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Abstract61

This work is based on the seminar titled “Resiliency in Numerical Algorithm Design for Extreme62

Scale Simulations” held March 1-6, 2020 at Schloss Dagstuhl, that was attended by all the authors.63

Advanced supercomputing is characterized by very high computation speeds at the cost of involving64

an enormous amount of resources and costs. A typical large-scale computation running for 48 hours65

on a system consuming 20 MW, as predicted for exascale systems, would consume a million kWh,66

corresponding to about 100k Euro in energy cost for executing 1023 floating-point operations. It is67

clearly unacceptable to lose the whole computation if any of the several million parallel processes68

fails during the execution. Moreover, if a single operation suffers from a bit-flip error, should the69

whole computation be declared invalid? What about the notion of reproducibility itself: should70

this core paradigm of science be revised and refined for results that are obtained by large scale71

simulation?72

Naive versions of conventional resilience techniques will not scale to the exascale regime: with a73

main memory footprint of tens of Petabytes, synchronously writing checkpoint data all the way to74

background storage at frequent intervals will create intolerable overheads in runtime and energy75

consumption. Forecasts show that the mean time between failures could be lower than the time to76

recover from such a checkpoint, so that large calculations at scale might not make any progress if77

robust alternatives are not investigated.78

More advanced resilience techniques must be devised. The key may lie in exploiting both79

advanced system features as well as specific application knowledge. Research will face two essential80

questions: (1) what are the reliability requirements for a particular computation and (2) how do we81

best design the algorithms and software to meet these requirements? While the analysis of use cases82

can help understand the particular reliability requirements, the construction of remedies is currently83

wide open. One avenue would be to refine and improve on system- or application-level checkpointing84

and rollback strategies in the case an error is detected. Developers might use fault notification85

interfaces and flexible runtime systems to respond to node failures in an application-dependent86

fashion. Novel numerical algorithms or more stochastic computational approaches may be required87

to meet accuracy requirements in the face of undetectable soft errors. These ideas constituted an88

essential topic of the seminar.89

The goal of this Dagstuhl Seminar was to bring together a diverse group of scientists with90

expertise in exascale computing to discuss novel ways to make applications resilient against detected91

and undetected faults. In particular, participants explored the role that algorithms and applications92

play in the holistic approach needed to tackle this challenge. This article gathers a broad range of93

perspectives on the role of algorithms, applications, and systems in achieving resilience for extreme94

scale simulations. The ultimate goal is to spark novel ideas and encourage the development of95

concrete solutions for achieving such resilience holistically.96

This article gathers a broad range of perspectives on the role of algorithms, applications, and97

systems in achieving resilience for extreme scale simulations. The ultimate goal is to spark novel98

ideas and encourage the development of concrete solutions for achieving such resilience holistically.99

2012 ACM Subject Classification Theory of computation→Massively parallel algorithms; Networks100

→ Error detection and error correction; Computing methodologies→ Parallel programming languages;101

Computer systems organization → Dependable and fault-tolerant systems and networks102

Keywords and phrases Numerical algorithms, Parallel computer architecture, Fault tolerance, Re-103

silience104

Digital Object Identifier 10.4230/LIPIcs.Seminar 20101.2020.105

https://doi.org/10.4230/LIPIcs.Seminar 20101.2020.


Acronyms XX:5

Contents106

1 Introduction 6107

2 System infrastructure techniques for resilience 8108

2.1 Detected and transparently corrected errors . . . . . . . . . . . . . . . . . . . 9109

2.2 Detected errors mitigated with assistance . . . . . . . . . . . . . . . . . . . . 12110

2.2.1 Correction with incremental redesign . . . . . . . . . . . . . . . . . . . 12111

2.2.2 Correction with major redesign . . . . . . . . . . . . . . . . . . . . . 15112

3 Numerical algorithms for resilience 17113

3.1 Error detecting algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17114

3.1.1 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17115

3.1.2 Checksums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17116

3.1.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19117

3.1.4 Technical error information . . . . . . . . . . . . . . . . . . . . . . . . 19118

3.1.5 Multi-resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20119

3.1.6 Redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20120

3.2 Error aware algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21121

3.2.1 Error aware algorithms for the solution of linear systems . . . . . . . . 21122

3.2.2 Error aware algorithms for the solution of partial differential equations 24123

3.3 Error oblivious algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28124

3.3.1 Gossip based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 28125

3.3.2 Fixed-point methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28126

3.3.3 Krylov subspace solvers . . . . . . . . . . . . . . . . . . . . . . . . . . 29127

3.3.4 Domain decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 30128

3.3.5 Time stepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30129

4 Future directions 30130

4.1 Systems in support of resilient algorithms . . . . . . . . . . . . . . . . . . . . 31131

4.1.1 Error correcting codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 31132

4.1.2 Improving checkpoint/restart . . . . . . . . . . . . . . . . . . . . . . . 31133

4.1.3 Scheduler and resource management . . . . . . . . . . . . . . . . . . . 32134

4.2 Programming models with inherent resiliency support . . . . . . . . . . . . . 33135

4.3 Future directions for the solution of partial differential equations . . . . . . . 33136

4.3.1 Redundancy and replication . . . . . . . . . . . . . . . . . . . . . . . . 33137

4.3.2 Hierarchy and mixed precision . . . . . . . . . . . . . . . . . . . . . . 34138

4.3.3 Error control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35139

4.3.4 Locality, asynchronicity and embarassingly parallelism . . . . . . . . . 35140

4.3.5 Stochastic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36141

4.3.6 Iterative methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36142

4.3.7 Low memory footprint – matrix-free . . . . . . . . . . . . . . . . . . . 37143

4.4 The final mile: towards a resilient ecosystem . . . . . . . . . . . . . . . . . . . 37144

4.4.1 Tools to support resilience software development . . . . . . . . . . . . 37145

4.4.2 User/Programmer education . . . . . . . . . . . . . . . . . . . . . . . 39146

5 Conclusions 39147

Dagstuh l Seminar 20101



XX:6 Acronyms

1 Introduction148

Numerical simulation is the third pillar in science discovery at the same level as theory149

and experiments. To cope with the ever demanding computational resources needed by150

complex simulations, the computational power of high performance computing systems151

continues to increase by using an ever larger number of cores or by specialized processing.152

On the technological side, the continuous shrinking of transistor geometry and the increasing153

complexity of these devices affect their sensitivity to external effects and thus diminish their154

reliability. A direct consequence is that High Performance Computing (HPC) applications155

are increasingly prone to errors. Therefore the design of resilient systems and numerical156

algorithms that are able to exploit possible unstable HPC platforms has became a major157

concern in the computational science community. To tackle this critical challenge on the path158

to extreme scale computation an holistic and multidisciplinary approach is required that needs159

to involve researchers from various scientific communities ranging from the hardware/system160

community to applied mathematics for the design of novel numerical algorithms. In this161

article, we summarize and report on the outcomes of a Dagstuhl seminar held March 1-6,162

2020,1 on the topic Resiliency in Numerical Algorithm Design for Extreme Scale Simulations.163

We should point out that, although error and resiliency was already quoted by J. von164

Neumann in his first draft report on EDVAC [260, P.1, Item 1.4], it became again a central165

concern for the HPC community in the late 2000’ when the availability of the first exascale166

computers was envisioned for the forthcoming decades. In particular, several workshops167

were organized in the IESP (International Exascale Software Project) and EESI (European168

Exascale Software Initiative) framework [52].169

The hardware/system resilience community has previously defined terminology related to170

how faults, errors, and failures occur on computing systems [18]. In this article our focus is171

less on the cause of an error (or the underlying fault), and more on how an error presents172

itself at the algorithmic level (or layer), impacting algorithms and applications. We thus173

simplify the terminology often used in the hardware resilience and fault-tolerance community174

by not using terms like soft error or hard error, and generally do not concern ourselves with175

the reproducibility of an error (e.g., transient, intermittent or permanent). This abstraction176

keeps the algorithmic techniques discussed herein general and applicable to a variety of fault177

models, current architectures, and hopefully of use in future technologies.178

To this end, we broadly categorize errors presenting themselves to the algorithmic layer179

as either detected or undetected. Note that this categorization does not mean an error180

is undetectable but rather that when it reached the algorithmic layer it was not detected181

by earlier layers (e.g., hardware, operating system or middleware/system software). This182

suggests the algorithmic layer has the opportunity to detect a previously undetected error183

and, if possible, to deploy mitigation methods to make the algorithm resilient; effectively184

transforming an undetected error at the algorithmic layer into a detected error. This in turn185

may result in a failure if the algorithm is unable to handle it. For example, an undetected186

data corruption which results in an application accessing an incorrect memory address may187

be detectable by the algorithm but it may not be possible for the algorithm to recover what188

the original memory address was and it may be forced to fail. If the algorithm could not189

detect the corruption before accessing the memory region, this would conventionally end in a190

failure (e.g., SIGSEGV issued by the operating system).191

Many computing-intensive scientific applications that are dependent on HPC performance192

1 https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=20101

https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=20101
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Figure 1 A classification of error handling.

upgrades can end up with disrupted schedules because of lack of resilience. A typical example193

is related to current efforts towards exascale numerical weather prediction [31, 32]. On194

one side, regular upgrades in weather forecast models in operations at weather centres and195

their spatial resolution have gone hand in hand with expanding computational resources.196

On the other side, scientific and socioeconomic significance of forecasts crucially hinges on197

tight time-bound computing schedules and timely forecast dissemination, most notably for198

high-impact weather events. Current disk-checkpointing schedules still take up acceptable199

portions of forecast runtimes, but are hardly sustainable - indeed, they already saturate200

file systems bandwidth. In addition, many weather forecast codes feature preconditioned201

iterative solvers of linear systems with several hundred thousand unknowns, many thousand202

times per run. Such components represent vulnerable points in a context of increasingly203

frequent detected and undetected errors. Novel low-overhead solutions to enhance algorithmic204

fault-tolerance or provide higher-level system resilience are therefore in high demand in this205

and other fields where nonlinear dynamics is simulated.206

In this article we take a different approach at the classification of errors in HPC systems.207

In general, we try to divide errors in two main groups, those that are detected and corrected208

by the hardware/system (which is the focus of Section 2) and those that are detected and209

sometimes corrected by the numerical algorithms (Section 3). However, the HPC resilience210

ecosystem is not black and white, but it rather shows a wide palette of greys in between,211

with multiple fault tolerance tools implemented at the middleware level that are assisted by212

the applications/algorithms and vice-versa. Figure 1 shows this wide range of different error213

classifications depending on how much effort is needed at the application/algorithmic level214

in order to detect/correct the error.215

The first category we observe in the leftmost leaf of the tree (blue color) is the case216

Dagstuh l Seminar 20101
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of errors that are both detected and transparently corrected by the hardware/middleware217

but without any intervention of the applications/algorithms. The clearest example would218

be a detectable and correctable error in the memory generated by a single bit flip. These219

types of errors are transparently corrected by the system without any knowledge at the220

application/algorithmic level that such error mitigation occurred. Other examples could be221

process replication, system-level checkpointing, process migration, among many others (see222

Section 2.1).223

The second category is the case of errors that are detected at the hardware/system level224

and are mitigated at the system/middleware level (not at the algorithmic level) but with225

assistance from the application/algorithm (green color). The most clear example of this226

is application-based checkpointing libraries, which handle all or most of the data transfers227

between the compute nodes and the Parallel File System (PFS) independently from the228

application, but it gets hints from it to know what datasets need to be checkpointed and229

when should the checkpoint happen. Other relevant examples are fault tolerant message230

passing programming models and resilient asynchronous tasks. We divide these sections in231

those approaches that require just a minor addition in the application code versus those that232

require a complete change in the programming paradigm (see Section 2.2).233

The other leaves of the tree (red color) correspond to those errors that cannot be corrected234

or mitigated at the hardware/system level and have to be mitigated by changing the algorithm235

or numerical methods to be able to tolerate those errors. We observe three different types of236

algorithms in this branch of the tree.237

The first type of algorithms focuses on the mitigation of errors that have been detected238

(first red leaf from left to right), we call them error-aware algorithms. Please note that these239

algorithms are not in charge of detecting the errors but only of mitigating them. Also, it240

is important to notice that these algorithms do not depend on how the error was actually241

detected; it could be hardware/middleware detection as well as algorithmic detection, in the242

end the process of detection is irrelevant for the mitigation algorithm (see Section 3.2).243

The second type of algorithms are those dedicated to the detection of errors that were244

not detected at the lower levels (fourth leaf from left to right). A good example would be245

Silent Data Corruption (SDC) errors that pass invisibly through the hardware but then246

can be caught at the algorithmic level using some numerical techniques (e.g., checksum).247

