
Efficient Approximate Search on String Collections

(Tutorial)

Marios Hadjieleftheriou
AT&T Labs–Research
180 Park Ave Bldg 102
Florham Park NJ 07932

Phone:+19733607082, Fax:+19733608077
marioh@research.att.com

Chen Li
UC Irvine

Bren Hall, Room 2092
Irvine CA 92697

Phone:+19498249470, Fax:+9498244056
chenli@ics.uci.edu

ABSTRACT
This tutorial provides a comprehensive overview of recent
research progress on the important problem of approximate
search in string collections. We identify existing indexes,
search algorithms, filtering strategies, selectivity-estimation
techniques and other work, and comment on their respective
merits and limitations.

1. MOTIVATION
Text data is ubiquitous. Management of string data in

databases and information systems has taken on particular
importance recently. This tutorial focuses on the following
problem: Given a collection of strings, efficiently identify
the ones similar to a given query string. Such a query is
called an “approximate string search.” This problem is of
great interest for a variety of applications, as illustrated by
the following examples.

Data Cleaning: Information from multiple data sources of-
ten have numerous inconsistencies. For example, the same
real-world entity can be represented in slightly different for-
mats, such as “PO Box 23, Main St.” and “P.O. Box 23,

Main St”. Errors can also be introduced due to irregular-
ities in the data-collection process, from human mistakes,
and many other causes. For these reasons, one of the main
goals of data cleaning is to find similar entities within a col-
lection, or all similar pairs of entities across a number of
collections.

Query Relaxation: Often enough, users might pose SQL
queries to a DBMS that contain selection predicates that
do not match all of the relevant data within the database
exactly. The reasons are possible errors in the query, in-
consistencies in the data, limited knowledge about the data,
and more. By supporting query relaxation, the DBMS can
return data of potential interest to the user, based on query
predicate similarity (e.g., returning “Steven Spielberg” as
an answer to the query “Steve Spielberg”).

Spell Checking: Given an input document, a spell checker
finds potential candidates for a possibly mistyped word by

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

performing an approximate string search in its dictionary.
Interactive Search: A very recent important application is

to provide answers to query results in real-time, as users are
typing their query (e.g., a Google search box with a drop-
down suggestion menu that updates as users type). Such
interactive-search boxes are ubiquitous and have shown to
be very important in practice, because they limit the num-
ber of errors made by users and also reduce the number
of query reformulations submitted in order to find the one
that will yield satisfying results. The drawback of almost
all existing, interactive techniques is that they support only
prefix or substring matches, without regard for fuzzy, ap-
proximate searching; if users make a spelling mistake, they
are presented with an empty suggestion box. One reason is
that interactive approximate string search has attracted lit-
tle attention and is not a trivial problem to solve, given the
expensive nature of string similarity functions and ranking
techniques.

These applications require approximate-string-search al-
gorithms with a high real-time performance. For instance,
consider a spell checker such as those used by Gmail, Hot-
mail, or Yahoo! Mail, which need to be invoked numerous
times per second, in order to support the millions of concur-
rent users using these services. Each spell checking request
needs to be processed as fast as possible. Clearly, higher
throughput allows the server to serve a much larger number
of users seamlessly. Another example is a business search on
a local-search engine (e.g., YellowPages, Yahoo! Local, and
Superpages). It is very often the case that users misspell
business names (e.g., “Wall-mart” instead of “Wal-mart”),
and hence approximate string search in the context of local-
search is essential. Performing approximate string search-
ing efficiently over the very large string collections present
in these applications is fundamental in order to be able to
sustain thousands of user requests per second.

A closely related problem is that of selectivity estima-
tion for approximate-string-matching queries. It is of great
interest to be able to efficiently and accurately evaluate
the selectivity of selection queries for the purpose of query
optimization (in order to design efficient query-execution
plans). Clearly, the selectivity of approximate string match-
ing queries depends highly on the similarity function used.
Hence, a variety of selectivity-estimation algorithms have al-
ready been proposed in the literature, for different similarity
functions and based on a diverse number of techniques (e.g.,
histograms, sampling, and clustering).



2. TUTORIAL OUTLINE
First, we will motivate the problem by using real examples

and industrial-strength demos of approximate-search queries
and various similarity functions. Then, we will focus on list-
merging search algorithms [26, 21, 11] and variable-length
grams [22, 29]. Next, we will focus on the emerging prob-
lem of interactive approximate search [14, 9]. Then, we will
present a detailed explanation of filtering techniques for ef-
ficient candidate generation [10, 28, 6, 1, 4]. The final part
of the tutorial will be devoted to selectivity-estimation tech-
niques [16, 19, 20, 24, 12]. We will conclude the tutorial by
outlining other related work [2, 3, 13, 23].

