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ABSTRACT
Many data sources are naturally modeled by multiple weight as-
signments over a set of keys: snapshots of an evolving database
at multiple points in time, measurements collected over multiple
time periods, requests for resources served at multiple locations,
and records with multiple numeric attributes. Over such vector-
weighted data we are interested in aggregates with respect to one
set of weights, such as weighted sums, and aggregates over multi-
ple sets of weights such as theL1 difference.

Sample-based summarization is highly effective for data sets that
are too large to be stored or manipulated. The summary facilitates
approximate processing queries that may be specified after the sum-
mary was generated. Current designs, however, are geared for data
sets where a singlescalarweight is associated with each key.

We develop a sampling framework based oncoordinated weighted
samplesthat is suited for multiple weight assignments and obtain
estimators that areorders of magnitude tighterthan previously pos-
sible. We demonstrate the power of our methods through an ex-
tensive empirical evaluation on diverse data sets ranging from IP
network to stock quotes data.

1. INTRODUCTION
Many business-critical applications today are based on extensive

use of computing and communication network resources. These
systems are instrumented to collect a wide range of different types
of data. Examples include performance or environmental measure-
ments, traffic traces, routing updates, or SNMP traps in an IPnet-
work, and transaction logs, system resource (CPU, memory) usage
statistics, service level end-end performance statisticsin an end-
service infrastructure. Retrieval of useful information from this
vast amount of data is critical to a wide range of compelling appli-
cations including network and service management, troubleshoot-
ing and root cause analysis, capacity provisioning, security, and
sales and marketing.

Many of these data sources produce data sets consisting of nu-
meric vectors (weight vectors) associated with a set of identifiers
(keys) or equivalently as a set ofweight assignmentsoverkeys. Ag-
gregates over the data are specified using this abstraction.
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We distinguish between data sources withco-locatedordispersed
weights. A data source hasdispersed weightsif entries of the
weight vector of each key occur in different times or locations: (i)
Snapshots of a database that is modified over time (each snapshot
is a weight assignment, where the weight of a key is the value of a
numeric attribute in a record with this key.) (ii) measurements of
a set of parameters (keys) in different time periods (weightassign-
ments). (iii) number of requests for different objects (keys) pro-
cessed at multiple servers (weight assignments). A data source has
co-located weightswhen a complete weight vector is “attached”
to each key: (i) Records with multiple numeric attributes such as
IP flow records generated by a statistics module at an IP router,
where the attributes are the number of bytes, number of packets,
and unit. (ii) Document-term datasets, where keys are documents
and weight attributes are terms or features (The weight value of a
term in a document can be the respective number of occurrences).
(iii) Market-basket datasets, where keys are baskets and weight at-
tributes are goods (The weight value of a good in a basket can be its
multiplicity). (iv) Multiple numeric functions over one (or more)
numeric measurement of a parameter. For example, for measure-
mentx we might be interested in both first and second moments, in
which case we can use the weight assignmentsx andx2.

A very useful common type of query involves properties of asub-
populationof the monitored data that areadditiveover keys. These
aggregates can be broadly categorized as : (a)Single-assignment
aggregates, defined with respect to a single attribute, suchas the
weighted sum or selectivity of a subpopulation of the keys. An ex-
ample over IP flow records is the total bytes of all IP traffic with
a certain destination Autonomous System [21, 1, 34, 12, 13].(b)
Multiple-assignmentaggregates include similarity or divergence met-
rics such as theL1 difference between two weight assignments or
maximum/minimum weight over a subset of assignments [33, 18,
7, 17]. Figure 1 (A) shows an example of three weight assignments
over a set of keys and key-wise values for multiple-assignment ag-
gregates including the minimum or maximum value of a key over
subset of assignments and theL1 distance. The aggregate value
over selected keys is the sum of key-wise values.

Multiple-assignment aggregates are used for clustering, change
detection, and mining emerging patterns. Similarity over corpus of
documents, according to a selected subset of features, can be used
to detect near-duplicates and reduce redundancy [36, 8, 47,16, 32,
37]. A retail merchant may want to cluster locations according to
sales data for a certain type of merchandise. In IP networks,these
aggregates are used for monitoring, security, and planning[24, 18,
19, 35]: An increase in the amount of distinct flows on a certain port
might indicate a worm activity, increase in traffic to a certain set of
destinations might indicate a flash crowd or a DDoS attack, and
an increased number of flows from a certain source may indicate



scanner activity. A network security application might track the
increase in traffic to a customer site that originates from a certain
suspicious network or geographic area.

Exact computation of such aggregates can be prohibitively resource-
intensive: Data sets are often too large to be either stored for long
time periods or to be collated across many locations. Computing
multiple-assignment aggregates may require gleaning information
across data sets from different times and locations. We therefore
aim at concise summaries of the data sets, that can be computed in
a scalable way and facilitate approximate query processing.

Sample-based summaries [31, 51, 6, 5, 9, 26, 27, 2, 20, 28, 13,
22, 10, 14] are more flexible than other formats: they naturally
facilitate subpopulation queries by focusing on sampled keys that
are members of the subpopulation and are suitable when the ex-
act query of interest is not known beforehand or when there are
multiple attributes of interest. Existing methods, however, are de-
signed for one set of weights and are either not applicable orper-
form poorly on multiple-assignment aggregates.

Contributions
We develop sample-based summarization framework for vector-
weighted data that supports efficient approximate aggregations. The
challenges differ between the dispersed and co-located models due
to the particular constraints imposed on scalable summarization.

Dispersed weights model:A challenge is that any scalable algo-
rithm must decouple the processing of different assignments – col-
lating dispersed-weights data to obtain explicit key/vector-weight
representation is too expensive. Hence, processing of one assign-
ment can not depend on other assignments.

We propose summaries based oncoordinated weighted samples.
The summary contains a “classic” weighted sample taken withre-
spect to each assignment: we can tailor the sampling to be Poisson,
k-mins, or order (bottom-k) sampling. In all three cases, sampling
is efficient on data streams, distributed data, and metric data [9,
11, 23, 12] and there are unbiased subpopulation weight estimators
that have variance that decreases linearly or faster with the sample
size [9, 22, 49, 13]. Order samples [42, 46, 43, 9, 13, 40, 22],with
the advantage of a fixed sample size, emerge as a better choice.
Coordination loosely means that a key that is sampled under one
assignment is more likely to be sampled under other assignment.
Our design has the following important properties:

• Scalability: The processing of each assignment is a simple adap-
tation of single-assignment weighted sampling algorithm.Coordi-
nation is achieved by using the same hash function across assign-
ments.

• Weighted sample for each assignment:Our design is especially
appealing for applications where sample-based summaries are al-
ready used, such as periodic (hourly) summaries of IP flow records.
The use of our framework versus independent sampling in differ-
ent periods facilitates support for queries on the relationof the data
across time periods.

• Tight estimators: We provide a principled generic derivation of
estimators, tailor it to obtain tight unbiased estimators for the min,
max, andL1, and bound the variance.

Colocated weights model: For colocated data, the full weight
vector of each key is readily available to the summarizationalgo-
rithm and can be easily incorporated in the summary. We discuss
the shortcomings of applying previous methods to summarizethis
data. One approach is to sample records according to one particular
weight assignment. Such a sample can be used to estimate aggre-
gates that involve other assignments, but estimates may have large

variance and be biased. Another approach is to concurrentlycom-
pute multiple weighted samples, one for each assignment. Inthis
case, single-assignment aggregates can be computed over the re-
spective sample but no unbiased estimators for multiple-assignment
aggregates were known. Moreover, such a summary is wastefulin
terms of storage as different assignments are often correlated (such
as number of bytes and number of IP packets of an IP flow).

We consider summaries where the set of included keys embeds
a weighted sample with respect to each assignment. The set ofem-
bedded samples can be independent or coordinated. Such a sum-
mary can be computed in a scalable way by a stream algorithm or
distributively.

• We derive estimators, which we refer to asinclusive estimators,
that utilize all keys included in the summary. An inclusive esti-
mator of a single-assignment aggregate applied to a summarythat
embeds a certain weighted sample from that assignment is signif-
icantly tighter than an estimator directly applied to the embedded
sample. Moreover, inclusive estimators are applicable to multiple-
assignment aggregates, such as themin, max, andL1.

• We show that when the embedded samples are coordinated, the
number of distinct keys in the summary is minimized.

Empirical evaluation. We performed a comprehensive empirical
evaluation using IP packet traces, movies’ ratings data set(The Net-
flix Challenge [39]), and stock quotes data set. These data sets
and queries also demonstrate potential applications. For dispersed
data we achieveorders of magnitudereduction in variance over
previously-known estimators and estimators applied to independent
weighted samples. The variance of these estimators is comparable
to the variance of a weighted sum estimator of a single weightas-
signment.