These algorithms do not try to mitigate the error per se but only detect it. Once the248

error has been detected, it can be passed to a error aware algorithm in order to attempt a249

correction/mitigation (see Section 3.1).250

Finally, there also exist algorithms that can operate, tolerate and absorb errors without251

ever being aware that the error ever occurred (last leaf to the right); we called these, error252

oblivious algorithms. These are somehow similar to the very first (blue) category, in that the253

errors are transparently corrected/absorbed, see Section 3.3.254

In the following sections we discuss algorithmic and application approaches to address255

these two categories of errors and distinguish how the approaches vary or are similar. Broadly256

speaking, the report is divided into two parts. In Section 2 and Section 3 we discuss the257

state-of-the-art in the areas of infrastructure and algorithms, while in Section 4 we propose258

possible areas of interest in future research.259

2 System infrastructure techniques for resilience260

In this section we describe the state-of-the-art of hardware and system level error detection261

and mitigation. As previously mentioned, we divide these methods in two categories, the ones262
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that mitigate the error in a completely transparent fashion, and those that require assistance263

from the algorithmic/application level. The following subsection, Section 2.1, concentrates264

on the methods falling in the first category. The second category is explored in Section 2.2.265

2.1 Detected and transparently corrected errors266

A wide range of errors can be detected and immediately corrected by various layers in the267

system, i.e., these errors become masked or absorbed and higher level layers do not have to268

be involved. The detection/correction mechanisms have an extra cost in terms of storage,269

processing and energy consumption.270

Hardware reliability271

At the hardware level several techniques exist to detect and correct errors. Most common272

examples are Error Correcting Codes (ECC) to detect and correct single bit-errors, Cyclic273

Redundancy Checks (CRC) error correction for network packets or RAID-1 (or higher) for274

I/O systems. A more comprehensive discussion of these features can be found in the report275

“Towards Resilient EU HPC Systems: A Blueprint” by Radojkovic et al. [207].276

Operating system reliability277

Operating Systems (OS) have certain capabilities to interact with architectural resilience278

features, such as ECC and machine check exceptions. OSs are mostly concerned with resource279

management and error notification. However, some advanced OS resilience solutions exist280

such as Mini-ckpts [92]. It is a framework that enables application survival despite the281

occurrence of a fatal operating system failure or crash. It ensures that the critical data282

describing a process is preserved in persistent memory prior to the failure. Following the283

failure, the OS is rejuvenated via a warm reboot and the application continues execution284

effectively making the failure and restart transparent. The mini-ckpts rejuvenation and285

recovery process is measured to take 3 s to 6 s and has a failure-free overhead of 3 % to 5 %286

for a number of key HPC workloads.287

System-level checkpoint/restart288

Berkeley Lab Checkpoint/Restart (BLCR) [125] is a system-level checkpoint/restart solution289

that transparently saves and restores process state. In conjunction with a Message Passing290

Interface (MPI) [95] implementation, it can transparently save and restore the process states291

of an entire MPI application. An extension of BLCR [257,262,263] includes enhancements292

in support of scalable group communication for MPI membership management, reuse of293

network connections, transparent coordinated checkpoint scheduling, a job pause feature, and294

full/incremental checkpointing. The transparent mechanism for job pause allows live nodes295

to remain active and roll back to the last checkpoint, while failed nodes are dynamically296

replaced by spares before resuming from the last checkpoint. A minimal overhead of 5.6%297

is reported in case migration takes place, while the regular checkpoint overhead remains298

unchanged.299

The hybrid checkpointing technique [111] alternates between full and incremental check-300

points: At incremental checkpoints, only data changed since the last checkpoint is captured.301

This results in significantly reduced checkpoint sizes and overheads with only moderate302

increases in restart overhead. After accounting for cost and savings, the benefits due to303

incremental checkpoints are an order of magnitude larger than the overheads on restarts.304

Dagstuh l Seminar 20101
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Silent Data Corruption (SDC) protection305

FlipSphere [93] is a tunable, transparent Silent Data Corruption (SDC) detection and correc-306

tion library for HPC applications. It offers comprehensive SDC protection for application307

program memory using on-demand memory page integrity verification. Experimental bench-308

marks show that it can protect 50 % to 80 % of program memory with time overheads of 7 %309

to 55 %.310

Proactive fault tolerance using process or virtual machine migration311

Proactive fault tolerance [88,187,264] prevents compute node failures from impacting run-312

ning applications by migrating parts of an application, i.e., tasks, processes, or virtual313

machines, away from nodes that are about to fail. Pre-fault indicators, such as a significant314

increase in temperature, can be used to avoid an imminent failure through anticipation and315

reconfiguration. As computation is migrated away, application failures are avoided, which316

is significantly more efficient than checkpoint/restart if the prediction is accurate enough.317

The proactive fault tolerance framework consists of process and virtual machine migration,318

scalable system monitoring and online/offline system health analysis. The process-level live319

migration supports continued execution of applications during much of process migration320

and is integrated into an MPI execution environment. Experiments indicate that 1 s to 6.4 s321

of prior warning are required to successfully trigger live process migration, while similar322

operating system virtualization mechanisms require 13 s to 24 s. This error oblivious approach323

complements checkpoint/restart by nearly cutting the number of checkpoints by half when324

70% of the faults are handled proactively.325

Resiliency using task-based runtime systems326

Task-based runtime systems have appealing intrinsic features for resiliency due to the fault327

isolation they provide by design as they have a view of the task flow and dynamically schedule328

task on computing units (often to minimize the time to solution or energy consumption).329

Once an error is detected and identified by the hardware or the algorithm, the runtime system330

can limit its propagation through the application by reasoning about the data dependencies331

among tasks [176]. For example, one can envision the scenario where an uncorrectable332

hardware error is detected triggering the runtime system to dynamically redistribute the333

tasks to the remaining resources available.334

Task-based runtime systems can also limit the size of the state needed to be saved to335

enable restarting computations, when an error is encountered [171, 172, 254]. In classical336

checkpoint-restart mechanisms, the size of the checkpoint can become very large for large-337

scale applications, and managing it can take up a significant portion of the overall execution.338

A task-based runtime system simplifies the identification of points during the application339

execution when the state size is small, since only task boundaries need to be considered for340

saving the state. Further, identification of idempotent tasks can greatly help task-based341

runtimes to further reduce the overheads by completely avoiding data backups specific to342

those tasks. Recent works on on-node task parallel programming models suggest that a343

simple extension of the existing task-based programming framework enables efficient localized344

recovery [200,236,238].345

The checkpointing itself can also be achieved completely asynchronously [171,172,254].346

The runtime allows tasks to read data being saved, and only blocks those tasks that attempt347

to overwrite data being saved. Since the runtime system knows which data will soon be348

overwritten by some tasks, it can prioritize the writing of the different pieces so as to have349
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as little impact on the execution as possible. At the restarting point, the runtime also has350

all information to be able to achieve a completely local recovery. The replacement node can351

restart from the last valid checkpoint of the previously-failed node, while the surviving nodes352

can just replay the required data exchanges.353

With the recent emergence of heterogeneous computing systems utilizing Graphics Pro-354

cessing Units (GPU), the task programming model is being used to offload computation from355

the Central Processing Unit (CPU) to the GPU. VOCL-FT [202] offers checkpoint/restart356

for computation offloaded to GPU using OpenCL [118]. It transparently intercepts the com-357

munication between the originating process and the local or remote GPU to automatically358

recover from ECC errors experienced on the GPU during computation. Another preliminary359

prototype design extends this concept in the context of OpenMP [42] using a novel concept for360

Quality of Service (QOS) and a corresponding Application Programming Interface (API) [89].361

While the programmer is specifying the resilience requirements for certain offloaded tasks,362

the underlying programming model runtime decides on how to meet them using a QOS363

contract, such as by employing task-based checkpoint-restart or redundancy.364

Resilience via complete redundancy365

The use of redundant MPI processes for error detection has been widely analyzed in the last366

decade [55,70, 208,273]. Modular redundancy incurs high overhead, but offers excellent error367

detection accuracy and coverage with few to no false positive or false negatives.368

Complete modular redundancy is typically too expensive for actual HPC workloads.369

However, it can make sense for certain subsystems such as parts of a PFS. The Meta Data370

Service (MDS) of a networked PFS is a critical single point of failure. An interruption371

of service typically results in the failure of currently running applications utilizing its file372

system. A loss of state requires repairing the entire file system, which could take days on373

large-scale systems, and may cause permanent loss of data. PFSs such as Lustre [67] often374

offer some type of active/standby fail-over mechanism for the MDS. A solution [128] for the375

MDS of the Parallel Virtual File System offers symmetric active/active replication using376

virtual synchrony with an internal replication implementation. In addition to providing high377

availability, this solution is taking advantage of the internal replication implementation by378

load balancing MDS read requests, improving performance over the non-replicated MDS.379

Resilience via partial redundancy380

Partial redundancy has been studied to decrease the overhead of complete redundancy [85,381

234, 239, 240]. Adaptive partial redundancy has also been proposed wherein a subset of382

processes is dynamically selected for replication [108]. Partial replication (using additional383

hardware) of selected MPI processes has been combined with prediction-based detection384

to achieve SDC protection levels comparable with those of full duplication [37,38,188]. A385

Selective Particle Replication approach for meshfree particle-based codes protects the data386

of the entire application (as opposed to a subset) by selectively duplicating 1 % to 10 % of387

the computations within processes incurring a 1 % to 10 % overhead [57].388

Resilience via complete and/or partial redundancy389

RedMPI [91] enables a transparent redundant execution of MPI applications. It sits between390

the MPI library and the MPI application, utilizing the MPI Profiling Interface (PMPI) to391

intercept MPI calls from the application and to hide all redundancy-related mechanisms. A392

redundantly executed application runs with r ∗m MPI processes, where m is the number of393

Dagstuh l Seminar 20101



XX:12 Acronyms

MPI ranks visible to the application and r is the replication degree. RedMPI supports partial394

replication, e.g., a degree of 2.5 instead of just 2 or 3, for tunable resilience. It also supports a395

variety of message-based replication protocols with different consistency. Not counting in the396

need for additional resources for redundancy, results show that the most efficient consistency397

protocol can successfully protect HPC applications even from high SDC rates with runtime398

overheads from 0 % to 30 %, compared to unprotected applications without redundancy.399

Partial and full redundancy can also be combined with checkpoint/restart [85]. Non-linear400

trade-offs between different levels of redundancy can be observed when additionally using401

checkpoint/restart, since computation on non or less redundant resources is significantly less402

reliable than computation on fully or more redundant resources.403

Interplay between resilience and dynamic load balancing404

Scheduling of application jobs at the system level contributes to exploiting parallelism by405

placing and (dynamically) balancing the batch jobs on the local site resources. The jobs406

within a batch are already heterogeneous; yet, current batch schedulers rarely co-allocate, and407

most often only allocate, computing resources (while network and storage continue to be used408

as shared resources). Dynamic system-level parallelism can arise when certain nodes become409

unavailable (due to hard and permanent errors) or recover (following a repair operation). This410

can be exploited during execution by increasing opportunities for system-level co-scheduling411

in close proximity of jobs that exhibit different characteristics (e.g., co-scheduling a classical412

compute-intensive job in close proximity to a data-intensive job) and by dynamic resource413

reallocation to jobs that have lost resources due to failures or to waiting jobs in the queue.414

2.2 Detected errors mitigated with assistance415

In this section we focus on correction methods that need assistance from the upper layers in416

order to achieve resilience and correctness. It is important to note that there are multiple417

methods that offer assisted fault tolerance but some of them involve a few additional lines418

of code while others require rewriting the whole applications using a specific programming419

model. Therefore, we will divide this section into subsections depending on the programming420

and/or redesign effort that is required.421

2.2.1 Correction with incremental redesign422

As explained in Section 2.1, it is possible to perform system-level checkpointing without any423

feedback from the application or the algorithm or any upper layer. The issue with system-level424

checkpointing is that the size (and therefore the time and energy cost) of checkpointing425

is much larger than what is really required to perform a restart of the application. Thus,426

application-level checkpointing is an attempt to minimize the size of checkpoints to the427

minimum required for the application to be able to restart.428

Performance modeling and optimization of checkpoint-restart methods429

Research on simulation tools assessing the performance of certain checkpoint-restart strategies430

is presented in various publications [15, 73, 87, 165]. Different theoretical approaches are431

used and tools are developed that either simulate a fictional software or wrap an actual432

application.433

A lot of work has been done to examine and model the performance of multilevel434

checkpointing approaches [28,34,156,274]. Here, the parallel distribution of the snapshots as435
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well as the target storage system are considered as objectives for performance optimization.436

Asynchronous techniques are considered, such as non-blocking checkpointing, where a subset437

of processes are dedicated to manage the creation and reconstruction of snapshots [69,219].438