3. REFERENCES
[1] A. Arasu, V. Ganti, and R. Kaushik. Efficient exact

set-similarity joins. In VLDB, pages 918–929, 2006.

[2] A. Arasu, S. Chaudhuri, K. Ganjam, and R. Kaushik.
Incorporating string transformations in record
matching. In SIGMOD, pages 1231–1234, 2008.

[3] A. Behm, S. Ji, C. Li, and J. Lu. Space-Constrained
Gram-Based Indexing for Efficient Approximate
String Search. In ICDE, 2009.

[4] K. Chakrabarti, S. Chaudhuri, V. Ganti, and D. Xin.
An efficient filter for approximate membership
checking. In SIGMOD, pages 805–818, 2008.

[5] S. Chaudhuri, V. Ganti, and R. Motwani. Robust
identification of fuzzy duplicates. In ICDE, pages
865–876, 2005.

[6] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive
operator for similarity joins in data cleaning. In ICDE,
page 5, 2006.

[7] S. Chaudhuri, B.-C. Chen, V. Ganti, and R. Kaushik.
Example-driven design of efficient record matching
queries. In VLDB, pages 327–338, 2007.

[8] S. Chaudhuri, A. D. Sarma, V. Ganti, and R.
Kaushik. Leveraging aggregate constraints for
deduplication. In SIGMOD, pages 437–448, 2007.

[9] S. Chaudhuri, R. Kaushik. Extending Autocompletion
to Tolerate Errors. In SIGMOD, 2009.

[10] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N.
Koudas, S. Muthukrishnan, and D. Srivastava.
Approximate string joins in a database (almost) for
free. In VLDB, pages 491–500, 2001.

[11] M. Hadjieleftheriou, A. Chandel, N. Koudas, and D.
Srivastava. Fast indexes and algorithms for set
similarity selection queries. In ICDE, pages 267–276,
2008.

[12] M. Hadjieleftheriou, X. Yu, N. Koudas, and D.
Srivastava. Hashed samples: Selectivity estimators for
set similarity selection queries. In VLDB, 2008.

[13] M. Hadjieleftheriou, N. Koudas, D. Srivastava.
Incremental Maintenance of Length Normalized
Indexes for Approximate String Matching. In
SIGMOD, 2009.

[14] S. Ji, G. Li, C. Li, and J. Feng. Efficient Interactive
Fuzzy Keyword Search. In WWW, 2009.

[15] L. Jin, N. Koudas, C. Li, and A. K. H. Tung. Indexing
mixed types for approximate retrieval. In VLDB,
pages 793–804, 2005.

[16] L. Jin and C. Li. Selectivity estimation for fuzzy
string predicates in large data sets. In VLDB, pages
397–408, 2005.

[17] N. Koudas, C. Li, A. K. H. Tung, and R. Vernica.
Relaxing join and selection queries. In VLDB, pages
199–210, 2006.

[18] N. Koudas, S. Sarawagi, and D. Srivastava. Record
linkage: similarity measures and algorithms. In
SIGMOD, pages 802–803, 2006.

[19] H. Lee, R. T. Ng, and K. Shim. Extending q-grams to
estimate selectivity of string matching with low edit
distance. In VLDB, pages 195–206, 2007.

[20] H. Lee, R. T. Ng, K. Shim. Approximate substring
selectivity estimation. In EDBT, pages 827–838, 2009.

[21] C. Li, J. Lu, and Y. Lu. Efficient merging and filtering
algorithms for approximate string searches. In ICDE,
2008.

[22] C. Li, B. Wang, and X. Yang. VGRAM: Improving
performance of approximate queries on string
collections using variable-length grams. In VLDB,
pages 303–314, 2007.

[23] G. Li, S. Ji, C. Li, and J. Feng. Efficient type-ahead
search on relational data: a TASTIER approach. In
SIGMOD, 2009.

[24] A. Mazeika, M. H. Böhlen, N. Koudas, and D.
Srivastava. Estimating the selectivity of approximate
string queries. ACM Transactions on Database
Systems, 32(2):12, 2007.

[25] G. Navarro. A guided tour to approximate string
matching. ACM Computing Surveys, 33(1):31–88,
2001.

[26] S. Sarawagi and A. Kirpal. Efficient set joins on
similarity predicates. In SIGMOD, pages 743–754,
2004.

[27] C. Xiao, W. Wang, and X. Lin. Ed-join: An efficient
algorithm for similarity joins with edit distance
constraints. In VLDB, 2008.

[28] C. Xiao, W. Wang, X. Lin, and J. X. Yu. Efficient
similarity joins for near duplicate detection. In
WWW, pages 131–140, 2008.

[29] X. Yang, B. Wang, and C. Li. Cost-based
variable-length-gram selection for string collections to
support approximate queries efficiently. In SIGMOD,
2008.