For co-located data, we demonstrate that the size of our com-
bined sample is significantly smaller than the sum of the sizes of
independent samples one for each weight assignment. We also
demonstrate that even for single assignment aggregates, our esti-
mators which use the combined sample are much tighter than the
estimators that use only a sample for the particular assignment.

Organization. The remainder of the paper is arranged as follows.
Section 2 reviews related work, Section 3 presents key background
concepts and Section 4 presents our sampling approach.Section 5
presents our estimators and Section 6 provides bounds on thevari-
ance. Section 7 presents the evaluation results. Finally, Section 8
concludes the paper. Details including derivations and proofs can
be found in [15].

2. RELATED WORK
Sample coordination. Sample coordination was used in survey
sampling for almost four decades.Negative coordinationin re-
peated surveys was used to decrease the likelihood that the same
subject is surveyed (and burdened) multiple times.Positive coor-
dination was used to make samples as similar as possible when
parameters change in order to reduce overhead. Coordination is
obtained using the PRN (Permanent Random Numbers) method
for Poisson samples [4] and order samples [45, 41, 43]. PRN re-
sembles our “shared-seed” coordination method. The challenges
of massive data sets, however, are different from those of survey
sampling and in particular, we are not aware of previously existing
unbiased estimators for multiple-assignment aggregates over coor-
dinated weighted samples.

Coordination (of Poisson,k-mins, and order samples) was (re-
)introduced in computer science as a method to support aggrega-
tions that involve multiple sets [6, 5, 9, 26, 27, 2, 13, 28, 14]. Coor-
dination addressed the issue that independent samples of different



sets over the same universe provide weak estimators for multiple-
set aggregates such as intersection size or similarity. Intuitively,
two large but almost identical sets are likely to have disjoint inde-
pendent samples – the sampling does not retain any information on
the relations between the sets.

This previous work, however, considered restricted weightmod-
els: uniform, where all weights are0/1, andglobal weights, where
a key has the same weight value across all assignments where its
weight is strictly positive (but the weight can vary betweenkeys).
Allowing the same key to assume different positive weights in dif-
ferent assignments is clearly essential for our applications.

While these methods can be applied with general weights, by
ignoring weight values and performing coordinated uniformsam-
pling, resulting estimators are weak. Intuitively, uniform sampling
performs poorly on weighted data because it is likely to leave out
keys with dominant weights. Weighted sampling, where keys with
larger weights are more likely to be represented in the sample, is
essential for boundable variance of weighted aggregates.
Sketches that are not samples.Sketches that are notsample based
[36, 7, 8, 47, 16, 32, 37, 17, 25] are effective point solutions for
particular metrics such as max-dominance [17] orL1 [25] differ-
ence. Their disadvantage is less flexibility in terms of supported
aggregates and in particular, no support for aggregates over selected
subpopulations of keys: we can estimate the overallL1 difference
between two time periods but we can not estimate the difference
restricted to a subpopulation such as flows to particular destination
or certain application. There is also no mechanism to obtain“rep-
resentatives” keys[48].

Bloom filters [3, 24] also support estimation of similarity metrics
but summary size is not tunable and grows linearly with the number
of keys.

3. PRELIMINARIES
A weighted set(I, w) consists of a set of keysI and a function

w assigning a scalar weight valuew(i) ≥ 0 to each keyi ∈ I . We
review components of sample-based summarizations of a weighted
set: sample distributions, respectivesketches, that in our context
are samples with some auxiliary information, and associating ad-
justed weightswith sampled keys that are used to answer weight
queries. Sample distributions are defined throughrandom rank as-
signments[9, 43, 12, 22, 13, 14] that map each keyi to a rank
valuer(i). The rank assignment is defined with respect to a family
of probability density functionsfw (w ≥ 0), where eachr(i) is
drawn independently according tofw(i). We say thatfw (w ≥ 0)
aremonotoneif for all w1 ≥ w2, for all x, Fw1(x) ≥ Fw2(x)
(whereFw are the respective cumulative distributions). For a setJ
and a rank assignmentr we denote byri(J) the ith smallest rank
of a key inJ , we also abbreviate and writer(J) = r1(J).

• A Poisson-τ sample ofJ is defined with respect to a rank assign-
mentr. The sample is the set of keys withr(i) < τ . The sample
hasexpectedsizek =

P

i
Fw(i)(τ ). Keys have independent inclu-

sion probabilities. The sketch includes the pairs(r(i), w(i)) and
may include key identifiers with attribute values.

• An order-k (bottom-k) sample ofJ contains thek keysi1, . . . , ik
of smallest ranks inJ . The sketchsk(J, r) consists of thek pairs
(r(ij), w(ij)), j = 1, . . . , k, andrk+1(J). (If |J | ≤ k we store
only |J | pairs.), and may include the key identifiersij and addi-
tional attributes.

• A k-mins sampleof J ⊂ I is produced fromk independent rank
assignments,r(1), . . . , r(k). The sample is the set of (at mostk)
keys) with minimum rank valuesr(1)(J), r(2)(J), . . ., r(k)(J).
The sketch includes the minimum rank values and, depending on

the application, may include corresponding key identifiersand at-
tribute values.

When weights of keys are uniform, ak-mins sample is the result
of k uniform draws with replacement, order-k samples arek uni-
form draws without replacements, and Poisson-τ samples are in-
dependent Bernoulli trials. The particular familyfw matters when
weights are not uniform. Two families with special properties are:

• EXP ranks:fw(x) = we−wx (Fw(x) = 1−e−wx) are exponentially-
distributed with parameterw (denoted byEXP[w]). Equivalently,
if u ∈ U [0, 1] then− ln(u)/w is an exponential random vari-
able with parameterw. EXP[w] ranks have the property that the
minimum rankr(J) has distributionEXP[w(J)], wherew(J) =
P

i∈J
w(i) This property is useful for designing estimators and ef-

ficiently computing sketches [9, 11, 23, 12, 13]. Thek-mins sam-
ple [9] of a set is a sample drawnwith replacementin k draws where
a key is selected with probability equal to the ratio of its weight and
the total weight. An order-k sample is the result ofk such draws
performedwithout replacement, where keys are selected according
to the ratio of their weight and the weight of remaining keys [42,
29, 43].

• IPPS ranks: fw is the uniform distributionU [0, 1/w] (Fw(x) =
min{1, wx}). This is the equivalent to choosing rank valueu/w,
whereu ∈ U [0, 1]. The Poisson-τ sample is anIPPSsample [29]
(Inclusion Probability Proportional to Size). The order-k sample is
a priority sample [40, 22] (PRI).

Adjusted weights.A technique to obtain estimators for the weights
of keys is by assigning an adjusted weighta(i) ≥ 0 to each keyi
in the sample (adjusted weighta(i) = 0 is implicitly assigned to
keys not in the sample). The adjusted weights are assigned such
that E[a(i)] = w(i), where the expectation is over the random-
ized algorithm choosing the sample. We refer to the (random vari-
able) that combines a weighted sample of(I, w) together with ad-
justed weights as anadjusted-weights summary(AW-summary) of
(I, w). An AW-summary allows us to obtain an unbiased esti-
mate on the weight ofany subpopulationJ ⊂ I . The estimate
P

j∈J a(j) =
P

j∈J|a(j)>0 a(j) is easily computed from the sum-
mary provided that we have sufficient auxiliary informationto tell
for each key in the summary whether it belongs toJ or not. More-
over, for any secondary numeric functionh() over keys’ attributes
such thath(i) > 0 =⇒ w(i) > 0 and any subpopulationJ ,
P

j∈J|a(j)>0 a(j)h(j)/w(j) is an unbiased estimate of
P

j∈J h(j).

Horvitz-Thompson (HT). Let Ω be the distribution over samples
such that ifw(i) > 0 thenp(Ω)(i) = Pr{i ∈ s|s ∈ Ω} is posi-
tive. If we knowp(Ω)(i) for everyi ∈ s, we can assign toi ∈ s

the adjusted weighta(i) = w(i)

p(Ω)(i)
. Sincea(i) is 0 wheni 6∈ s,

E[a(i)] = w(i) (a(i) is an unbiased estimator ofw(i)). These
adjusted weights are called the Horvitz-Thompson (HT) estima-
tor [30]. For a particularΩ, the HT adjusted weights minimize
VAR[a(i)] for all i ∈ I . The HT adjusted weights for Poisson
τ -sampling area(i) = w(i)/Fw(i)(τ ). Poisson sampling with
IPPS ranks and HT adjusted weights are known to minimize the
sum

P

i∈I
VAR(a(i)) of per-key variances over all AW-summaries

with the same expected size.