As a measure to saving storage and speeding up I/O, data compression is another subject439

that is considered in the literature as, e.g., by Di and Cappello [74], and in one of the case440

studies in Section 3.2.2.441

Resilient checkpointing has been considered with the help of nonvolatile memory, as for442

instance implemented in PapyrusKV [154], a resilient key-value blob-storage. Other resilient443

checkpointing techniques include the self-checkpoint technique [245], which reduces common444

redundancies while writing checkpoints, or techniques reducing the amount of required445

memory through hierarchical checkpointing [182], or differential checkpointing [153].446

Message logging447

Message logging is a mechanism to log communication messages in order to allow partial restart448

as for example examined by Cantwell et al. [51]. While improving on basic checkpointing449

strategies, message logging-based approaches can themselves entail large overheads because450

of log sizes. The checkpointing protocol developed by Ropars et al. [213] does not require451

synchronization between replaying processes during recovery and limits the size of log452

messages. Other approaches combine task-level checkpointing and message logging with453

system-wide checkpointing [237]. This protocol features local message logging and only454

requires the restart of failing tasks. It is also possible to combine message logging with local455

rollback and User Level Failure Mitigation (ULFM) (Section 2.2.2) to improve log size [173].456

Multilevel checkpointing libraries457

Current HPC systems have deep storage hierarchies involving High-Bandwidth Memory,458

Dynamic Random-Access Memory, Non-Volatile Memory, Solid-State Drives and the PFS,459

among others. Multilevel Checkpointing libraries offer a way to leverage the different storage460

layers in the system through a simple interface. The objective is to abstract the storage461

hierarchy to the user, so that one does not need to manually take care of where the data462

is stored or the multiple data movements required between storage levels. Each level of463

checkpointing provides a different trade-off between performance and resilience, where usually464

lower levels use close storage that offers higher performance but limited resilience, and higher465

levels rely on stable storage (e.g., PFS), which is more resilient but slower. Mature examples466

of multilevel checkpoint libraries are SCR [183], FTI [28], CRAFT [226] and VeloC [189].467

Both SCR and FTI provide support via simple interfaces for storing application checkpoint468

data on multiple levels of storage, including RAM disk, burst buffers, and the parallel file469

system. Both SCR and FTI provide redundancy mechanisms to protect checkpoint data470

when it is located on unreliable storage and can asynchronously transfer checkpoint data to471

the parallel file system in the background while the application continues its execution. In472

addition, FTI also supports transparent GPU checkpointing. Finally, VeloC is a merge of473

the interfaces of both FTI and SRC. Note that some of these libraries offer the option for474

keeping multiple checkpoints so that the application can roll-back to different points in the475

past if necessary.476

Containment Domains477

Containment Domains (CDs) provide a programming construct to facilitate the preservation-478

restoration model, including nesting control constructs, and durable storage [248]. The479

Dagstuh l Seminar 20101



XX:14 Acronyms

following features are attractive for large-scale parallel applications. First, CDs respect480

the deep machine and application hierarchies expected in exascale systems. Second, CDs481

allow software to preserve and restore states selectively within the storage hierarchy to482

support local recovery. This enables preservation to exploit locality of storage, rather than483

requiring every process to recover from an error, and limits the scope of recovery to only the484

affected processors. Third, since CDs nest, they are composable. Errors can be completely485

encapsulated, or escalated to calling routines through a well-defined interface. We can easily486

implement hybrid algorithms that combine both preservation-restoration and data encoding.487

Use cases include an implementation of a parallel resilient hierarchical matrix multipli-488

cation algorithm using a combination of ABFT (for error detection) and CDs (for error489

recovery) [16]. It was demonstrated that the overhead for error checking and data preservation490

using the CDs library is exceptionally small and encourages the use of frequent, fine-grained491

error checking when using algorithm based fault tolerance.492

Application versioning493

Global View Resilience (GVR) [64] accommodates APIs to enable multiple versioning of494

global arrays for the single program, multiple data programming model. The core idea is495

the fact that naive data redundancy approaches potentially store wrong applications states496

due to the large latency associated with error detection and notification. In addition to497

multiple versioning, GVR provides a signaling mechanism that triggers the correction of498

application states based on user-defined application error conditions. Use cases include an499

implementation of resilient Krylov subspace solvers [275].500

Mitigating performance penalties due to resilience via dynamic load balancing501

Detected and corrected errors induce variation in the execution progress of applications502

when compared to error-free executions. This can manifest itself as load imbalance. Many503

application-level load balancing solutions have been proposed over the years and can help to504

address this problem. We mention here a few available packages.505

Available load balancing software includes Zoltan [252] that requires users to describe506

the workload across processes as a graph and offers an object oriented interface. Further we507

mention Dynamic Loop Scheduling for Load Balancing (DLS4LB) [54], a recently developed508

library for MPI applications that contains a portfolio of self-scheduling based algorithms for509

load balancing. StarPU [254] proposes support for asynchronous load-balancing [172] for510

task-based applications. The principle is to let the application submit only a part of its task511

graph, let some of it execute on the platform and observe the resulting computation balance.512

A new workload distribution can then be computed and the application is allowed to submit513

more of the task graph, whose execution can be observed as well. OmpSs [80] is an effort to514

extend OpenMP in order to support asynchronous execution of tasks including a transparent515

interface for hardware accelerators such as GPUs and FPGAs. OmpSs is built on top of the516

Mercurium compiler [251] and the nanos++ runtime system [249].517

HCLib [271] is a task-based programming model that implements locality-aware runtime518

and work-stealing. It offers a C and C++ interface and can be coupled with inter-process519

communication models, such as MPI. Charm++ [151] features an automatic hierarchical520

dynamic load balancing method that overcomes the scalability limitation of centralized521

load balancing as well as the poor performance of completely distributed systems. Such522

a technique can be triggered dynamically after a failure hits the system and the workload523

needs to be redistributed across workers.524
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2.2.2 Correction with major redesign525

The correction of some detected errors might have a strong impact of the algorithm that526

has to implement the mitigation. The mitigation design can be made more affordable if527

some components of the software stack have already some appealing features to handle such528

situations.529

Resilience support in the Message Passing Interface (MPI)530

Most MPI implementations by default are designed to terminate all processes when errors are531

detected. However, this termination occurs irrespective of the scope of the error, requiring532

global shut-down and restart even for local errors in a single process. This inherent scalability533

issue can be mitigated if MPI keeps all survived processes to continue and/or if restart534

overheads are reduced. The MPI community has proposed several recovery approaches, such535

as FA-MPI [127] or MPI-ULFM [41] to enable alternatives of global shut-down, as well as536

better error handling extensions, like MPI_Reinit [159], to reduce overhead and impact537

of failures. Among these approaches, MPI-ULFM is the most advanced and well known.538

It provides a flexible low-level API that allows application specific recovery via new error539

handling approaches and dynamic MPI communicator modification under process failures,540

although with significant complexities for the application developer using the new APIs.541

Several approaches have been proposed to mitigate this complexity by creating another set542

of library APIs built atop of MPI-ULFM [51,99,100,225,253]. However, as of now, in part543

due to its complexity when used on real-world applications and limited support in system544

software, MPI-ULFM as a whole has not been adopted in the MPI standard and hence is545

not readily usable for typical HPC application programmers. Nevertheless, various aspects546

of ULFM are in the process of standardization and will provide more mechanisms in MPI547

to build at least certain fault tolerant applications, starting with the upcoming MPI 4.0548

standard.549

Resilience abstractions for data-parallel loops550

Data-parallel loops are widely encountered in N -body simulations, computational fluid551

dynamics, particle hydrodynamics, etc. Optimizing the execution and performance of such552

loops has been the focus of a large body of work involving dynamic scheduling and load553

balancing. Maintaining the performance of applications with data-parallel loops running in554

computing environments prone to errors and failures is a major challenge. Most self-scheduling555

approaches do not consider fault-tolerance or depend on error and failure detection and react556

by rescheduling failed loop iterations (also referred to as tasks). A study of resilience in557

self-scheduling of data-parallel loops has been performed using SimGrid-based simulations of558

highly unpredictable execution conditions involving various problem sizes, system sizes, and559

application and systemic characteristics (namely, permanent node failures), that result in560

load imbalance [241]. Upon detecting a failed node, re-execution is employed to reschedule561

the loop iterations assigned to the failed node.562

A robust Dynamic Load Balancing (rDLB) approach has recently been proposed for563

the robust self-scheduling of independent tasks [180]. The rDLB approach proactively and564

selectively duplicates the execution of assigned chunks of loop iterations and does not depend565

on failure or perturbation detection. For exponentially distributed permanent node failures,566

a theoretical analysis shows that rDLB is linearly scalable and its cost decreases quadrati-567

cally with increasing system size. The reason is that increasing the number of processors568

increases the opportunities for selectively and proactively duplicating loop iterations to569
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achieve resilience. rDLB is integrated into a dynamic loop scheduling library (DLS4LB, see570

Section 2.2.1) for MPI applications. rDLB enables the tolerance of up to (P − 1) process571

failures, where P is the number of processes executing an application. For execution environ-572

ments with performance-related fluctuations, rDLB boosts the robustness of Dynamic Loop573

Self-scheduling (DLS) techniques by a factor up to 30 and decreases application execution574

time up to 7 times compared to their counterparts without rDLB.575

Resilience extension for performance portable programming abstractions576

With the increasing diversity of the node architecture of HPC systems, performance portability577

has become an important property to support a variety of computing platforms with the578

same source code while achieving a comparative performance to those programmed with the579

platform specific programming models. Today, Kokkos [82] and Raja [30,250] accommodate580

modern C++ APIs to permit an abstraction of data allocation and parallel loop execution for581

a variety of runtime software and node architectures. This idea can be extended to express582

the redundancy of data and computation to achieve resilience while hiding the details of583

the data persistence and redundant computation. Recently, the resilient version of Kokkos584

was proposed for a natural API extension of Kokkos’ data (memory space) and parallel585

loop (execution space) abstractions to (1) enable resilience with minimal code refactoring586

for the applications already written with Kokkos and (2) provide common interface to call587

any external resilience libraries such as VeloC [189]. The new software will be released in a588

special branch in https://github.com/kokkos/kokkos.589

The resilience abstraction idea has also been applied to task parallel programming models590

such as Charm++ [151], HClib [271], HPX [150], OmpSs [80] and StarPU [254] to integrate a591

variety of resilient task program execution options such as replay, replication, algorithm-based592

fault tolerance and task-based checkpointing. Task-based programming models indeed have593

a very rich view over the structure of the application computation, and notably its data,594

and have a lot of control over the computation execution, without any need for intervention595

from the application. Replaying a failed task consists of issuing it again with the same input,596

discarding the previous erroneous output, and replicating a task consists of issuing it several597

times with different output buffers and comparing the result. Dynamic runtime systems can598

then seamlessly introduce replay and replication heuristics, such as trying to run different599

implementations and/or computation units, without the application having to be involved600

beyond optionally providing different implementations to be tried for the same task.601

The task graph view also allows for very optimized checkpointing [171,172,254]. In the602

task-based programming model, each checkpoint is a cut in the task graph, which can be603

expressed trivially within the task submission code, and only the data of the crossing edges604

need to be saved. Even better, the synchronization between the management of checkpoint605

data and application execution can be greatly relaxed. The transfer of the data to the606

checkpoint storage can indeed be started as soon as the data is produced within the task607

graph, and not only once all tasks before the checkpoint are complete. A checkpoint is608

then considered complete when all its pieces of data have been collected. It is possible that609

tasks occurring after the checkpoint may run to completion before the checkpoint itself is610

completed. All in all, this allows for a lot more time for the data transfers to complete, and611

lessens the I/O bandwidth pressure.612

https://github.com/kokkos/kokkos
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Software engineering approaches for resilience by design613

Resilience design patterns [141,142] offer an approach for improving resilience in extreme-scale614

HPC systems. Frequently used in computer engineering, design patterns identify problems and615

provide generalized solutions through reusable templates. Reusable programming templates616

of these patterns can offer resilience portability across different HPC system architectures617

and permit design space exploration and adaptation to different (performance, resilience,618

and power consumption) design trade-offs. An early prototype [14] offers multi-resilience for619

detection, containment and mitigation of silent data corruption and MPI process failures.620

3 Numerical algorithms for resilience621

In this section, we focus on the handling of errors at the algorithmic level. We see three622

different classes of problems to tackle here: (i) detection of un-signaled errors (mostly bit623

flips and other instances of silent data corruption, Section 3.1), (ii) correction of errors that624

have been signaled but could not be corrected at the hardware or middleware layer (by error625

aware algorithms, Section 3.2), (iii) design of error oblivious algorithms that deliver the626

correct result even in the presence of (not too frequent) errors (Section 3.3).627

