw(Z1R) .

positive weights were replaced by unit weights. Becausehef t
skewed nature of the weight distribution, the “unweightegti-
mators performed poorly with variance being orders of miagiei

S-set versus L-set estimators.To understand the advantage of the
stronger |-set estimators over the s-set estimators, whestiuhe

. min min L1R L1 R
larger (plots are omitted). "at'OSZV[?g )5V [af ] andEV[ai ! /5V a1 ™)
vari f multiol . . We rel h . as a function ofk. The advantage highly varies between datasets:
ariance of multiple-assignment estimators.\We relate the vari- - 504 _gnoy, for the Netflix dataset, 0%-9% for IP datasetl, 0%-20

ance of oury™ =), w™ =), andw ™) and the variance of  '|p ataset2, and 0%-300% on the Stocks data set
the optimal single-assignment estimatard’ for the respective ' '

individual weight assignments® (b € R). Because the vari- 7.3 Colocated data
ance ofaf.;“;“m was typically many orders of magnitude worse,
we include it only when it fit in the scale of the plot. The sigl

assignment estimators® are identical for independent and coor- ranks were similar.

dinated sketches (constructed with the sdmand rank functions We consider the followings(® -weights estimatorsa®: the
family), and hence are shown once. (i) shared-seed coordinated sketches inclusive estimatoti¢8é. 1,
Acr(orf: aI)I datasets (F(lgug 3shows s(ebl)ected piBtE)a, . .]' Eq. 5).a!”: the independent sketches inclusive estimator in (Sec-
EVia R, anQZV[al ' andxVia™]forb € R are W'th'g) tion 5.1, Eq. 4).a\”): the plain orderk sketch RC estimator ([22]
an order of magnitude. On our datasetS{” not shown)n-V[a®]  for ippsranks). Among all keys of the combined sketch this esti-
and nzx/[a;m“R)] are clustered together witthh XV < 1 (and mator uses only the keys which are part of the ordsketch ofb.
decreases wittk) (theory saysk — 2)nXV < 1.) We also ob- We study the benefit of our inclusive estimators by comparing

We computed shared-seed coordinated and independertia&etc
and show results forrpsranks (see Section 3). Results foxp



them to plain estimators. Since plain estimators can notdeel u
effectively for multiple assignment aggregates, we focuésingle-
assignment) weights.

Inclusive versus plain estimators. The plain estimators we
used are optimal for individual ordérsketches and the benefit of
inclusive estimators comes from utilizing keys that wenmiad
for “other” weight assignments. We computed the ratios

2Via?)/2via] andsv[eM]/2V [aP]

as a function ofc. These ratios vary between 0.05 to 0.9 on our
datasets and shows a significant benefit for inclusive etiimésee
Figure 4). Our inclusive estimators are considerably mooeiate
with both coordinated and independent sketches. With ieégnt
sketches the benefit of the inclusive estimators is larggn thith
coordinate sketches since the independent sketches rcongaiy
more distinct keys for a giveh.

sharing ratio of combined sample size
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Figure 4: Inclusive versus plain estimators. [P datasetl,

key=4tuple. Left: SV [a!"]/SV[a{”] (coordinated sketches).
Right: £V [a{"]/£V [al"] (independent sketches).

Variance versus storage.For a fixedk, the plain estimator is in
fact identical for independent and coordinated orklsketches. In-
dependent ordek-sketches, however, tend to be larger than coordi-
nated order: sketches. Here we compare the performance relative
to thecombined sample sizevhich is the number of distinct keys

in the combined sample. We therefore use the notatgﬁb for

the plain estimator applied to independent sketches;ﬁfrﬁdor the
plain estimator applied to coordinated sketches.

We compare summaries (coordinated and independent) and est
mators (inclusive and plain) based on the tradeoff of vagarer-
sus summary size (number of distinct keys). We considered th
normalized sums of variances, for inclusive and plain estims
nZV[aEb)], nVial”], nEviall], nZV[aSﬁi], as a function of
the combined sample size (see Figure 5). For a fixed sketeh siz
plain estimators perform worse for independent sketchas for
coordinated sketches. This happens since an independsoh sk
some fixed size contains a smaller sketch for each weighgrassi
ment than a coordinated sketch of the same size. In otherswioed
“k” which we use to get an independent sketch of some fixed size
is smaller than the “k” which we use to get a coordinated $kefc
the same size. Inclusive estimators for independent andicated
sketches of the same size had similar variance. (Note hovleae
for a given union size, we get weaker confidence bounds with in
dependent samples than with coordinated samples, simpiube
we are guaranteed fewer samples with respect to each particu
assignment.)

Sharing ratio. The sharing ratiq |S|/(k * [WV|) of a colocated
summarys is the ratio of the expected number of distinct keys in
S and the product of and the number of weight assignmefitg|.
The sharing ratio measures the combined sketch size needeats
we include an ordek-sketch for all weight assignments. We com-
puted the sharing ratio for coordinated and independergrdrd

sketches as a function @f (see Figure 6). Coordinated sketches

minimize the sharing ratio (Theorem 4.2). On our datasés, t

ratio varies between.25-0.68 for coordinated sketches arid4-

1 for independent sketches. The sharing ratio decreases when
becomes a larger fraction of keys, both for independent and c
ordinated sketches — simply because it is more likely thagy k

is included in a sample of another assignment. For indepgnde

sketches, the sharing ratio is ab@vg5 for smaller values ok and

can be considerably higher than with coordinated sketcli&s.
ordinated sketches have lower (better) sharing ratio wheigw
assignments are more correlated.
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Figure 6: Sharing ratio of coordinated and independent
sketches. Left: Stocks dataset (6 weight assignments). Rig
IP dataset2, key=4tuple.

8. CONCLUSION

We motivate and study the problem of summarizing data sets
modeled as keys witlector weights. We identify two models
for these data setdjspersedsuch as measurements from different
times or locations) andollocated(records with multiple numeric
attributes), that differ in the constraints they impose oalable
summarization. We then develop a sampling framework and-acc
rate estimators for common aggregates.

Our estimators over coordinated weighted samples for eing|
assignment and multiple-assignment aggregates includiighted
sums and thel; difference, max, and min improve over previ-
ous methods by orders of magnitude. For colocated data sets,
our coordinated weighted samples achieve optimal summzaey s
while guaranteeing embedded weighted samples of certa@s si
with respect to each individual assignment. We derive extins
for single-assignment and multiple-assignment aggregaier both
independent or coordinated samples that are significaigfhier
than existing ones.

As part of ongoing work, we are applying our sampling and es-
timation framework to the challenging problem of detectidmet-
work problems. We are also exploring the system aspects-of de
ploying our approach within the network monitoring infrasture
in a large ISP.
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