HT on a partitioned sample space (HTP) [13]. This is a method
to derive adjusted weights when we cannot determinePr{i ∈ s|s ∈
Ω} from the information contained in the sketchs alone. For ex-
ample, ifs is an order-k sample of(I,w), thenPr{i ∈ s|s ∈ Ω}
generally depends on all the weightsw(i) for i ∈ I and therefore
cannot be determined froms.

For each keyi we consider a partition ofΩ into equivalence
classes. For a sketchs, letP i(s) ⊂ Ω be the equivalence class ofs.



This partition must satisfy the following requirement: Givens such
that i ∈ s, we can compute the conditional probabilitypi(s) =
Pr{i ∈ s′ | s′ ∈ P i(s)} from the information included ins.

We can therefore compute for alli ∈ s the assignmenta(i) =
w(i)/pi(s) (implicitly, a(i) = 0 for i 6∈ s.) It is easy to see that
within each equivalence class,E[a(i)] = w(i). Therefore, also
overΩ we haveE[a(i)] = w(i).
Rank Conditioning (RC) is an HTPmethod designed for an order-
k sketch [13]. For eachi and possible rank valueτ we have an
equivalence classP i

τ containing all sketches in which thekth small-
est rank value assigned to a key other thani is τ . Note that ifi ∈ s
then this is the(k + 1)st smallest rank which is included in the
sketch. It is easy to see that the inclusion probability ofi in a sketch
in P i

τ is pi
τ = Fw(i)(τ ).

Assumes containsi1, . . . , ik and the(k + 1)st smallest rank
value rk+1. Then for keyij , we haves ∈ P

ij
rk+1 anda(ij) =

w(ij )

Fw(ij )(rk+1)
.

We subsequently use the notationΩ(i, r) for the probability sub-
space of rank assignments that contains all rank assignmentsr′ that
agree onr for all keys inI \ {i}.

The RC estimator for order-k samples withIPPSranks [22] has
a sum of per-key variances that is at most that of an HT estimator
applied to a Poisson sample withIPPSranks and expected sizek+1
[49]. Order sampling emerges as superior to Poisson sampling,
since it matches its estimation quality per expected samplesize and
has the desirable property of a fixed sample size.
Sum of per-key variancesDifferent AW-summaries are compared
based on theirestimation quality. Variance is the standard metric
for the quality of an estimator for a single quantity. For a subpop-
ulation J and AW-summariesa(), the variance isVAR[a(J)] =
E[a(J)]2 −w(J)2. Since our application is for arbitrary subpopu-
lations that may not specified a priori, the notion of a good metric
is more subtle. Clearly there is no single AW-summary that domi-
nates all others of the same size (minimizes the variance) for all J .

RC adjusted weights havezero covariances, that is, for any two
keys i, j, COV[a(i), a(j)] = E[a(i)a(j)] − w(i)w(j) = 0 [13].
This property extends to applications of the RC method to coordi-
nated sketches with global weights [14]. HT adjusted weights for
Poisson sketches have zero covariances (this is immediate from in-
dependence). When covariances are zero, the variance ofa(J) for
a particular subpopulationJ is equal to

P

i,j∈J
COV[a(i), a(j)] =

P

i∈J VAR[a(i)]. For AW-summaries with zero covariances, the
sum of per-key variancesΣV [a] ≡

P

i∈I
VAR[a(i)], also mea-

sures average variance over subpopulations of certain weight [50].
ΣV [a] hence serves as a balanced performance metric [22, 13] and
we use it in our performance evaluation.

Estimators for Poisson,k-mins, and order sketches withEXP or

IPPS ranks haveΣV [a] ≤
P

i∈I w(i)2

k−2
(wherek is the (expected)

sample size) [9, 12, 22, 49]. This bound is tight when keys have
uniform weights andk ≪ |I |, but ΣV [a] is smaller for order and
Poisson sketches when the weight distribution is skewed [12, 22].
For a subpopulationJ with expectedk′ samples in the sketch, the
variance on estimatingw(J) is bounded byw(J)2/(k′ − 2).

4. MODEL AND SUMMARY FORMATS
We model the data using a set of keysI and a setW of weight

assignmentsover I . For eachb ∈ W, w(b) : I → R≥0 maps
keys to nonnegative reals. Figure 1 shows a data set withI =
{i1, . . . , i6} andW = {1, 2, 3}. For i ∈ I andR ⊂ W, we
use the notationw(R)(i) for theweight vectorwith entriesw(b)(i)
ordered byb ∈ R.

We are interested in aggregates of the form
P

i|d(i)=1 f(i) where
d is a selection predicate andf is a numeric function, both defined
over the set of keysI . f(i) andd(i) may depend on the attribute
values associated with keyi and on the weight vectorw(W)(i).

We say that the functionf /predicated is single-assignmentif it
depends onw(b)(i) for a singleb ∈ W. Otherwise we say that it
is multiple-assignment. The relevant assignmentsof f andd are
those necessary for determining all keysi such thatd(i) = 1 and
evaluatingf(i) for these keys.
The maximumandminimumwith respect to a set of assignments
R ⊂ W, are defined byf(i) as follows:

w(maxR)(i) ≡ max
b∈R

w(b)(i) w(minR)(i) ≡ min
b∈R

w(b)(i) . (1)

The relevant assignments forf in this case areR. Sums over these
f ’s are also known as themax-dominanceandmin-dominancenorms
[17, 18] of the selected subset.
The ratio

P

i∈J w(minR)(i)/
P

i∈J w(maxR)(i) when|R| = 2 is
theweighted Jaccard similarityof the assignmentsR onJ . TheL1

difference can be expressed as a sum aggregate by choosingf(i)
to be

w(L1R)(i) ≡ w(maxR)(i)−w(minR)(i) . (2)

For the example in Figure 1, the max dominance norm over even
keys (specified by a predicated that is true fori2, i4, i6) and assign-
mentsR = {1, 2, 3} is w(max{1,2,3})(i2) + w(max{1,2,3})(i4) +

w(max{1,2,3})(i6) = 15 + 20 + 10 = 45, theL1 distance between
assignmentsR = {2, 3} over keysi1, i2, i3 is w(L1{2,3})(i1) +

w(L1{2,3})(i2) + w(L1{2,3})(i3) = 10 + 5 + 3 = 18.
This classification of dispersed and colocated models differenti-

ates the summary formats that can be computed in a scalable way:
With colocated weights, each key is processed once, and samples
for different assignmentsb ∈ W are generated together and can be
coupled. Moreover, the (full) weight vector can be easily incorpo-
rated with each key included in the final summary. With dispersed
weights, any scalable summarization algorithm must decouple the
sampling for differentb ∈ W. The process and result forb ∈ W
can only depend on the valuesw(b)(i) for i ∈ I . The final summary
is generated from the results of these disjoint processes.
Random rank assignments for(I,W). A random rank assign-
mentfor (I,W) associates a rank valuer(b)(i) for eachi ∈ I and
b ∈ W. If w(b)(i) = 0, r(b)(i) = +∞. Therank vectorof i ∈ I ,
r(W)(i), has entriesr(b)(i) ordered byb ∈ W. The distributionΩ
is defined with respect to a monotone family of density functions
fw (w ≥ 0) and has the following properties: (i) For allb and i
such thatw(b)(i) > 0, the distribution ofr(b)(i) is f

w(b)(i). (ii)

The rank vectorsr(W)(i) for i ∈ I are independent. (iii) For all
i ∈ I , the distribution of the rank vectorr(W)(i) depends only on
the weight vectorw(W)(i).

It follows from (i) and (ii) that for eachb ∈ W, {r(b)(i)|i ∈ I}

is a random rank assignment for the weighted set(I,w(b)) with
respect to the familyfw (w ≥ 0). The distributionΩ is specified
by the mapping (iii) from weight vectors to distributions ofrank
vectors specifiesΩ.
Independent or consistent ranks. If for each keyi, the entries
r(b)(i) (b ∈ W) of the rank vector ofi are independent we say
that the rank assignment hasindependent ranks. In this caseΩ is
the product distribution of independent rank assignmentsr(b) for
(I, w(b)) (b ∈ W).