In addition to correctness in the presence of errors, an important challenge in all our628

considerations is efficiency in terms of algorithm runtime. In this context, additional629

algorithmic components such as work stealing and asynchronous methods (where missing630

data are simply an extreme case of delay) have to be considered. We mention these methods631

when describing methods that can make use of such runtime optimizing measures.632

3.1 Error detecting algorithms633

In this section, we focus on mechanisms to numerically detect errors that have not been634

detected by the underlying system or middleware. We have identified several techniques that635

allow us to (likely) notice the occurrence of an error at several layers of numerical algorithms.636

Table 1 gives an overview of some detection techniques and the algorithmic components or637

numerical methods where they are applicable.638

3.1.1 Exceptions639

Exceptions are a way a program signals that something went wrong during execution. We640

consider the case where exceptions are caused by data corruption that can, for example, lead641

to division by zero or out-of-range access. Most programming languages support a way of642

handling exceptions. The algorithm programmer can register an exception handler that gets643

called whenever an exception occurs. If the error is recoverable, the exception handler will644

specify how best to continue afterwards. If the error is not recoverable, the program will be645

aborted. Exceptions are a straight-forward way to detect certain types of errors and can be646

applied to all numerical algorithms. However, they obviously only see a small subset of all647

possible errors and it is not trivial to decide when to use exceptions handlers in the light of a648

trade-off between correctness, robustness and runtime efficiency.649

3.1.2 Checksums650

Checksums could be used at the hardware or middleware layer to detect errors, but here we651

will discuss checksums as employed on the algorithmic layer where we have a more detailed652
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Table 1 Numerical error detection: Overview of error detection techniques and numerical
ingredients and methods where they are applied. Note that we mark a method as applicable only if
it is or can be used in the respective algorithm itself, not only at lower level functionality, i.e., we do
not mark checksums for multigrid as checksums are only used in the BLAS 2/3 kernels used as inner
loops or in the GS/J/SOR smoothers.
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BLAS 2/3 × × ×
Direct Solvers × × ×
Krylov × × × ×
Multilevel / Multigrid × × × ×
Domain Decomposition × ×
GS/Jac/SOR × × ×
Nonlinear Systems × × ×
Time Stepping (ODEs) × × (×) ×
PDEs × × × × × ×
Quadrature × × × × ×

knowledge about the existence of numerical or algorithmic invariants. Checksum techniques653

have been used in various numerical algorithms. We list some examples below.654

BLAS 2/3: Checksum encoding matrices, introduced by Huang and Abraham [137] requires655

(i) adding redundant data in some form (encoding), (ii) redesign of the algorithm to operate656

on the respective data structures (processing), and (iii) checking the encoded data for errors657

(detection). We ignore the recovery phase here and refer to Section 3.2. Checksums are used658

in FT-ScaLAPACK [267] for dense matrix operations such as MM, LU and QR factorization659

and more recently in hierarchical matrix multiplication [16]. Wu et al. give a good survey of660

checksum deployment in dense linear algebra [268].661

Gauss-Seidel/Jacobi/SOR and multigrid: In [179], checksums are used to detect errors662

in the Jacobi smoother, the restriction and interpolation operators of a multigrid method663

solving a two-dimensional Poisson equation.664

Krylov subspace methods: Tao et al. propose a new checksum scheme using multiple665

checksum vectors for sparse matrix-vector multiplication, which is shown to be generally666

effective for several preconditioned Krylov iterative algorithms [247]. Also [1, 227] use667

checksums for protection within the conjugate gradient (CG) algorithm.668

FFT: Checksum can also be used in Fast Fourier Transforms (FFT)s similarly as in669

matrix-vector multiplication. Liang et al. [167] develop a new hierarchical checksum scheme670

by exploiting the special discrete Fourier transform matrix structure and employ special671

checksum vectors. Checksums are applicable to many important kernels such as matrix-672

matrix multiplication, but are costly. In addition, it can be difficult to specify a suitable673

threshold for ‘equality’ in the presence of round-off errors. For many numerical calculations674

such as scalar products, checksums are not applicable at all.675
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3.1.3 Constraints676

In some applications, constraints for different types of variables are known. Examples are677

positivity constraints, conservation laws for physical quantities or known bounds for internal678

numerical variables.679

Krylov subspace methods: Resilience was already of importance in the early days of680

digital computers. In the original PCG paper [132], Hestenes and Stiefel noticed that the681

reciprocal value of α (the step length) is bounded above (repectively, below) by the reciprocal682

of the smallest eigenvalues (respectively the inverse of the largest eigenvalue) of the matrix.683

The inequality involving the largest eigenvalue (for which in practice it may be cheaper to684

get an approximation) was used to equip PCG with error detection capabilities in [1].685

Partial differential equations: Checking for bounds can be associated with minimal or686

extremely high cost depending on whether extra information has to be computed (such as687

eigenvalues of matrices) or not. Reliability is, in general, an issue as only those errors leading688

to violation of these constraints can be detected. An example of the use of problem-informed689

constraints can be found in [186]. In this work, the authors derive a priori bounds for the690

discrete solution of second-order elliptic PDEs in a domain decomposition setting. Specifically,691

they show that the bounds take into account the boundary conditions, are cheap to compute,692

general enough to apply to a wide variety of numerical methods such as finite elements693

or finite differences, and provide an effective way to handle faulty solutions synthetically694

generated.695

3.1.4 Technical error information696

In many numerical large scale applications, the main computational task involves the697

approximate computation of integrals, algebraic systems, systems of ODEs or PDEs. For698

all these problems, various types of error information such as residuals, differences between699

iterations, round-off error estimates and discretization error estimates can be used as indicators700

of errors either by their size or by monotonicity criteria. We give several examples from701

literature for different classes of numerical algorithms.702

Krylov subspace methods: Round-off error bounds can be used in Krylov subspace703

methods. They fit in the general framework of round-off error analysis [133] and have been704

considered in the context of Krylov subspace methods in finite precision arithmetic [169,178].705

Vorst and Ye proposed a residual gap bound [256] (bound for the norm of the residual706

gap between the true and the computed residuals) based on round-off error analysis that was707

later used as a criterion for actual error detection in [1] when bit flips occur. The detection708

of errors in Krylov methods via violation of orthogonality is proposed in [63].709

Multigrid: Calhoun et. al [50] apply a residual/energy norm-based error detection for710

algebraic multigrid. They use two criteria: (i) the reduction of the residual norm as a weak711

criterion and (ii) the reduction of the quadratic form712

E(x) = 〈Ax,x〉 − 2〈x, b〉,713

when solving the linear system Ax = b for symmetric positive matrices.714

The quadratic for E calculated at level i during the down-pass of a V-cycle should be715

less than the energy calculated at level i during the down-pass of the next V-cycle.716

When using the full approximation scheme residual norm reductions can also be verified717

at each level in the hierarchy of a multigrid-cycle. The structure of the full approxima-718

tion scheme additionally provides smart recovery techniques utilizing its lower resolution719

approximations [11].720
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Time-stepping: For iterative time-stepping with spectral deferred corrections, monitoring721

the residual of the iteration can be used to detect errors in the solution vectors [119]. In722

the context of parallel-in-time integration with parareal, consecutive iterates are considered723

in [191] to detect errors in the solution vector. In [35], an auxiliary checking scheme in724

contrast to the original base scheme is used to detect and correct errors during implicit and725

explicit time-integration. Estimating the local truncation error with two different methods726

is used in [121] to implement a resilient, high-order Runge-Kutta method. This “Hot Rod”727

approach is then also used for error correction.728

3.1.5 Multi-resolution729

Multi-resolution means that information is available at different resolution levels, in terms of730

spatial discretization (PDE), time discretization (ODE and PDE), order of discretization731

(PDE in space and time), matrix dimensions (numerical linear algebra, multigrid), frequencies,732

and so on. This leads to a certain redundancy – not an artificially introduced, but an inherently733

available one. This redundancy can be used to detect discrepancies or anomalies and, hence,734

errors that could not be detected by the system. There are numerous examples for the735

mentioned problem classes, we outline one example in more detail here.736

Sparse grids / Combination technique: Sparse grids [48] are one particular class737

of multi-resolution methods. There, via the use of hierarchical bases, certain structures738

often seen in d-dimensional data can be exploited to alleviate the curse of dimensionality,739

without a significant loss of accuracy. Sparse grids have been successfully used in a wide740

range of problem classes where spatial discretization plays a role, such as interpolation [145],741

quadrature [47,109,110], solvers for PDEs [124,129], or machine learning tasks [104,105,201]742

(e.g., classification, regression, clustering, or density estimation). One particular incarnation743

of sparse grid methods is the so-called combination technique [117]. There, based on an744

extrapolation-style approach, a linear combination of a specific set of full, but very coarse-grid745

solutions is used to get a sparse fine-grid solution. The various coarse grid solutions can be746

obtained in a completely independent way, using (parallel) standard solvers. This opens the747

way to (1) a natural two-level parallelization and to (2) an easy and cheap detection of system748

undetected errors: Since we actually compute solutions for the same problem on different749

(i.e., differently discretized) grids anyway, we can use these to detect anomalies – just by750

comparing the available solutions. And the detection leads immediately to a mitigation751

strategy (see Section 3.2.2), since we can easily exchange coarse grids in case of errors, just752

by changing the combination pattern [8, 9, 123,130,134,192]. Therefore, this is an example753

for a smart algorithm that is able to do both detection and mitigation.754

Further examples are mentioned in Section 3.1.4 as multi-resolution typically comes with755

corresponding error estimates based on differences between solutions at different resolution756

levels: multigrid and parallel time stepping.757

3.1.6 Redundancy758

Redundancy is a strategy for error detection that can be applied to all of the numerical algo-759

rithms mentioned in Table 1. It covers two approaches. In the first approach computational760

resources may be replicated twice or thrice. Such instances are called DMR [144, 265] or761

TMR [223,261]. In the second approach the computations are repeated twice or thrice on the762

same resource [17,259]. An advantage of this approach is the flexibility at the application763

level. Note that the first approach costs more in space or resources, the second approach764

costs more in time.765
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The redundancy based error detection technique described in [33] relies on in-depth766

analysis of application and platform dependent parameters (such as the number of processors767

and checkpointing time) to formalise the process of both resource and computation replication.768

It provides a closed-form formula for optimal period size, resource usage and overall efficiency.769

Ainsworth et. al [5] use replication of fault-prone components as an error detection770

technique in a multigrid method. Also error detection in the time stepping methods from [35]771

mentioned in Section 3.1.4 can be interpreted as redundancy based error detection.772

The main disadvantage of replication is its cost in terms of performance, although recom-773

puting only some instructions instead of the whole application lowers the time redundancy774

overhead [193]. However, redundancy in some calculations should in particular be considered775

as a possible strategy for error detection as in modern supercomputers the cost of arithmetic776

operations tends to decrease compared to communication time.777

3.2 Error aware algorithms778

In this section, we look at error correction techniques within an application. We assume that779

the application has been notified that part of the algorithm’s data is corrupted or lost. In780

that context, mitigation or containment actions have to be undertaken at the algorithmic781

design level, where the appropriate actions depend on the data detection granularity and782

how the notification mechanism was activated. It is possible to design both lossy and lossless783

mitigation procedures that are tailored to the numerical algorithms under consideration.784

In Section 3.2.1 we give a brief literature overview of ideas that can be used to complement785

numerical mitigation or containment procedures. Then, in Section 3.2.2 we offer a more786

detailed discussion of some recent successful attempts by presenting a few case studies in the787

context of the solution of Partial Differential Equations (PDE).788

3.2.1 Error aware algorithms for the solution of linear systems789

A wealth of literature already exists on various, mostly isolated ideas and approaches that have790

appeared over time. Checkpoint-restart methods are the most generic approaches towards791

resilience for a broad spectrum of applications, see Section 2.2.1 for an introduction. We792

first describe a general mental model to design resilient numerical algorithms independent of793

actual machine specifications that lead to what is nowadays referred to as Local-Failure Local-794

Recovery (LFLR) techniques. Then we move to ‘classical’ algorithm-based fault tolerance,795

which originally was developed to detect and correct single bit flips on systolic architectures796

devoted to basic matrix computations, see Section 3.1.2. Finally, we discuss a range of ideas797

and techniques not covered by the case studies below.798

Local-failure local-recovery799

As far back as a decade ago, an abstract framework was developed to separate algorithm800

design from unclear machine specifications, see also Section 2.2.1. The idea of a selective801

reliability model as introduced by Hoemmen [45,135] is machine-oblivious and highly suitable802

for algorithm design for machines with different levels of (memory) reliability. It has led to803

the concept of Local-Failure Local-Recovery (LFLR) [253]. This model provides application804

developers with the ability to recover locally and continue application execution when a805

process is lost. In [253], Teranishi and Heroux have implemented this framework on top of806