A rank assignment hasconsistent ranksif for each keyi ∈ I and
any two weight assignmentsb1, b2 ∈ W,

w(b1)(i) ≥ w(b2)(i)⇒ r(b1)(i) ≤ r(b2)(i) .



keys: I = {i1, . . . , i6}

weight assignments:w(1), w(2), w(3)

assignment/key i1 i2 i3 i4 i5 i6
w(1) 15 0 10 5 10 10
w(2) 20 10 12 20 0 10
w(3) 10 15 15 0 15 10

Example functionsf(ij )

w(max{1,2}) 20 10 12 20 10 10
w(max{1,2,3}) 20 15 15 20 15 10
w(min{1,2}) 15 0 10 0 0 10

w(min{1,2,3}) 10 0 10 0 0 10
w(L1{1,2}) 5 10 2 15 10 0
w(L1{2,3}) 10 5 3 20 15 0

(A)

Consistent shared-seedIPPSranks:
key: i1 i2 i3 i4 i5 i6
u 0.22 0.75 0.07 0.92 0.55 0.37

r(1) 0.0147 +∞ 0.007 0.184 0.055 0.037
r(2) 0.011 0.075 0.0583 0.046 +∞ 0.037
r(3) 0.022 0.05 0.0047 +∞ 0.0367 0.037

Independent IPPSranks:
key: i1 i2 i3 i4 i5 i6
u(1) 0.22 0.75 0.07 0.92 0.55 0.37
r(1) 0.0147 +∞ 0.007 0.184 0.055 0.037

u(2) 0.47 0.58 0.71 0.84 0.25 0.32
r(2) 0.0235 0.058 0.0592 0.042 +∞ 0.032

u(3) 0.63 0.92 0.08 0.59 0.32 0.80

r(3) 0.063 0.0613 0.0053 +∞ 0.0213 0.08
(B)

order3-samples:
w(1) i3, i1, i6
w(2) i1, i6, i4
w(3) i3, i1, i5

order3-samples:
w(1) i3, i1, i6
w(2) i1, i6, i4
w(3) i3, i5, i2

Figure 1: (A): Example data set with keysI = {i1, . . . , i6} and weight assignmentsw(1), w(2), w(3) and per-key values for example
aggregates. (B): random rank assignments and corresponding 3-order samples.

(in particular, if entries of the weight vector are equal then corre-
sponding rank values are equal, that is,w(b1)(i) = w(b2)(i) ⇒

r(b1)(i) = r(b2)(i).)

• Shared-seed:Independently, for each keyi ∈ I :

• u(i) ← U [0, 1] (whereU [0, 1] is the uniform distribution on
[0, 1].)
• Forb ∈ W, r(b)(i)← F

−1

w(b)(i)
(u(i)).

That is, for i ∈ I , r(b)(i) (b ∈ W) are determined using the
same “placement” (u(i)) in Fw(b)(i).

Consistency of this construction is an immediate consequence of
the monotonicity property offw.

Shared-seed assignment forIPPSranks isr(b)(i) = u(i)/w(b)(i)

and forEXP ranks, isr(b)(i) = − ln u(i)/w(b)(i).
• Independent-differencesis specific toEXP ranks. Recall that
EXP[w] denotes the exponential distribution with parameterw. In-
dependently, for each keyi:

Let w(b1)(i) ≤ · · · ≤ w(bh)(i) be the entries of the weight
vector ofi.
• For j ∈ 1 . . . h, dj ← EXP[w(bj )(i) − w(bj−1)(i)], where

w(0)(i) ≡ 0 anddj are independent.
• For j ∈ 1 . . . h, r(bj)(i)← minj

a=1 dj .

For these ranks consistency is immediate from the construction.
Since the distribution of the minimum of independent exponential
random variables is exponential with parameter that is equal to the
sum of the parameters, we have that for allb ∈ W, i ∈ I , r(b)(i) is
exponentially distributed with parameterw(b)(i).
Coordinated and independent sketches.Coordinated sketches
are derived from assignments with consistent ranks and indepen-
dent sketches from assignments with independent ranks.k-mins
sketches: An ordered set ofk rank assignments for(I,W) defines a
set of|W| k-mins sketches, one for each assignmentb ∈ W. Order
and Poisson sketches: A single rank assignmentr on (I,W) de-
fines an order-k sketch (and a Poissonτ (b)-sketch) for eachb ∈ W,
(using the rank values{r(b)(i)|i ∈ I}). Figure 1 shows examples
of independent and shared-seed consistent rank assignments for the
example data set and the corresponding order3-samples.

In the sequel we mainly focus on order-k sketches. Derivations
are similar (but simpler) for Poisson sketches. We shall denote by
S(r) the summary consisting of|W| order-k sketches obtained us-
ing a rank assignmentr.

k-mins sketches derived from rank assignments with independent-
differences consistent ranks have the following property:

THEOREM 4.1. For any b1, b2 ∈ W, the probability that both
assignments have the same minimum-rank key is equal to the weighted
Jaccard similarity of the two weight assignments.

Therefore, the fraction of common keys in the twok-mins sketches
is an unbiased estimator of the weighted Jaccard similarity. This
generalizes the estimator for unweighted Jaccard similarity [5].

The following theorem shows that shared-seed consistent ranks
maximizes the sharing of keys between sketches. We prove it for
Poisson sketches and conjecture that it holds also for orderandk-
mins sketches.

THEOREM 4.2. Consider all distributions of rank assignments
on (I,W) obtained using a familyFw. Shared-seed consistent
ranks minimize the expected number of distinct keys in the union of
the sketches for(I,w(b)), b ∈ W.

Sketches for the maximum weight.ForR ⊂ W, letr(minR)(i) =

minb∈R r(b)(i). The following holds for all consistent rank assign-
ments:

LEMMA 4.1. Let r be a consistent rank assignment for(I,W)

with respect tofw (w > 0). LetR ⊂ W. Thenr(minR)(i) is a
rank assignment for the weighted set(I,w(maxR)) with respect to
fw (w > 0).

A consequence of Lemma 4.1 is the following:

LEMMA 4.2. From coordinated Poissonτ (b)-/order k-/k-mins
sketches forR ⊂ W, we can obtain a Poissonminb∈R τ (b)-/order
k-/k-mins sketch for(I, w(maxR)).

Fixed number of distinct keys for colocated dataThe number
of distinct keys in coordinated size-k sketches is at most|W|k.
It is smaller when weight assignments are more correlated. The
size varies by the rank assignment whenk is fixed. A different
natural goal is instead of fixingk, to fix the number of distinct keys
to be between[|W|(k − 1) + 1, |W|k] distinct keys. For a rank
assignmentr, we defineℓ to be the largest such that there are at
most |W|k distinct keys in the union of the order-ℓ sketches with
respect tor(b) (b ∈ W). As a result, we have varyingℓ ≥ k
but sample size in[|W|(k − 1) + 1, |W|k]. This sample can be
computed by a simple adaptation of the stream sampling algorithm
for the fixed-k variant.

Computing coordinated sketches. Coordinated order sketches
can be computed by a small modification of existing order sampling
algorithms. If weights are colocated the computation is simple (for



both shared-seed and independent-differences), as each key is pro-
cessed once. For dispersed weights and shared-seed, randomhash
functions must be used to ensure that the same seedu(i) is used for
the keyi in different assignments. We apply the common practice
of assuming perfect randomness of the rank assignment in theanal-
ysis. This practice is justified by a general phenomenon [44,38],
that simple heuristic hash functions and pseudo-random number
generators [2] perform in practice as predicted by this simplified
analysis. This phenomenon is also supported by our evaluation.

Independent-differences are not suited for dispersed weights as
they require range summable universal hash functions [25, 44].

5. ESTIMATORS
Consider(I,W), a rank assignmentr ∈ Ω, and a correspond-

ing summaryS(r). The input to our generic estimator is a numeric
functionf and a predicated, defined for each key inI . Our esti-
mator assigns adjustedf -weightsa(f)(i) to a subsetS∗(r) of the
keys included inS(r). An estimate for

P

i|d(i)=1 f(i) is obtained
by summing the adjustedf -weights of keys inS∗(r) that satisfy the
predicated. A handy property is that the same adjustedf -weights
can be used for different selection predicatesd().

Recall that the probability subspaceΩ(i, r) consists of all rank
assignmentsr′ such that∀b ∈ W, and∀j ∈ I \ {i}, r′(b)(j) =

r(b)(j). Let p(i, r) denote the probability thati is included in
S∗(r′) for r′ ∈ Ω(i, r) we apply HTPand usea(f)(i) = f(i)/p(i, r).

S∗(r) is selected to be as inclusive as possible such that we can
evaluated(i), f(i), and p(i, r) for all i ∈ S∗(r) based on the
information inS(r).

5.1 Colocated Weights
The summaryS(r) contains all keysi ∈ I such that for at least

oneb ∈ W, r(b)(i) ≤ r
(b)
k+1(I) and the full weight vectorw(W)(i)

for each included key. Hence, anyf andd can be evaluated for all
i ∈ S(r).