MPI-ULFM (Section 2.2.2) and analyzed its performance when a failure occurs during the807

solution of a linear system of equations.808
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Original algorithm-based fault tolerance with checksums809

The term Algorithm-Based Fault Tolerance (ABFT) was originally coined in conjunction810

with protecting matrix operations with checksums to handle bit flips [136], mostly assuming811

exact arithmetic calculation for detection and mitigation. (See Section 3.1.2 for a more812

detailed discussion on checksums). The main drawback of checksums is that only limited813

error patterns can be corrected and its robust practical implementation in finite precision814

arithmetic can be complicated to tune to account for round-off errors. A second drawback815

is that the checksum encoding, detection and recovery methods are specific to a particular816

calculation. A new scheme needs to be designed and proved mathematically for each new817

operation. A further drawback is to tolerate more errors, more encoded data is needed, which818

may be costly both in memory and in computing time.819

ABFT concepts have been extended to process failures for a wide range of matrix820

operations both for detection and mitigation purposes [44, 62, 79, 147, 269] and general821

communication patterns [149]. ABFT has also recently been proposed for parallel stencil-822

based operations to accurately detect and correct silent data corruptions [58]. In these823

scenarios the general strategy is a combination of checkpointing and replication of checksums.824

In-memory checkpointing [147] can be used to improve the performance. The main advantage825

of these methods is their low overhead and high scalability.826

In practice, the significance of a bit flip strongly depends on its location, i.e., which bit in827

the floating point representation is affected. Classical ABFT has been extended to take into828

account floating point effects in the fault detection (checksums in finite precision) as well829

as in the fault correction and to recover from undetected errors (bit flips) in all positions830

without additional overhead [181].831

Iterative linear solvers832

Iterative linear solvers based on fixed point iteration schemes are, in general, examples of833

error oblivious algorithms, as described in Section 3.3. The convergence history of the scaled834

residual norm observed within the iterative scheme often resembles the curves displayed in835

Figure 2. In this case the iterative scheme is a multigrid method, as in [115,138]. The peaks836

in the residual occur after data has been lost and when the iterations are allowed to restart837

with some form of replacement of the lost data. In the simplest case, the lost data may just838

be re-initialized with the value of zero, and recovery techniques to obtain better solutions839

are discussed in Section 3.2.2.840

It can be seen that, depending on when in the course of the iteration a small portion of841

the approximate solution suffers from an error, we observe a delay in convergence, directly842

proportional to an increase in runtime. In the case where errors appear too often, the solver843

might not recover and other mitigation actions might have to be considered.844

Explicit recovery at the algorithmic level from undetected errors have been studied845

for iterative linear solvers [195]. In contrast to restarting, a number of algorithm based846

recovery strategies have been proposed, including approximate or heuristic interpolation847

methods [2]. An approach of exactly recovering the state of the iterative solver before the848

node failure has been investigated for the Preconditioned Conjugate Gradient (PCG) and849

related methods [164,196]. This also includes studying scenarios with multiple simultaneous850

node failures [197] and scenarios where no replacement nodes are available [194].851
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Figure 2 Convergence history of the residual norm as a function of the iteration count for three
examples of information loss. From left to right: early, late, and multiple times

Approximated recovery and restart in sparse numerical linear algebra852

For matrix computations, eigensolvers or basic kernels such as iterative linear system solvers,853

some recovery ideas rely on forming a small dimensional linear algebra problem where854

the inputs are the still valid data and the unknowns are the lost/corrupted ones. The855

outcome of this procedure is subsequently used to replace the lost/corrupted data and the856

numerical algorithm is somehow started again from that meaningful initial guess. The857

recovery procedure is tailored to the actual numerical algorithm. As an example, consider a858

fixed point iteration scheme for a linear system and suppose the lost data are entries of the859

iterate vector, the most dynamically evolving data in this computational scheme. Matrix860

entries of the iteration scheme related to the lost data, as well as some neighbouring entries,861

serve to build the left-hand side of a linear problem (either a linear system or a least-square862

problem) while the right-hand side is built from valid data. The solution of this small problem863

is then used to replace the corresponding lost entries of the iterate vector. The complete,864

updated vector is taken as a new initial guess when restarting the fixed point iteration. If865

the data is not corrupted too often the classical convergence theory still applies and because866

the new initial guess incorporates updates from the calculations performed before the error867

was detected, the global convergence rate is not strongly affected. The method described868

in adaptive recovery techniques for extreme scale multigrid in Section 3.2.2 is an example869

application of this technique.870

For numerical schemes based on nested subspace search, such as Krylov subspace methods,871

closely related techniques have been successfully applied both for eigensolvers and linear872

solvers that further exploit the sparsity structure of the matrices to reduce the computational873

cost associated with the recovery procedure. At the cost of a light checkpoint performed874

once when starting the linear solver (mostly the matrix and the right-hand side vector in875

case of linear system solution) this mitigation approach has no overhead if the data is not876

corrupted during the solution computation. We refer to [2,3, 161] for some illustrations on877

those numerical remedies in a parallel distributed memory framework and to [146] where878

these ideas are exploited for a lower granularity of data loss in a task-based runtime system.879

See Section 2 for references relevant to task-based runtime systems.880

We also note that these ideas can be extended to hybrid iterative/direct numerical881

schemes, that have a domain decomposition flavor, where the recovery procedure can be882

enriched with additional features of the parallel numerical scheme such as redundancy or883

properties of the preconditioners [4]. They can also be extended to the time domain in the884

context of multilevel parallel-in-time integration techniques [229].885
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3.2.2 Error aware algorithms for the solution of partial differential886

equations887

The ideas introduced above in Section 3.2.1 are application agnostic but naturally apply to888

linear systems arising from the discretization of a PDE. In that latter case, more information889

from the underlying PDE can be closely tailored to intrinsic features of solvers such as890

multigrid. In this section we discuss some research works on mitigation and containment891

that exploit the properties of PDEs to aid the recovery techniques. We also present some892

mitigation processes that are only relevant in the PDE setting.893

Adaptive recovery techniques for extreme scale multigrid894

Some of the most efficient solvers of PDE, such as parallel geometric multigrid methods895

[114, 143], can be based on the exchange of ghost layers in a non-overlapping domain896

partitioning. This automatically leads to a redundancy in interface data between subdomains897

that in turn permits the design of an efficient two-step recovery strategy for iterative solvers.898

This is of particular interest in large-scale parallel computations. When each subdomain899

is large, then the ratio between the data on its surface and the volume data in its interior900

becomes small.901

When a processor fails, the information within one or several subdomains is lost. For902

the recovery and continued solution, the redundant ghost layer information is used in a903

first step, to recover locally either Dirichlet- or Neumann-type data for the subdomains.904

The global problem can then be formulated in two partitions, the outer healthy subdomain905

and the inner faulty subdomain, where the recovery must reconstruct the lost data. Both906

subproblems must be bi-directionally coupled via the interface and the corresponding ghost907

layers of unknowns.908

After re-initialization, the corrupted and reinitialized data could pollute the solution909

globally, meaning that the locally increased error in the faulty domain can spread globally and910

thus also affect the healthy subdomain. In order to avoid this pollution, the communication911

between the healthy and faulty sub-problems is interrupted during the second step of the912

recovery process. In the second step, we continue with the original iterative solver restricted913

to the healthy sub-problem and select a suitable one for the faulty one. After some number914

of asynchronous iteration steps both sub-problems are reconnected, see [138], and the global915

iterative solver strategy is resumed. Note that the reconnecting step is mandatory for the916

convergence of the iterative solver. The tearing step separating the subdomains is mandatory917

to preserve the accuracy of the dynamic data in the healthy sub-problem, and without this918

step the corrupted data from the faulty sub-domain pollutes the global solution. Of critical919

importance for the performance of the method are the accuracy of the faulty sub-problem920

solver at re-connection time and the time spent in the recovery mode. In the faulty domain,921

the lost data can be initialized with 0, or, alternatively, compressed checkpointed data can be922

used as described in the following section on compression techniques for checkpoint-restart.923

Note, however, that with straight-forward compression techniques, compressed checkpoint924

data will only be useful to recover the low frequency components in the faulty domain. If the925

local recovery is performed with multigrid, then the low frequencies are in any case cheap to926

recover, as compared to the cost of recomputing the lost high frequency components.927

The accuracy within a multigrid strategy can be easily controlled by a hierarchical sum928

of weighted residuals [216]. The overhead cost for the a-posterior error indicator is quite929

small compared to the overall solver cost. Having an estimate for the algebraic error in both930

sub-problems at hand, the re-connection step is determined automatically. To speed up the931
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Figure 3 Illustration of the steps in the adaptive recovery technique for extreme scale multigrid.
Left: A detectable error occurred. Middle: The communication between the healthy and faulty
sub-domains is interrupted. Right: The original iterative solver restricted to the healthy domain
continues while another suitable solver is asynchronously used in the faulty domain. Once the
solution in the faulty domain reaches a certain accuracy, the communication between the domains is
re-enabled.

time which is spent in the recovery, a so-called ‘superman strategy’ is applied [138], see also932

Figure 3 for an illustration. More resources compared to the situation before the fault are933

allocated to the faulty sub-problem. A short recovery phase in combination with carefully934

selected re-coupling criteria then guarantees a highly efficient fault-tolerant solver.935

Of special interest is a massively parallel multigrid method as base solver. In combination936

with the tearing and intersection approach for the recovery, it results in a hybrid approach.937

In case of a Stokes-type system, yielding after discretization a saddle point problem, the938

strategy can either be applied on the positive definite Schur complement for the pressure or,939

as it was done in [139], on the indefinite velocity-pressure system. In that case an all-at-once940

multigrid method with an Uzawa-type smoother acting on both solution components turns941

out to be most efficient, see [78]. Numerical and algorithmic studies including multiple faults942

and large-scale problems with more than 5 · 1011 degrees of freedom and more than 245000943

cores have been demonstrated [138,139]. The automatic re-coupling strategy is found to be944

robust with respect to the fault location and size and also handling multiple fault. In many945

scenarios a complete recovery can be achieved with almost no increase in runtime and while946

maintaining excellent parallel efficiency.947

Adaptive mesh refinement, load balancing, and application level checkpointing948

Adaptive Mesh Refinement (AMR) functionality and load balancing require similar data949

linearization- and transfer functionality as is needed for application level checkpointing. This950

is exploited in the waLBerla framework [24,221,222] that features an object oriented design951

for composing coupled multiphysics simulation software. waLBerla’s load balancing is based952

on routines to transfer simulation data between processors so that functionality to serialize,953

pack, send, and unpack all relevant data is already available as a by-product of the AMR954

functionality. Note that the waLBerla software architecture imposes this structure for Eulerian955

mesh based data as well as for Lagrangian particle-based models and it canonically extends956

to coupled Eulerian-Lagrangian multiphysics models. For this to work transparently, the957

routines for migrating simulation data must be suitably encapsulated. Then this functionality958

can be used to write user level checkpoints either on disk or in memory. Note that writing959

checkpoints will inevitably imply overheads in memory consumption and communication960

time, but that restoring a checkpoint is cheap, since it initially only requires re-activating the961

redundantly stored data. This is especially true when in-memory checkpointing is used as962

explored and analyzed in [156]. The simple restoration of checkpointed data may of course963

lead to load imbalance, but the functionality to redistribute load is also available as part964
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of the parallel AMR functionality. In this sense, user-level checkpointing can be based in a965

natural, efficient, and straightforward way on the functionality of parallel AMR algorithms966

combined with load balancing functionality.967

Compression techniques to accelerate checkpoint-restart for Kryloy-MG solvers968

Compressed checkpointing is a possibility to improve the efficiency of classical checkpoint-969

restart schemes, both in terms of the overhead to generate the checkpoints and to recover970

the data if an error occurs. The added efficiency mainly comes from a reduced memory971

footprint which is beneficial for communication and storage. It is particularly efficient if972

the compression method is tailored to the target application. As an example, in-memory973

compressed checkpoints combined with LFLR (see Section 3.2.1) for iterative linear solvers,974

e.g., multigrid preconditioners in Krylov schemes, are described below.975

Lossy Compression: As already mentioned in Section 3.2.2, paragraph ‘Approximated976

recovery and restart’, initially only the dynamical data, i.e., the approximate solution, are977

protected. Lossy compression allows a balance between the accuracy of the discretization978

error of the assembled system and the numerical error within the solver. Specifically in [10],979

the SZ library [72, 166, 246] is employed, which prefers, by construction, structured data980

ideally associated with a structured grid. Another important feature is that the compression981

accuracy can be prescribed and adapted to the situation. Unfortunately, a higher compression982

accuracy usually leads to a lower compression rate and higher compression time, which is983

crucial in terms of resilience overhead.984

Note that multigrid can be interpreted as a lossy compression technique in itself, with a985

number of mathematical peculiarities that need consideration [115]. Multigrid algorithms use986

a hierarchy of grids to solve linear systems in an asymptotically optimal way. This hierarchy987

can be used to restrict, i.e., lossily interpolate, the iterate from fine to coarse grids. Such a988

lower-resolution representation of the iterate can then be stored as a compressed checkpoint.989

Conversely, the multigrid prolongation (coarse-to-fine grid interpolation) operator is used to990

decompress the data. With only small additional computations, the multigrid hierarchy can991

also be used for error detection.992

Recovery: Several recovery techniques can be devised [10]. As a baseline approach993

checkpoint-restart is mimicked and the global iterate is simply replaced with its decompressed994

representation, independently of the compression strategy. The second proposed approach995

follows the LFLR strategy and re-initializes only the local data that is lost on faulty computing996

nodes by using checkpoint data stored on neighbouring computing nodes. Contrary to the997

first approach, this is mostly local and only needs minimal communication to receive a998

remotely stored backup. In particular, the recovery procedure itself does not involve the999

participation of other processes except those sending the checkpointed data. As a worst-case1000

fallback when the backup data is not sufficient, a third recovery approach is established, which1001

is still mostly local. Here, an auxiliary problem is solved iteratively with boundary data from1002

the neighbouring computing nodes. This is similar to the adaptive recovery techniques for1003

extreme scale multigrid from above or the approximated recovery and restart of Section 3.2.1.1004

An auxiliary problem is constructed, either by domain decomposition overlap or the operator1005

structure, and solved with an initial guess based on the checkpoint data to accelerate the1006

iterative recovery phase. Experiments show that this approach can almost always restore the1007

convergence speed of the fault-free scenario independently of the used backup technique, only1008

the number of additional local recovery iterations varies. For more details, we refer to [10].1009
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Resilience with sparse grids1010

Resilience can be added on various abstraction levels of the algorithm. For PDE problems1011

one traditionally adds resilience on the level of linear algebra operations, on the solver level1012

for linear/non-linear equations, or on the time-stepping algorithm. However, this may in1013

some cases not be coarse-grained enough to minimize the overhead of resilience techniques,1014

especially when errors occur rarely. In [123,129,130,134,192,199] the authors demonstrate1015

a fault-tolerant framework for solving high-dimensional PDEs that applies fault tolerance1016

on top of the individual PDE solver. The framework boosts the scalability of black-box1017

PDE solvers while making it simultaneously resilient to faults by applying the sparse grid1018

combination technique. In this technique the PDE simulation is distributed over many coarse1019

grids, which can be processed in parallel. At regular intervals the results of these grids are1020

combined to obtain the final sparse grid result. In presence of faults the affected grids can be1021

neglected and an alternative combination scheme is calculated via an optimization routine.1022

If too many grids are lost, the last combination result serves as an in-memory checkpoint1023

to recompute the required grids. In [192] it is shown that this lossy recovery provides very1024

good results even with high error frequencies. At the same time the parallel efficiency is only1025

slightly affected.1026

Adaptive mesh refinement1027

Adaptive refinement techniques in combination with finite element methods are well estab-1028

lished for fault-free computations. In terms of fault tolerance, this means that in addition to1029

the assembled linear system, the geometric mesh structure must be protected. This requires1030

the reconstruction of the data structures containing the mesh hierarchy. For the use of1031

multigrid or multilevel methods, we also need to recover multiple levels of adaptive grid1032

refinement after a fault has occurred. The recovery process must take into account the1033

intra-grid as well as the inter-grid data dependencies.1034

We refer to [233] for a parallel adaptive multigrid method that uses a sophisticated1035

dynamic data structures to store a nested sequence of meshes and the iterative evolving1036

solution. Stals demonstrates that it is possible to implement a fault recovery procedure1037

that builds on the original parallel adaptive multigrid refinement algorithm [232] in the case1038

of a fail-stop fault. It is assumed that a copy of the coarsest grid can always be accessed1039

after a fault has occurred, i.e., it is stored off the processor. The challenge in recovering1040

an adaptively refined grid is that the mesh distribution changes during any load balancing1041

procedures, i.e., the local information that was available during the original refinement process1042

will have been modified or removed. Nevertheless it is demonstrated that the neighbouring1043

healthy processors contain enough intact information so that the necessary structure can be1044

recovered to pass into the refinement routine. In the case of uniform refinement, the original1045

multilevel grid is recovered. In the case of an adaptively refined grid, enough of the structure1046

is recovered to re-establish the correct communication pattern allowing the solution process1047

to run to completion, but potentially with reduced accuracy. The neighbouring healthy1048

processors will only contain enough information to guide the refinement around the edge of1049

the recovered subgrid. Further refinement within the interior of the recovered subgrid may1050

be required to improve the accuracy of the solution.1051

These techniques were implemented with minimal disruption to the original code. An1052

example of one the few necessary modifications is that in the original code, communication1053

was used to ensure that the elements were refined in the appropriate order to avoid degenerate1054

grids. In the resilient version of the the code that communication had to be removed as the1055
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refinement was restricted to the faulty processor.1056

3.3 Error oblivious algorithms1057

In this section, we give examples of algorithms that are error oblivious in the sense that they1058

can recover without assistance from errors that do not occur too frequently. For example,1059

many fixed point iterative solvers are able to execute to completion if, e.g., a bit flip error1060

occurs in the solution vector. However, every error likely increases the execution time of1061

the algorithm. We thus define two quality criteria for error oblivious algorithms and use to1062

assess the examples in the remainder of this section: (i) correctness, and (ii) efficiency in1063

terms of execution time.1064

Finding an algorithm that fulfills (i) and can also compete against error aware algorithms1065

as described in Section 3.2 remains an open problem.1066

Error oblivious usually means that an error slowly ‘leaves the system’ during several1067

iterative sweeps over the data. Error mitigation in error aware algorithms, on the other hand,1068

requires specific measures to correct the error, and can only be applied when the error has1069

been detected on a hardware, middleware or algorithmic layer, but removes the disturbance1070

of the calculation process by the error immediately.1071

We do not expect the error oblivious algorithms to be impervious to all types of errors.1072

An iterative method may be not error oblivious if the error changed the matrix entries. This1073

concept is defined as selective reliability, see Section 3.2.1.1074

3.3.1 Gossip based methods1075

A potentially interesting alternative in large-scale parallel environments that does not require1076

any explicit error detection mechanisms utilizes gossip-based methods and their inherent1077

resilience properties. Such algorithms by nature build up redundancy in the system and can1078

thus can efficiently recover automatically from various types of faults/errors without any1079

need to explicitly detect them. In particular, Gansterer et al. have studied and extended the1080

resilience of gossip-based aggregation and reduction methods [56,101,190]. Based on these1081

building blocks, they have developed and analyzed several more complex resilient numerical1082

algorithms, such as orthogonalization methods [101,102], eigensolvers [235], and least squares1083

solvers [205].1084

While the strong resilience properties and execution-time robustness of these approaches1085

are promising, there is a certain price in terms of basic runtime compared to classical1086

deterministic numerical high performance algorithms. It remains to be investigated whether1087

they can be competitive in a fault-prone, but otherwise classical system with global view1088

and centralized control. Their competitiveness can be expected to increase significantly if1089

some of these classical properties have to be weakened at the extreme scale.1090

3.3.2 Fixed-point methods1091

We view fixed-point methods as methods that converge globally when certain conditions are1092

satisfied. For example, the Jacobi iterative schemes will converge for any initial guess if the1093

matrix is diagonally dominant. Fixed-point based iterative methods are by design resilient1094

to bit flips. However, the convergence delay can be significant. Anzt et al. [12,13] propose1095

techniques improving the cost-robustness with little overhead.1096

A class of numerical algorithms that by design have properties attractive for resilience1097

are asynchronous iterative methods [23, 29, 39, 40, 97, 230, 231, 242]. In order to avoid1098
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misunderstandings, we point out that this class of methods is unrelated to the idea of1099

asynchronous dynamic load balancing [155] as addressed in Section 2.1. Instead, asynchronous1100

iterative methods, stemming from the concept of chaotic iterations [60], are fixed-point1101

methods that seek the solution of a problem by independently updating subdomains – which1102

can be subdomains in the geometric sense, subsets, or individual components of the solution1103

approximation – according to some fixed-point linear or nonlinear iterative scheme. A1104

particularity of the asynchronous methods is that the independent updates neither adhere to1105

a specific update order, nor synchronize in terms of a handshake with other updates, but1106

still converge globally in the asymptotic sense. In particular, these methods are robust with1107

respect to some subdomains being updated at a much lower pace as each update just uses1108

the most recent non-local information available. In that sense, asynchronous solvers can have1109

good performance in unreliable environments where messages can be dropped or processes1110

can become unresponsive for limited time. Also, in cases where messages are corrupted (and1111

corruption can be detected), an asynchronous solver can simply drop such a message. In cases1112

where processes remain unresponsive, a mechanism is still needed to recover that process1113

and its state, but the remaining processes can continue computing unchanged. Therefore,1114

asynchronous methods are somehow error oblivious.1115

With the increasing cost of global synchronizations, and the attractive properties con-1116

cerning fine-grained parallelization and resilience against communication delays and errors,1117

asynchronous methods have gained attention in particular for numerical computations [243].1118

Chow et al. [65, 66] developed an asynchronous algorithm for generating incomplete fac-1119

torizations, Coleman et al. [68] further improved this algorithm by employing measures1120

that reduce the runtime overhead when encountering errors. More general is the idea of1121

asynchronously updating subdomains in Schwarz decompositions. In particular asynchronous1122

restricted additive Schwarz methods and asynchronous optimized Schwarz methods have been1123

identified to combine algorithm-inherent resilience with scalability on pre-exascale hardware1124

architectures [83,103,112,175,270].1125

Independently, asynchronous multilevel methods have been proposed and analyzed under1126

the name Fully Adaptive Multigrid method [214]. Here the multigrid smoothing process is1127

executed asynchronously so that it can be employed for concurrent operations on different1128

levels of the mesh hierarchy. The iteration is executed in a Southwell style [228] and1129

is controlled by efficient hierarchical error estimators [216]. The parallel implementation1130

[215] will automatically correct errors. More recently, asynchronous methods have been1131

proposed for nonlinear multi-splitting [244] and eigenvalue computations like Google’s1132

Pagerank algorithm [157]. More recently, also the idea of asynchronously solving coarse-1133

grid error correction equations has been investigated, leading to an asynchronous multigrid1134

algorithm [266]. While case studies reveal attractive properties, these newly developed1135

asynchronous iterative methods (such as asynchronous multigrid) are not fixed-point iterations,1136

and developing a convergence theory for those algorithms remains a challenge.1137

3.3.3 Krylov subspace solvers1138

A comprehensive overview about the use of selective reliability with Krylov methods in the1139

presence of bit flips is given in James Elliott’s PhD thesis [86]. Elliott evaluates the CG1140

and GMRES solvers with the algebraic multigrid preconditioner, see also [10] for a more1141

recent study. Coleman et al. [68] consider Krylov subspace solvers in combination with the1142

incomplete ILU algorithm ParILUT. In [84] Elliot et al. investigate the effect of bit flips on1143

the convergence of GMRES and propose strategies for minimizing the numerical impact.1144

The authors of [31] present a monotonicity-based fault detection and correction procedure1145
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for a Generalized Conjugate Gradient Krylov solve and perform tests with manual fault1146

injection. While the solver manages to converge even with large amounts of corrupted data,1147

the basic recovery procedure speeds up convergence with minimal detection and correction1148

overhead.1149

In [218] the authors use a slightly different terminology and call their method numerically1150

self-stabilizing, a term which originates in the context of distributed systems [77]. They1151

introduce two error oblivious [77] iterative linear solvers: one for the steepest descent and one1152

for conjugate gradient. In the latter case, they consider necessary conditions for conjugate1153

gradient to converge. Those conditions are borrowed from non-linear conjugate gradient [276]1154

and are maintained in a correction step (typically performed every other ten iterations). The1155

correction step does not explicitly correct errors, but re-computes quantities such as the1156

residual at regular intervals. Therefore, we classify these methods as error oblivious instead1157

of error aware.1158

3.3.4 Domain decomposition1159

In [116] Griebel and Oswald use probabilistic analysis to model the effect of errors on the1160

convergence of the classical overlapping Schwarz algorithm. They conclude that this method1161

does indeed converge in the presence of errors. Glusa et al. [113] mention that asynchronous1162

domain decomposition methods are by definition fault-tolerant. In [184,210,211], the authors1163

discuss resiliency of a task-based domain decomposition preconditioner for elliptic PDEs. By1164

leveraging the domain decomposition approach, the problem is reformulated as a sampling1165

problem, followed by a regression-based solution update. The regression is formulated and1166

implemented such that it is oblivious to corrupted samples. The authors combine this1167

algorithmic approach with a server-client implementation based on ULFM, see Section 2.2.2.1168