We use the generic estimator withS∗(r) ≡ S(r) and refer to
this asinclusiveestimators. (We use the term inclusive since they
use all keys in the union of the order-k samples.) Inclusive estima-
tors are applicable whenf andd satisfy the conditionf(i)d(i) >

0 =⇒ w(maxW )(i) > 0 for all i ∈ I , which simply means that
any key with a positive contribution to the aggregate has a positive
probability of being sampled. The probability thati is included in
S(r′) for r′ ∈ Ω(i, r) is

p(i, r) = PR[∃b ∈ W, r′(b)(i) < r
(b)
k (I \{i})|r′ ∈ Ω(i, r)] . (3)

To compute (3), the summary should include, for eachb ∈ W,
the rank valuesr(b)

k (I) andr
(b)
k+1(I) and for eachi ∈ S(r) andb ∈

W, whetheri is included in the order-k sketch ofb (that is, whether
r(b)(i) < r

(b)
k+1(I)). This information allows us to determine the

valuesr(b)
k (I \ {i}) for all i ∈ I andb ∈ W: if i is included in the

sketch forb thenr
(b)
k (I \ {i}) = r

(b)
k+1(I). Otherwise, it isr(b)

k (I).
We provide explicit expressions forp(i, r) (Eq. (3)), for i ∈

S(r), for the rank distributions which we consider. Since we can
evaluatep(i, r), f(i), andd(i) for all i ∈ S(r), we can indeed
apply the generic estimator withS∗(r) ≡ S(r).

Independent ranks (independent order-k sketches): The proba-
bility over Ω(i, r) that i is included in the order-k sketch ofb is
Fw(b)(i)(r

(b)
k (I \ {i})). It is included inS(r′) if and only if it is

included for at least one ofb ∈ W. Sincer′(b)(i) are independent,

p(i, r) = 1−
Y

b∈W

(1− Fw(b)(i)(r
(b)
k (I \ {i}))) . (4)

For EXP ranks:p(i, r) = 1 −
Q

b∈W(1 − exp(−w(b)(i)r
(b)
k (I \

{i}))) and forIPPSranks,
p(i, r) = 1−

Q

b∈W(1−min{1, w(b)(i)r
(b)
k (I \ {i})}).

Shared-seed consistent ranks(coordinated order-k sketches):i is
included in the sketch ofb for r′ ∈ Ω(i, r) if and only if u(i) ≤

Fw(b)(i)(r
(b)
k (I \ {i})). The probability that it is included for at

least one ofb ∈ W is

p(i, r) = max
b∈W
{Fw(b)(i)(r

(b)
k (I \ {i}))} . (5)

For EXP ranks:
p(i, r) = exp(−minb∈W{w

(b)(i)r
(b)
k (I \ {i})}) and for IPPS

ranks:p(i, r) = min
n

1, maxb∈W{w
(b)(i)r

(b)
k (I \ {i})}

o

.

Independent-differences consistent ranks(coordinated order-k
sketches): Letw(b1)(i) ≤ · · · ≤ w(bh)(i) be the entries of the
weight vector ofi. Recall thatr(bj)(i)← minj

a=1 dj wheredj ←

EXP[w(bj )(i)− w(bj−1)(i)] (we definew(0)(i) ≡ 0 andEXP[0] ≡
0).

We also defineMℓ = maxh
a=ℓ r

(ba)
k (I \ {i}) (ℓ ∈ [h]), and

the eventAj to consist of all rank assignments such thatj is the
smallest index for whichdj ≤ Mj . Clearly the eventsAj are
disjoint andp(i, r) =

Ph

ℓ=1 PR[Aℓ].
The probabilitiesPR[Aℓ] can be computed using a linear pass on

the sorted weight vector ofi.

5.2 Dispersed weights
Let r be a rank assignment for(I,W). The summaryS(r) is

the set of order-k sketchessk(I, r(b)) for b ∈ W. In the dispersed
weights modelw(b)(i) (for i ∈ I, b ∈ W) is included inS(r) if
and only ifi ∈ sk(I, r(b)).

ForR ⊂ W and i ∈ I , let w(maxR)(i) = maxb∈R w(b)(i),
b(maxR)(i) = arg maxb∈R w(b)(i) (the weight assignment from
Rwhich maximizesi’s weight), andr(minR)(i) = minb∈R r(b)(i)
(the smallest rank value thati assumes forb ∈ R). If r is con-

sistent thenr(minR)(i) = rb(maxR)(i)(i) (smallest rank value for
i is assumed on the assignment with largest weight). Similarly,
w(minR)(i) = minb∈R w(b)(i), b(minR)(i) = arg minb∈R w(b)(i),
andr(maxR)(i) = maxb∈R r(b)(i). When the dependency onR is
clear from context, it is omitted.

We also user(minR)
k+1 (I) = minb∈R r

(b)
k+1(I) and denote the

weight and rank vectors ofi ∈ I by r(R)(i) andw(R(i).
We apply the generic derivation using the following guidelines:
(1) If f can be expressed as a linear combination of the form

f(i) = f1(i) + f2(i) + . . ., we estimate each summandfj sep-
arately. This allows for weaker conditions in the generic deriva-
tion, resulting in more inclusive sets of applicable samples and
tighter estimates. In some cases it is necessary to expressf as
a linear combination in order to facilitate estimation, as there are
f = f1 + f2 such that the generic estimator is not applicable tof
but is applicable tof1 andf2.

(2) We determine a setR ⊂ W of relevant assignmentsfor
f and d. The setS∗(r) of applicable samples is a subset of
S

b∈R sk(I, r(b)).
(3) We consider the dependence off andd on the weight vector

w(R). We derive estimators for two families off andd’s that in-
clude the cases wheref is w(minR), w(maxR), or w(L1R) which
we used in our empirical evaluation. Our methodology is applica-
ble to other interestingf ’s such as quantiles over assignments.

We say thatf andd aremin-dependentif

w(minR)(i) = 0⇒ f(i)d(i) = 0 .



key, weight
P

i
w(1)(i)

P

i
w(2)(i)

P

i
w(max{1,2})(i)

P

i
w(min{1,2})(i)

P

i
w(L1{1,2})(i)

destIP, 4tuple 5.42 × 105 5.54 × 105 7.47 × 105 3.49 × 105 3.98 × 105

destIP, bytes 2.08 × 109 2.17 × 109 3.26 × 109 9.96 × 108 2.26 × 109

srcIP+destIP, packets 4.61 × 106 4.61 × 106 7.61 × 106 1.61 × 106 6.00 × 106

srcIP+destIP, bytes 2.08 × 109 2.17 × 109 3.49 × 109 7.65 × 108 2.72 × 109

Table 1: IP dataset1

months 1 2 3 4 5 6 7 8 9 10 11 12 1,2 1-6 1-12
distinct movies (×104) 1.54 1.58 1.61 1.64 1.66 1.68 1.70 1.73 1.73 1.77 1.73 1.73 1.60 1.71 1.77
ratings (×106) 4.70 4.10 4.31 4.16 4.39 5.30 4.95 5.26 4.91 5.16 3.61 2.41 8.80 27.0 53.3
min (×106) 3.72 2.97 1.68
max (×106) 5.08 6.79 7.95
L1 (×106) 1.35 3.82 6.27

Table 2: Netflix data set. Distinct movies (number of movies with at least one rating) and total number of ratings for each month
(1, . . . , 12) in 2005 and for periodsR = {1, 2},R = {1, . . . , 6}, andR = {1, . . . , 12}. For these periods, we also show

P

i w(minR)(i),
P

i
w(maxR)(i), and

P

i
w(L1R)(i).

It is easy to see thatf(i) = w(minR)(i) and any predicated are
min-dependent, butf(i) = w(maxR)(i) and anyd which selects
items i for which w(maxR)(i) > 0 is not. We derive estimators
for all min-dependentf, d for both coordinated and independent
sketches.

We say thatf andd aremax-dependentif

f(i) ≡ f(w(maxR)(i), b(maxR)(i))

d(i) ≡ d(w(maxR)(i), b(maxR)(i))

w(maxR)(i) = 0 ⇒ d(i)f(i) = 0 .

In particular,f(i) = w(maxR)(i) and any attribute-based predicate
d are max-dependent. We derive estimators for max-dependentf
andd for coordinated sketches. We also argue that it is not possible
to obtain unbiased nonnegative estimates forf(i) = w(maxR)(i)
over independent sketches.