They show promising results of this approach in terms of resiliency to missing tasks, corrupted1169

data and hardware failure.1170

3.3.5 Time stepping1171

In [119], iterative time-stepping using spectral deferred corrections are shown to be error1172

oblivious at the cost of more iterations for the affected time-step. With error-estimators in1173

place, time-integration techniques like Runge-Kutta methods will repeat the calculation of a1174

time-step with smaller step sizes, if errors in the solution vectors are relevant [61]. This type1175

of algorithms is resilient against errors in the solution vector of the new time step. Repeating1176

the new time step with a reduced time step size is not the optimal measure in case of an1177

error where repeating the step with the same time step size would be more efficient, but it1178

leads to correct results.1179

4 Future directions1180

In the final section we focus on the future direction of resilient algorithms. We highlight1181

what changes need to be made to current infrastructures to support the goals proposed by1182

algorithm and application developers. Furthermore, we list those algorithms that are likely1183

to come to the forefront as resiliency plays a more important role in the cost-benefit analysis1184

of extreme scale simulations. And we mention some numerical methods that are yet to be1185

fully explored in the context of resilient algorithms.1186
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4.1 Systems in support of resilient algorithms1187

We propose that resiliency will only be obtained by a multilayered approach incorporating1188

operating systems, file systems, communication, programming models, algorithms, applica-1189

tions and education. In terms of the layers covered by infrastructure, the goal is to increase1190

systems and delivered performance while keeping the detectable errors in the upper algorithm1191

based layers constant. We refer the reader to the recently published report by Radojkovic et1192

al. [207] for an overview of the needs of the next generation HPC systems.1193

4.1.1 Error correcting codes1194

Poulos et al. [204] propose hardware ECC assistance that can pass error syndrome information1195

through to an application and use this to fix detected errors. When an ECC hardware1196

error occurs that results in a Detectable, but Uncorrectable Error (DUE), the ECC hardware1197

generates a syndrome which is a byproduct of the error detection. For many ECC schemes,1198

a syndrome that corresponds to a DUE can be used to generate a list of possible corrections,1199

one of which is taken to be the original uncorrupted data. In this work, the authors show1200

that this set is relatively small, meaning that the set of potential values for an application to1201

search for their correct answer (before corruption) is also small. They also study the error1202

value distribution and show that for certain classes of problems it can be easy to identify1203

obviously wrong answers. For the application studied in [204], work was done to correct a1204

hydrodynamics application using conservation laws and average of neighbor cells. This work1205

requires changes to the hardware error reporting techniques and modification to the operating1206

system to determine which application observed the DUE and pass it to an interrupt handler.1207

4.1.2 Improving checkpoint/restart1208

Independent of any additions, changes or new developments in the algorithmic or the1209

system area, checkpoint/restart will remain a necessary component for any system. For one,1210

no other technique can provide the needed resilience against full system outages; further,1211

checkpoint/restart is also needed for developers to deal with limited job execution times and1212

possible migration between systems or debugging purposes at large scale.1213

Improving classical checkpoint/restart for homogeneous systems1214

Observing the necessity of checkpoint/restart makes it critical to further optimize, enhance and1215

support efficient checkpoint/restart mechanisms—even on classical, homogeneous systems—1216

and provide users with library based solutions for core checkpoint/restart functionality. In1217

particular, the following avenues should be pursued to optimize checkpoint/restart.1218

Use additional algorithmic techniques to be able to reduce checkpoint frequency.1219

Reduce data to be written to disk by eliminating redundancy and possibly compressing1220

checkpoint information. Note that suitable data compression will typically require1221

user-level knowledge, suitable interfaces must be provided.1222

Overlap/Offload checkpoint operations to allow for asynchronous checkpoint/restart1223

operations.1224

Integrate checkpoint/restart with novel programming approaches to minimize check-1225

pointable state.1226

Keep the restart requirements local to the neighbour nodes of the failed node.1227
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Localize checkpoint data to own or localized nodes. This could be supported by local1228

non-volatile memory, as targets for checkpoint data. While this has the potential to1229

reduce communication, as it avoids remote data transfers, it may require additional1230

hardware support to retrieve data from non-functional nodes, e.g., by accessing data1231

through fast JTAG-like interfaces.1232

In memory checkpointing.1233

Exploit user-level knowledge for serializing, packing, compressing data, see e.g. how exist-1234

ing AMR functionality [156] can be exploited for efficient checkpointing in Section. 2.2.1.1235

Checkpoint/Restart for heterogeneous systems1236

In addition to classical checkpoint/restart for homogeneous systems, node-local check-1237

point/restart support for heterogeneous systems will help containing error and failure1238

propagation. Such support may be provided transparently to the application by the under-1239

lying infrastructure, such as GPU drivers or task-based environments, or exposed in the1240

programming model, such as OpenMP Offload [76].1241

4.1.3 Scheduler and resource management1242

Support for resilience, especially at the workflow-level, has a direct impact on resource1243

management in HPC systems and hence requires new developments in this area as well.1244

Node-level parallelism1245

With increasing node-level parallelism, the impact of OS noise (typically caused by un-1246

predictable interrupts) becomes even more important. Therefore, dedicated node-level1247

resources are needed to exclusively run the OS and minimize the impact of OS noise on the1248

multi-threaded application running on the other cores.1249

Adaptive system and application load balancing1250

The batch scheduler needs to adaptively balance the system load onto the available resources,1251

via seamless application migration. While the application needs to adapt to the capabilities1252

of the newly allocated resources, if different from the original allocation, without incurring1253

performance penalties. The former has typically been implemented via checkpointing and1254

process migration [174]. The latter has typically been implemented for applications that can1255

adjust their granularity, e.g. from finer to coarser, depending on resource availability either1256

triggered by the application or the system [46]. When exposing and expressing parallelism1257

in applications, in addition to accounting for and matching the multiple levels of hardware1258

parallelism (nodes, sockets, cores), the decomposition granularity needs to be flexible to1259

support evolvability and malleability and allow for adaptive load balancing at the application1260

and system levels.1261

Adaptive resource management1262

The batch scheduler in conjunction with the distributed runtime system employed by the1263

application (e.g., MPI, Charm++, HPX) needs to support resources errors/failures and1264

recover them without terminating the applications in the process. This approach should work1265

both with rigid and moldable applications as well as with evolving and malleable applications.1266



Acronyms XX:33

Table 2 Properties of numerical algorithms fostering or helping resilience

categories solvers discretization

redundancy × ×
replication ×
hierarchical methods × ×
mixed precision × ×
error control × ×
locality-emphasizing schemes ×
asynchronous methods × ×
embarassingly parallel ×
stochastic > deterministic ×
iterative vs direct solvers ×
matrix-free / low memory footprint × ×

4.2 Programming models with inherent resiliency support1267

Certain applications and algorithms may naturally be resilient against errors. This may lend1268

them as natural candidates for asynchronous parallel execution (via asynchronous many-task1269

programming). While this mitigates the challenges associated with bulk synchronous parallel1270

execution, asynchronous parallel execution may influence, in the presence of silent errors, the1271

convergence rate of the numerical algorithms and might lead to incorrect results.1272

Programming model and runtime support for resilience can offer transparent handling of1273

errors and failures or can assist the application in handling them. Consistent programming1274

model support for resilience based on realistic error/failure models is needed to properly1275

handle such events with low overhead. Higher-level abstractions for programming resilient1276

applications are needed to help with error/failure handling complexities and to offer reuse of1277

concepts and codes across applications.1278

4.3 Future directions for the solution of partial differential equations1279

In this section, we focus on discretizations for linear and non-linear partial differential1280

equations as well as solvers for the resulting discrete and sparse systems of equations. We1281

introduce a list of algorithmic properties that we found are, or can be, contributing to1282

the resilience of the algorithms described in Section 3. Table 2 lists these properties and1283

indicates where we found relevant examples of how they can foster resilience for either linear1284

or non-linear solvers or for spatial or time discretization. In the following subsections we1285

describe these examples in more detail and highlight the several (mutually related) properties1286

that could be of interest in the context of resilient algorithms.1287

4.3.1 Redundancy and replication1288

A failure that is not fixed by the system (hardware and middleware) typically results1289

in a loss or corruption of data. To tackle this problem, redundancy techniques can be1290

used to detect and recover from data corruption and data loss. The performance of these1291

algorithms is usually measured in the amount of memory and computational overhead1292

they entail, the detection rate of errors, the rate of false-positives they achieve, and the1293

accuracy of the recovery. Optimizing these performance indicators should be of main concern1294

for future algorithm design. One existing class of algorithms that apply redundancy are1295
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multiresolutional techniques such as multigrid and the sparse grid combination technique1296

described in Section 3.2. They inherently add redundancy through the hierarchical structure.1297

Sparse grid combination techniques calculate the same solution on different anisotropic grids.1298

The coefficients of the combinations of the components grids can be recalculated if one1299

or more nodes are lost due to faults. This redundancy of the component grids allows the1300

algorithm to obtain an alternative approximation of the solution. However, if a component1301

grid is distributed on too many nodes, then the approximation will fail if a fault occurs on1302

any one of those nodes. Another class of algorithms add redundancy through recomputation1303

with different models and configurations such as in ensemble or multifidelity techniques. A1304

more straight-forward approach is to directly add redundancy through replication of certain1305

algorithmic paths, cf. the following subsection on recalculation techniques.1306

Depending on the underlying architecture, replication can be a competitive option to1307

increase detected and undetected error robustness. If computation speed significantly outpaces1308

memory access and communication, each operation can be executed multiple times while the1309

data is still accessible in the RAM. This can be used for redundancy-based sanity checks of1310

low-level operations or even for checksum-like approaches.1311

Overlapping data in parallel algorithms can serve as a starting point for mitigation,1312

albeit not for detection. In the case studies explored in Section 3.2.2, these are applied to1313

elliptic PDEs, though an extension to other models should be feasible. Furthermore by even1314

increasing the ghost layer size and thereby adding extra redundancy, other reconstruction1315

possibilities might become possible. This could already be taken into account during the1316

domain partitioning process.1317

4.3.2 Hierarchy and mixed precision1318

Hierarchical discretizations have proven to be advantageous in various respects. Related1319

notions are multi-resolution or multi-level discretizations, but also (recursive) sub-structuring1320

in the engineering nomenclature of the Finite Element Method (FEM). Built into the hierarchy1321

are problem-inherent information and structures that are well-suited for modern hierarchy-1322

based solvers. In FEM, for example, hierarchical bases carry information about both location1323

and frequency, which leads to a special built-in redundancy that can be exploited for error1324

detection (see Section 3.1). Therefore, from a resilience perspective, hierarchy should be a1325

core paradigm for discretization design. This applies irrespectively of whether the hierarchical1326

bases are formulated in the spatial (h) or the order (p) sense.1327

From a solver perspective, multigrid methods for elliptic and parabolic PDE problems are1328

relevant approaches towards resilient numerical algorithms. They inherently act on different1329

granularities, representations, scales, and levels and can be used to quantify differences1330

between these levels. For local recovery, local multigrid methods are highly efficient, especially1331

when they can be accelerated with the superman strategy [138]. Additionally the low-1332

resolution duplicates can be used for some kind of approximate recovery or minimal rollback1333

like re-application of the smoother on a specific level in a multigrid scheme. Detection1334

of errors within multigrid is often possible due to algebraic relations or on the basis of1335

hierarchical multi-grid-inherent error estimates [11, 139, 216], which hold true inside such1336

schemes. As stated in Section 4.3.1, the inherent redundancy incorporated in these algorithms1337

is also beneficial.1338

Mixed-precision arithmetics are typically used within the numerical solver parts to speed-1339

up computations. However, the discretization can enable the flexibility to store data at1340

varying precision. Examples for this are hierarchical approaches such as hierarchical bases,1341

where a function value is stored as a hierarchical surplus only. As another example, the1342
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usage of wavelets in multiresolutional analysis can serve. In both cases, contributions of1343

higher levels typically require less accuracy, as only the most significant bits contribute to1344

the overall point values.1345

4.3.3 Error control1346

For many numerical methods, a wide range of classical a priori and a posteriori error1347

estimation techniques are available, see among many others [6, 22, 122, 152, 160, 206, 216],1348

which constitute the basis of many adaptive numerical algorithms.1349

Adaptive time discretization methods are the state of the art for ODE solvers, while, for1350

PDE solvers, spatial adaptivity techniques are also widely used. Local time step adaptation1351

is feasible in the framework of so called local time stepping or multirate approaches, where1352

different components of the system can have different time step sizes, see [43, 53, 94, 106,217,1353