5.2.1 Max-dependence

Max-dependence estimator (coordinated sketches):

• S∗(r)← {i | ∃b ∈ R, r(b)(i) < r
(minR)
k+1 (I)}

• For i ∈ S∗(r):

w(maxR)(i) ← max{w(b)(i) | b ∈ R, i ∈ sk(I, r(b))}

b(maxR)(i) ← arg max
b∈R|i∈sk(I,r(b))

w(b)(i)

p(i, r) ← F
w(maxR)(i)

(r
(minR)
k+1 (I))

af (i) ←
f(w(maxR)(i), b(maxR)(i))

p(i, r)

• Output
P

i∈S∗(r)|d(w(maxR)(i),b(maxR)(i))
af (i)

As a special case forf(i) = w(maxR)(i) and i ∈ S∗(r) we
obtain the adjusted weights:

a(maxR)(i) =
w(maxR)(i)

F
w(maxR)(i)

(r
(minR)
k+1 (I))

(6)

5.2.2 Min-dependence

Min-dependence l-set estimator:

• S∗
ℓ
(r)← {i |

V

b∈R r(b)(i) < r
(b)
k+1(I)}

• ∀i ∈ S∗
ℓ
(r),

pℓ(i, r)← PR[∀b ∈ R, r′(b)(i) < r
(b)
k+1(I) | r′ ∈ Ω(i, r)]

S∗
ℓ (r) is the set of keys that are included in all|R| order-k

sketches.

pℓ(i, r) for shared-seed consistent ranks is:

pℓ(i, r) = min
b∈R

Fw(b)(i)(r
(b)
k+1(I)) (7)

For EXP ranks,

pℓ(i, r) = 1− exp(−min
b∈R

w(b)(i)r
(b)
k+1(I))

and forIPPSranks,pℓ(i, r) = min{1, minb∈R{w
(b)(i)r

(b)
k+1(I)}}.

For independent-differences consistent ranks,pℓ(i, r) is expressed
as a simultaneous bound on all prefix-sums of a set of independent
exponentially-distributed random variables.

For independent ranks:

pℓ(i, r) =
Y

b∈R

Fw(b)(i)(r
(b)
k+1(I)) . (8)

By contrasting (7) and (8) we can see that the respective inclu-
sion probability can be exponentially smaller (in|R|) for indepen-
dent sketches than with coordinated sketches. Since the variance
VAR[a(i)] is proportional to( 1

pℓ(i,r)
− 1), we can have exponen-

tially larger variance.
Let a

(minR)
ℓ (i) be the adjusted weight forf(i) = w(minR)(i)

of the l-set estimator using shared-seed consistent ranks,and let
a
(minR)
ind (i) be the adjusted weight forf(i) = w(minR)(i) of the

l-set estimator using independent ranks.
We can also use a smaller set of samples as follows.

Min-dependence s-set estimator:

• S∗
s (r)← {i |

V

b∈R r(b)(i) < r
(minR)
k+1 (I)}

• ∀i ∈ S∗
s (r),

ps(i, r)← PR[∀b ∈ R, r′(b)(i) < r
(minR)
k+1 (I) | r′ ∈ Ω(i, r)]

S∗
s (r) is the set of keys that are included in all|R| sketches with

rank value at mostr(minR)
k+1 (I). The advantage of the s-set estimator

is that for coordinated sketches the inclusion probabilities have a
simpler formula which is easier to compute namely

ps(i, r) = F
w(minR)(i)

(r
(minR)
k+1 (I)) .

The s-set estimator can be used with independent ranks but there
is no advantage in doing so.

As a special case, we obtain adjusted weights forf(i) = w(minR)(i)
by

a(minR)
s (i) =

w(minR)(i)

Fw(min R)(i)(r
(minR)
k+1 (I))

, (9)



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

open 1.81 1.80 1.75 1.68 1.65 1.55 1.56 1.42 1.50 1.61 1.54 1.47 1.48 1.52 1.52 1.48 1.45 1.37 1.38 1.38 1.42 1.46 1.47
high 1.85 1.83 1.81 1.72 1.70 1.63 1.61 1.54 1.61 1.67 1.57 1.53 1.57 1.57 1.56 1.52 1.49 1.44 1.43 1.45 1.49 1.50 1.54
low 1.78 1.73 1.70 1.57 1.57 1.50 1.45 1.33 1.46 1.52 1.45 1.40 1.44 1.49 1.49 1.42 1.38 1.34 1.34 1.33 1.39 1.42 1.44

close 1.82 1.75 1.72 1.65 1.59 1.56 1.48 1.46 1.58 1.57 1.47 1.50 1.50 1.55 1.51 1.45 1.44 1.40 1.36 1.42 1.44 1.48 1.51
adj close 1.81 1.74 1.72 1.64 1.58 1.55 1.47 1.45 1.57 1.56 1.46 1.49 1.50 1.54 1.51 1.44 1.43 1.39 1.36 1.42 1.43 1.47 1.50
volume 1.52 1.66 1.82 2.26 1.96 2.44 2.10 3.14 1.93 2.22 1.80 2.27 1.84 1.42 1.43 1.73 2.05 1.84 1.55 1.99 1.96 1.71 1.75

Table 3: Daily totals for 23 trading days in October, 2008. Prices (open, high, low, close, adjustedclose) are×105. Volumes are
in×1010.

for everyi ∈ S∗
s (r), anda

(minR)
s (i) = 0 otherwise.

s-set versus l-set estimators.The l-set estimators have lower vari-
ance than the s-set estimators:

LEMMA 5.1. For any weight functionf andi ∈ I ,

VAR[a
(f)
l (i)] ≤ VAR[a(f)

s (i)]

5.3 L1 difference.
For a consistentr, we define thew(L1R) adjusted weights

a(L1R)
s (i) = a(maxR)(i)− a(minR)

s (i) (10)

a
(L1R)
ℓ (i) = a(maxR)(i)− a

(minR)
ℓ (i). (11)

We use the notationp(maxR)(i, r), p(minR)
s (i, r), andp

(minR)
ℓ (i, r)

for the respective inclusion probabilities. We use the notationa(minR),
a(L1R), p(minR) when the statement applies to both the respective
s-set and l-set estimators.

We show that for coordinated sketches, ourw(L1R) adjusted
weights are “well behaved,” in the sense that they are nonnegative.

LEMMA 5.2. For consistentr with IPPSor EXP ranks,∀i ∈ I ,
a(L1R)(i) ≥ 0.

6. VARIANCE PROPERTIES
We conjecture that the estimators we presented have zero covari-

ances. That is, for alli 6= j ∈ I , E[a(f)(i)a(f)(j)] = f(i)f(j).
This conjecture is consistent with empirical observationsand with
properties of related RC estimators [13, 14]. With zero covari-
ances, the varianceVAR[a(f)(J)] is the sum overi ∈ J of the
per-key variancesVAR[a(f)(i)]. Hence, if two adjusted-weights es-
timatorsa1 anda2 haveVAR[a1(i)] ≥ VAR[a2(i)] for all i ∈ I ,
then the relations holds for allJ ⊂ I .

We use the notationt(f)
k (i) for the RCf -adjusted weights as-

signed by an RC estimators applied to a order-k sketch of(I, f).

We also writet(w
(b))

k (i) ast
(b)
k (i) for short.

We measure the variance of an adjusted weight assignmenta
using ΣV [a] =

P

i∈I
VAR[a(i)]. To establish variance relation

between two estimators, it suffices to establish it for each key i.
Furthermore, if the estimators are defined with respect to the same
distribution of rank assignments then it suffices to establish vari-
ance relation with respect to someΩ(i, r). (Since these subspaces
partitionΩ and our estimators are unbiased on each subspace).

The variance of adjustedf -weightsa(f)(i) for i ∈ I are

VARΩ(i,r)[a
(f)(i)] = f(i)2

„

1

p(i, r)
− 1

«

. (12)

Colocated single-assignment estimators.We show that our single-
assignment inclusive estimators for co-located summaries(inde-
pendent or coordinated) dominate plain RC estimators basedon a
single order-k sketch.

LEMMA 6.1. For b ∈ W and i ∈ I , let a(b)(i) be the ad-
justed weights for co-located summaries computed by our estima-
tor (usingS∗(r) ≡ S(r) and inclusion probabilities (3)). Then,
VAR[a(b)(i)] ≤ VAR[t(b)(i)].

Approximation quality of multiple-assignment estimators. The
quality of the estimate depends on the relation betweenf and the
weight assignment(s) with respect to which the weighted sampling
is performed. We refer to these assignments asprimary. Vari-
ance is minimized whenf(i) are the primary weights but often
f must besecondary: f may not be known at the time of sam-
pling, the number of different functionsf that are of interest can be
large – to estimate all pairwise similarities we need

`

|W|
2

´

different
“weight-assignments”. For dispersed weights, even if known apri-
ori, weighted samples with respect to some multiple-assignmentf
cannot, generally, be computed in a scalable way. We bound the
variance of ourmin, max, andL1 estimators.

Colocatedmin, max, and L1 estimators. We bound the variance
of inclusive estimators formin, max, andL1 using the variance of
inclusive estimators for the respective primary weight assignments.

LEMMA 6.2. For f ∈ {maxR, minR, L1R}, leta(f)(i) be the
adjustedw(f)-weights for co-located summaries computed by our
estimator (usingS∗(r) ≡ S(r) and inclusion probabilities (3)).

VAR[a(minR)(i)] = min
b∈R

VAR[a(b)(i)] ,

VAR[a(maxR)(i)] = max
b∈R

VAR[a(b)(i)] ,

VAR[a(L1R)(i)] ≤ VAR[a(maxR)(i)] .

The following relations are an immediate corollary of Lemma6.2:

ΣV [a(minR)] ≤ min
b∈R

ΣV [a(b)] , ΣV [a(maxR)] ≤ max
b∈R

ΣV [a(b)] ,

ΣV [a(L1R)] ≤ ΣV [a(maxR)] ≤ max
b∈R

ΣV [a(b)] .

Relative variance bound formax: For both the dispersed and the
colocated models, we show that the variance of themax estimator
is at most that of an estimator applied to a weighted sample taken
with max being the primary weight. More precisely,a(maxR)(i)
has at most the variance of an RC estimator applied to an order-
k sketch of(I, w(maxR)) (obtained with respect to the samefw
(w > 0)). Hence, the relative variance bounds of single-assignment
order-k sketch estimators are applicable [12, 13, 22].

LEMMA 6.3. Let t(maxR)
k (i) be the adjusted weights of theRC

estimator applied to an order-k sketch of(I, w(maxR)). For any

i ∈ I , VAR[a(maxR)(i)] ≤ VAR[t
(maxR)
k (i)].

Dispersed modelmin and L1 estimators.We bound the absolute
variance of ourw(minR) estimator in terms of the variance ofw(b)-
estimators forb ∈ R. Let t(b)k be RC adjustedw(b)-weights using
the order-k sketch with ranksr(b).

LEMMA 6.4. For shared-seed consistentr, for all i ∈ I ,

VAR[a
(minR)
ℓ (i)] ≤ max

b∈R
VAR[t(b)(i)]
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R = {1, . . . , 5} (October 1-7),R = {1, . . . , 10} (October 1-
14),R = {1, . . . , 15} (October 1-21),R = {1, . . . , 23} (October
1-31). The following table lists

P

i w(minR)(i),
P

i w(maxR)(i),
and

P

i
w(L1R)(i) for these sets of trading days.

high (×105 ) volume (×1010 )
1-2 1-5 1-10 1-15 1-23 1-2 1-5 1-10 1-15 1-23

min 1.82 1.67 1.48 1.44 1.33 1.34 1.33 1.30 1.15 1.13
max 1.87 1.89 1.92 1.92 1.94 1.80 2.54 3.50 3.59 3.77
L1 0.05 0.22 0.44 0.49 0.61 0.41 1.20 2.20 2.43 2.64

7.2 Dispersed data.
We evaluate ourw(minR), w(maxR), andw(L1R) estimators as

defined in Section 5.2:a(maxR), a
(minR)
s , a

(minR)
l , a

(L1R)
s , and

a
(L1R)
l for coordinated sketches anda

(minR)
ind for independent sketches.

We used shared-seed coordinated sketches and show results for
the IPPSranks (see Section 3). Results forEXP ranks were similar.

We measure performance using the absoluteΣV [a(f)] and nor-
malizednΣV [a(f)] ≡ ΣV [a(f)]/(

P

i∈I f(i))2 sums of per-key vari-
ances (as discussed in Section 3), which we approximate by aver-
aging square errors over multiple (25-200) runs of the sampling
algorithm.

Coordinated versus Independent sketches.We compare thew(minR)

estimatorsa(minR)
ℓ (coordinated sketches) anda(minR)

ind (indepen-
dent sketches).

Figure 2 shows the ratioΣV [a
(minR)
ind ]/ΣV [a

(minR)
ℓ ] as a func-

tion of k for our datasets. Across data sets, the variance of the
independent-sketches estimator is significantly larger, up to many
orders of magnitude, than the variance of coordinated-sketches es-
timators. The ratio decreases withk but remains significant even
when the sample size exceeds 10% of the number of keys.

The ratio increases with the number of weight assignments: On
the Netflix data set, the ratio is 1-3 orders of magnitude for 2assign-
ments (months) and 10-40 orders of magnitude for 6-12 months.
On IP dataset 2, the gap is 1-5 orders of magnitude for 2 assign-
ments (hours) and 2-18 orders of magnitude for 4 assignments. On
the stocks data set, the gap is 1-3 orders of magnitude for 2 assign-
ments and reaches 150 orders of magnitude. This agrees with the
exponential decrease of the inclusion probability with thenumber
of assignments for independent sketches (see Section 5.2.2). These
ratios demonstrate the estimation power provided by coordination.

Weighted versus unweighted coordinated sketches.We com-
pare the performance of our estimators to known estimators ap-
plicable to unweighted coordinated sketches (coordinatedsketches
for uniform and global weights [14]). To apply these methods, all
positive weights were replaced by unit weights. Because of the
skewed nature of the weight distribution, the “unweighted”esti-
mators performed poorly with variance being orders of magnitude
larger (plots are omitted).

Variance of multiple-assignment estimators.We relate the vari-
ance of ourw(minR), w(maxR), andw(L1R) and the variance of
the optimal single-assignment estimatorsa(b) for the respective
individual weight assignmentsw(b) (b ∈ R). Because the vari-
ance ofa(minR)

ind was typically many orders of magnitude worse,
we include it only when it fit in the scale of the plot. The single-
assignment estimatorsa(b) are identical for independent and coor-
dinated sketches (constructed with the samek and rank functions
family), and hence are shown once.

Across all datasets (Figure 3 shows selected plots),ΣV [a
(minR)
l ],

ΣV [a
(maxR)
l ], andΣV [a

(L1R)
l ] andΣV [a(b)] for b ∈ R are within

an order of magnitude. On our datasets (nΣV not shown),nΣV [a(b)]

andnΣV [a
(maxR)
l ] are clustered together withknΣV ≪ 1 (and

decreases withk) (theory says(k − 2)nΣV ≤ 1.) We also ob-
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Figure 3: Top row: IP dataset2 key=4tuple weight=bytes
hours= {1, 2}; IP dataset2 key=4tuple weight=bytes hours=
{1, 2, 3, 4}. Middle row: Netflix data set R = {1, 2}, R =
{1, . . . , 12}. Bottom row: Stock dataset, high values:R =
{1, 2} (October 1-2, 2008),R = {1, . . . , 23} (all trading days
in October, 2008).

served thatnΣV [a
(L1R)
l ] andnΣV [a

(minR)
l ] are typically close

to nΣV [a(b)]. We observe the empirical relationsΣV [a
(minR)
ℓ

] <

ΣV [a
(maxR)
ℓ

] (with larger gap when theL1 difference is very small),

ΣV [a
(L1R)
ℓ

] < ΣV [a
(maxR)
ℓ

], andΣV [a
(minR)
ℓ

] < minb∈R ΣV [a(b)].
Empirically, the variance of our multi-assignment estimators with
respect to single-assignment weights is significantly lower than the
worst-case analytic bounds in Section 6 (Lemma 6.4 and 6.5).For
normalized (relative) variances, we observe the “reversed” relations
nΣV [a

(minR)
ℓ

] > nΣV [a
(maxR)
ℓ

], nΣV [a
(L1R)
ℓ

] > nΣV [a
(maxR)
ℓ

],

andnΣV [a
(minR)
ℓ

] > maxb∈R nΣV [a(b)] which are explained by
smaller normalization factors forw(minR) andw(L1R).

S-set versus L-set estimators.To understand the advantage of the
stronger l-set estimators over the s-set estimators, we studied the
ratiosΣV [a

(minR)
s ]/ΣV [a

(minR)
l ] andΣV [a

(L1R)
s ]/ΣV [a

(L1R)
l ]

as a function ofk. The advantage highly varies between datasets:
15%-80% for the Netflix dataset, 0%-9% for IP dataset1, 0%-20%
for IP dataset2, and 0%-300% on the Stocks data set.

7.3 Colocated data
We computed shared-seed coordinated and independent sketches

and show results forIPPS ranks (see Section 3). Results forEXP

ranks were similar.
We consider the followingw(b)-weights estimators.a(b)

c : the
shared-seed coordinated sketches inclusive estimator (Section 5.1,
Eq. 5). a(b)

i : the independent sketches inclusive estimator in (Sec-
tion 5.1, Eq. 4).a(b)

p : the plain order-k sketch RC estimator ([22]
for IPPSranks). Among all keys of the combined sketch this esti-
mator uses only the keys which are part of the order-k sketch ofb.

We study the benefit of our inclusive estimators by comparing



them to plain estimators. Since plain estimators can not be used
effectively for multiple assignment aggregates, we focus on (single-
assignment) weights.

Inclusive versus plain estimators. The plain estimators we
used are optimal for individual order-k sketches and the benefit of
inclusive estimators comes from utilizing keys that were sampled
for “other” weight assignments. We computed the ratios

ΣV [a
(b)
i ]/ΣV [a(b)

p ] andΣV [a(b)
c ]/ΣV [a(b)

p ]

as a function ofk. These ratios vary between 0.05 to 0.9 on our
datasets and shows a significant benefit for inclusive estimators (see
Figure 4). Our inclusive estimators are considerably more accurate
with both coordinated and independent sketches. With independent
sketches the benefit of the inclusive estimators is larger than with
coordinate sketches since the independent sketches contain many
more distinct keys for a givenk.
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Figure 4: Inclusive versus plain estimators. IP dataset1,
key=4tuple. Left: ΣV [a

(b)
c ]/ΣV [a

(b)
p ] (coordinated sketches).

Right: ΣV [a
(b)
i ]/ΣV [a

(b)
p ] (independent sketches).

Variance versus storage.For a fixedk, the plain estimator is in
fact identical for independent and coordinated order-k sketches. In-
dependent order-k sketches, however, tend to be larger than coordi-
nated order-k sketches. Here we compare the performance relative
to thecombined sample size, which is the number of distinct keys
in the combined sample. We therefore use the notationa

(b)
p,i for

the plain estimator applied to independent sketches anda
(b)
p,c for the

plain estimator applied to coordinated sketches.
We compare summaries (coordinated and independent) and esti-

mators (inclusive and plain) based on the tradeoff of variance ver-
sus summary size (number of distinct keys). We considered the
normalized sums of variances, for inclusive and plain estimators
nΣV [a

(b)
i ], nΣV [a

(b)
c ], nΣV [a

(b)
p,c], nΣV [a

(b)
p,i ], as a function of

the combined sample size (see Figure 5). For a fixed sketch size,
plain estimators perform worse for independent sketches than for
coordinated sketches. This happens since an independent sketch of
some fixed size contains a smaller sketch for each weight assign-
ment than a coordinated sketch of the same size. In other words the
“k” which we use to get an independent sketch of some fixed size
is smaller than the “k” which we use to get a coordinated sketch of
the same size. Inclusive estimators for independent and coordinated
sketches of the same size had similar variance. (Note however that
for a given union size, we get weaker confidence bounds with in-
dependent samples than with coordinated samples, simply because
we are guaranteed fewer samples with respect to each particular
assignment.)

Sharing ratio. The sharing ratio, |S|/(k ∗ |W|) of a colocated
summaryS is the ratio of the expected number of distinct keys in
S and the product ofk and the number of weight assignments|W|.
The sharing ratio measures the combined sketch size needed so that
we include an order-k sketch for all weight assignments. We com-
puted the sharing ratio for coordinated and independent order-k

sketches as a function ofk (see Figure 6). Coordinated sketches
minimize the sharing ratio (Theorem 4.2). On our datasets, the
ratio varies between0.25-0.68 for coordinated sketches and0.4-
1 for independent sketches. The sharing ratio decreases whenk
becomes a larger fraction of keys, both for independent and co-
ordinated sketches – simply because it is more likely that a key
is included in a sample of another assignment. For independent
sketches, the sharing ratio is above0.85 for smaller values ofk and
can be considerably higher than with coordinated sketches.Co-
ordinated sketches have lower (better) sharing ratio when weight
assignments are more correlated.
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Figure 6: Sharing ratio of coordinated and independent
sketches. Left: Stocks dataset (6 weight assignments). Right:
IP dataset2, key=4tuple.

8. CONCLUSION
We motivate and study the problem of summarizing data sets

modeled as keys withvector weights. We identify two models
for these data sets,dispersed(such as measurements from different
times or locations) andcollocated(records with multiple numeric
attributes), that differ in the constraints they impose on scalable
summarization. We then develop a sampling framework and accu-
rate estimators for common aggregates.

Our estimators over coordinated weighted samples for single-
assignment and multiple-assignment aggregates includingweighted
sums and theL1 difference, max, and min improve over previ-
ous methods by orders of magnitude. For colocated data sets,
our coordinated weighted samples achieve optimal summary size
while guaranteeing embedded weighted samples of certain sizes
with respect to each individual assignment. We derive estimators
for single-assignment and multiple-assignment aggregates over both
independent or coordinated samples that are significantly tighter
than existing ones.

As part of ongoing work, we are applying our sampling and es-
timation framework to the challenging problem of detectionof net-
work problems. We are also exploring the system aspects of de-
ploying our approach within the network monitoring infrastructure
in a large ISP.
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[29] J. Hájek.Sampling from a finite population. Marcel Dekker, New York, 1981.
[30] D. G. Horvitz and D. J. Thompson. A generalization of sampling without

replacement from a finite universe.Journal of the American Statistical
Association, 47(260):663–685, 1952.

[31] D. Knuth.The Art of Computer Programming, Vol. 2: Seminumerical
Algorithms. Addison-Wesley, 1969.

[32] A. Kolcz, A. Chowdhury, and J. Alspector. Improved robustness of
signature-based near-replica detection via lexicon randomization. InSIGKDD
2004, pages 605–610, 2004.

[33] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen. Sketch-based change
detection: Methods, evaluation, and applications. InIn Internet Measurement
Conference, pages 234–247. ACM Press, 2003.

[34] A. Kumar, M. Sung, J. Xu, and E. W. Zegura. A data streaming algorithm for
estimating subpopulation flow size distribution.ACM SIGMETRICS
Performance Evaluation Review, 33, 2005.

[35] G. Maier, R. Sommer, H. Dreger, A. Feldmann, V. Paxson, and F. Schneider.
Enriching network security analysis with time travel. InSIGCOMM’ 08. ACM,
2008.

[36] U. Manber. Finding similar files in a large file system. InUsenix Conference,
pages 1–10, 1994.

[37] G. S. Manku, A. Jain, and A. D. Sarma. Detecting nearduplicates for web
crawling. InProceedings of the 16th International World Wide Web Conference
(WWW), 2007.

[38] M. Mitzenmacher and S. Vadhan. Why simple hash functions work: exploiting
the entropy in a data stream. InProc. 19th ACM-SIAM Symposium on Discrete
Algorithms, pages 746–755. ACM-SIAM, 2008.

[39] The Netflix Prize.http://www.netflixprize.com/.
[40] E. Ohlsson. Sequential poisson sampling.J. Official Statistics, 14(2):149–162,

1998.
[41] E. Ohlsson. Coordination of pps samples over time. InThe 2nd International

Conference on Establishment Surveys, pages 255–264. American Statistical
Association, 2000.

[42] B. Rosén. Asymptotic theory for successive sampling with varying probabilities
without replacement, I.The Annals of Mathematical Statistics, 43(2):373–397,
1972.

[43] B. Rosén. Asymptotic theory for order sampling.J. Statistical Planning and
Inference, 62(2):135–158, 1997.

[44] F. Rusu and A. Dobra. Fast range-summable random variables for efficeint
aggregate estimation. InProc. of the 2006 ACM SIGMOD Int. Conference on
Management of Data, pages 193–204. ACM, 1990.

[45] P. J. Saavedra. Fixed sample size pps approximations with a permanent random
number. InProc. of the Section on Survey Research Methods, AlexandriaVA,
pages 697–700. American Statistical Association, 1995.

[46] C.-E. Särndal, B. Swensson, and J. Wretman.Model Assisted Survey Sampling.
Springer, 1992.

[47] S. Schleimer, D. Wilkerson, and A. Aiken. Winnowing: local algorithms for
document fingerprinting. InProceedings of the ACM SIGMOD, 2003.

[48] R. Schweller, A. Gupta, E. Parsons, and Y. Chen. Reversible sketches for
efficient and accurate change detection over network data streams. Inin ACM
SIGCOMM IMC, pages 207–212. ACM Press, 2004.

[49] M. Szegedy. The DLT priority sampling is essentially optimal. In Proc. 38th
Annual ACM Symposium on Theory of Computing. ACM, 2006.

[50] M. Szegedy and M. Thorup. On the variance of subset sum estimation. InProc.
15th ESA, 2007.

[51] J. Vitter. Random sampling with a reservoir.ACM Trans. Math. Softw.,
11(1):37–57, 1985.