220,224], which are however still far from mainstream for most applications. For PDE solvers,1354

local spatial adaptivity techniques are also very common [20,21], but their incorporation in1355

operational applications is still a research topic, see e.g. [36,163,185,203,255] for developments1356

concerning oceanography and numerical weather forecasting.1357

The error estimations on which all these methods rely on also constitute the basis of an1358

error detection mechanism, since some undetected errors, like bit flips on significant floating1359

point digits, will result in errors exceeding the allowed error tolerances. To some extent,1360

these techniques are also examples of ABFT or error oblivious approaches, since bit flips and1361

other silent errors occurring during the computation of the solution at the next time step or1362

on a refined mesh could be automatically corrected by the repeated computations triggered1363

by the error threshold violation. Furthermore, silent errors in the data at the current time or1364

mesh level could be identified by the failure of the time step or mesh refinement to correct1365

the error.1366

Combined with other ABFT strategies, adaptive discretization strategies based on error1367

estimators can be a powerful and so far rather underrated tool for protecting a simulation1368

from undetected errors in the solution vectors. On the other hand, error estimators should not1369

be used as a black box for resiliency purposes. Indeed, errors can lead to severe over-resolution1370

or, potentially, even under-resolution in space or time and the error estimators themselves1371

could be affected by undetected errors.1372

As seen in Section 3.1.4, some iterative solvers for the solution of linear systems have1373

invariants, such as monotonicity for Krylov solvers. These properties can be put to good use1374

in devising resilience strategies, for example activating an additional restart of the Arnoldi1375

procedure as soon as an increase in the residual norm is observed.1376

The idea of interval arithmetic is to compute bounds of intervals that always contain the1377

exact result [7, 158]. Probabilistic methods for rounding error estimation [71,96,98, 198,258]1378

require several executions of arithmetic operations with different perturbations or different1379

rounding modes (for instance three executions for Discrete Stochastic Arithmetic [81]). With1380

both approaches, the comparison of several computed results enables one to control rounding1381

errors (or detect and mitigate actually wrong results).1382

4.3.4 Locality, asynchronicity and embarassingly parallelism1383

One important aspect of resilient algorithms is error confinement as global dependencies1384

propagate errors to other processors and complicate recovery. Locality-emphasizing numerical1385

algorithms achieve this by limiting dependencies to local areas or completely removing them.1386

Consequently, error mitigation can be limited to a local subdomain. Typical examples for1387
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these schemes are domain decomposition, which splits the domain into several subareas, and1388

classical discretization schemes such as finite elements, finite differences and finite volumes.1389

As mentioned in Section 3.2.1, domain decomposition schemes such as additive Schwarz1390

methods, or substructuring-inspired FETI [90] or also the fully adaptive multigrid method1391

[214] are naturally asynchronous and resilient to message loss. In this context, we use the1392

term asynchronous primarily in the sense of reducing the time synchronicity in parallel1393

computations – from communication-avoiding schemes via a reduction of synchronization1394

points up to vastly decoupled schemes. Using this inherent property, a failure in a subdomain1395

would result in a message loss that does not hinder convergence in other subdomains, because1396

a global wait for a message update and synchronization are not necessary. In addition,1397

asynchronous methods may better adapt to heterogeneous processors and networks than1398

their synchronous counterparts as it has been shown in the context of Grid computing [19,59].1399

Both the localized and asynchronous approaches, achieve their impact through a decoupling of1400

computations. Going further in this direction leads to embarrassingly or nearly embarrassingly1401

parallel algorithms. These represent a group of algorithms where it is relatively easy to1402

decouple subproblems in time or space. The subproblems can therefore be calculated1403

completely independently, and errors do not propagate to other subproblems. Examples of1404

such methods are Monte Carlo simulations and computations with the sparse grid combination1405

technique. Since it is expected that only a few tasks will encounter errors and the scheduling1406

is automatically balancing the load, the overall execution time does not suffer too much.1407

Future algorithmic design should therefore aim at increasing asynchronicity and locality to1408

move towards embarrassingly parallel problems.1409

4.3.5 Stochastic1410

Stochastic methods can be superior to deterministic methods when it comes to resilience.1411

Stochastic methods do not require the program to take a deterministic path, faulty parts1412

can be neglected or exchanged easily by other results. A popular example are Monte Carlo1413

methods where we sample randomly in the computation domain and can simply neglect1414

failed samples. Ensemble methods are examples where different instances or models of a1415

concrete problem setting are computed. Even if one of these computation fails, the ensemble1416

computation can still return a – maybe slightly less accurate – result. Stochastic elements1417

can therefore help the future algorithm design to reduce the dependencies on specific results1418

of the computation. These methods, however, need to be evaluated not just by highlighting1419

their resilience properties, but also taking into account the cost of a single run: if a single1420

run is expensive to complete, simply discarding it might be impractical.1421

4.3.6 Iterative methods1422

Iterative solvers may be viewed as inherently more robust than direct solvers because they1423

do not compute their solution using a pre-defined sequence of numerical operations as direct1424

solvers typically do. Indeed, by their nature, they perform a sequence of operations to update1425

and improve their current approximation. If an error is encountered during computation, the1426

probability of deleting this error or at least its effect may be higher than in a direct solver.1427

Especially fixed-point-based methods (domain decomposition, relaxation, . . . ) may be viewed1428

as inherently resilient as they have the property to always converge to the correct solution1429

independent of the initial state (global convergence). Some errors may induce a low influence1430

on convergence speed and can thus be safely ignored. In other cases, a restart – optionally1431

with recovery techniques – may be employed to ensure both resilience and efficiency in terms1432
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of runtime.1433

4.3.7 Low memory footprint – matrix-free1434

The classical approach to represent linear operators as sparse matrices produces large1435

amounts of static data which has to be restored upon failure. Checkpoint-restart approaches1436

feature high memory cost, naturally multiples of the storage needed for the solution vector.1437

Algorithmic alternatives to checkpoint-restart require possibly complicated or costly re-1438

assembly. Matrix-free methods do not represent the operators as static data in the first place.1439

Therefore, large sparse matrix data structures do not have to be restored upon failure as they1440

are computed on the fly anyway. Extreme-scale applications will benefit from matrix-free1441

approaches due to their low memory footprint, also in terms of runtime, (due to high memory1442

access cost) and higher limits for the overall problem size [25,27].1443

In addition to saving memory and, therewith, reducing the risk of memory corruption,1444

matrix-free methods can also be combined with automatic code generation [162] in a stencil-1445

based approach, i.e., for finite difference methods on uniform structured grids. In such cases,1446

the matrix entries may be ‘hard wired’ into code, such as 5-point stencils for Laplace’s equation.1447

Automatic code generation provides a means to increase resiliency in the code generator or1448

domain specific language and, thus, facilitate resilience aware software development.1449

For finite element methods, one can use local assembly kernels [26]. Here, the trade-off1450

between computation and storage and, in the future, resilience is relevant in particular for1451

higher order elements.1452

4.4 The final mile: towards a resilient ecosystem1453

The future directions described above will provide critical enhancements towards providing1454

resilient computation for numerical simulations. Alone, however, they are insufficient, as1455

they must be embedded in the larger ecosystem and in the efforts to make that ecosystem1456

support such novel resilience approaches. This requires another set of crucial developments.1457

4.4.1 Tools to support resilience software development1458

Developers will need the right tools to support their algorithmic efforts. These tools, as1459

they exist today, are often designed without faults and errors in mind and, therefore, do1460

not sufficiently support the development of resilient systems. In particular, we identified1461

three areas in which enhanced tool support for resiliency is needed: a) introspection to help1462

track errors and failures along with their root causes, b) validation through controlled fault1463

scenarios to enable targeted testing of new error mitigation features, and c) transformation1464

to transparently add error and failure checks into codes.1465

Tools for introspection1466

Introspection is critical to ensuring early error detection and the timely activation of correction1467

and mitigation mechanisms throughout the various layers of the software ecosystem.1468

System Monitoring: Knowing about the health state of a system requires monitoring it1469

and understanding its behavior. Future work needs to focus on scalable system monitoring,1470

real-time analyzes of system monitoring data, and autonomous decision making on corrective1471

actions for self-aware resilient systems. In order to gain a deeper understanding, types of1472

monitored data should be homogenized across system and sites, and, if possible, sanitized1473

logs should be available to the community.1474
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Application and Data Structures Monitoring: Applications need to automatically monitor1475

their performance and correctness with the use of tools. The tools can be developed in1476

abstraction, at the compiler-level, or at the runtime-level.1477

Tools for validation1478

Currently, there are no standard tools to test the correctness and performance of resilient1479

algorithms under undetected errors and fault. This is due to a lack of fault injection tools1480

that reflect realistic situations. DeBardeleben et al. [120] have developed a hardware error1481

simulator tool to understand the behavior of numerical algorithms under faulty hardware with1482

a great accuracy, but this approach cannot evaluate the execution time of resilient algorithms1483

at scale. Vendors provide fault injection tools [126, 148] for better execution efficiency,1484

compromising the accuracy of the hardware behavior. Compiler approaches or other in-house1485

error injections [49, 107] could allow the program to execute as efficiently as the original1486

binary, but the correctness is further compromised. There are also tools that can analyze1487

an application’s vulnerability very quickly but do not actually produce the application’s1488

faulty output. One technique for this, DiSCvar [177], uses algorithmic differentiation and1489

exposes how changes to each variable impact output results. It is important to note that1490

these techniques do not actually produce that corrupted output. Hence, they are very fast1491

but they may not be useful to developers looking to explore precisely how corruption changes1492

their application. It is likely that a combination of these techniques, which identify most1493

critical regions of an application coupled with fault injection at those locations, may serve as1494

a good compromise between the two techniques.1495

Any novel approaches that fill the gap between the accuracy and execution efficiency of1496

error injections will facilitate the code development of resilient algorithms, and the new tools1497

should be built with the existing continuous integration infrastructure. Such tools likely1498

require hardware knowledge that is considered intellectual property by the semiconductor1499

vendors. However, efforts which explore this space using open hardware technologies (RISC-V,1500

Sparc, etc.) can shed light on this space but may be of varying usefulness when application1501

developers look to understand how their applications will perform on hardware that has not1502

been fault injected at the register transfer or microcode level.1503

Tools for code transformation1504

Compilers are able to generate binaries with resilience capability as suggested in the work1505

by [209]; the generated binary instruments redundant computation, register allocations1506

to enable error detection and correction during program execution. The recent work by1507

Lin [170] leverages LLVM to generate SIMD instructions to perform redundant computation1508

and verification. Source-to-source code transformation has been proposed to enable triple1509

modular redundancy in loops [168] and automatic instrumentation of checkpointing [212].1510

Similarly, this idea can be extended to redundant threading for error mitigation, facilitated1511

with OpenMP-like programming language extension [140]. These approaches automatically1512

introduce resilience with some performance penalty, preventing the users from selective1513

adaptation of resilience for performance optimization, and these redundant computations are1514

benefited from the memory hierarchy, preventing doubling (or tripling) of the execution time.1515

In addition to such specific systems that support the addition of resilience to existing1516

codes, automated generation of code, e.g., via Domain Specific Languages (DSL) can help1517

with the transparent support of resilient computation. Examples for this can be stencil1518

generators, as already discussed in Section 4.3.7.1519
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4.4.2 User/Programmer education1520

According to the system log study by [75], many application job failures are triggered by1521

the mistakes of the users such as script errors and program bugs including excessive file and1522

thread creations. This means that better software engineering practices and training of users1523

should be pursued with similar efforts to the deployment of resilience strategies.1524

The Exascale Computing Project (ECP) by the US DOE has made a substantial investment1525

on educating tools, software engineering and HPC system usage for a variety of the users.1526

Additionally, the scientific and mathematical library teams in the ECP have introduced1527

software engineering policies [272] to improve the software quality, documentation and testing1528

process for better interoperability and composability of multiple library packages. This1529

activity, though not directly relevant to resilience, will gradually help to reduce application1530

errors and failures for large scale HPC systems.1531

5 Conclusions1532

This article presents a snapshot of current research on resilience for extreme scale computing.1533

It has grown out of the Dagstuhl seminar 20101 held March 1-6, 2020, bringing experts from1534

the field together on the topic Resiliency in Numerical Algorithm Design for Extreme Scale1535

Simulations. This seminar became a starting point to develop a synthesis between the system1536

perspective on resilience and the algorithmic perspective.1537

While resilience is undoubtedly an issue for extreme scale computing, it is less clear1538

what algorithms on the user or application level can contribute to mitigate faults. The1539

seminar provided ample room to discuss these topics and thus became the starting point1540

for this article. Many diverse aspects were found to be relevant, that require a holistic and1541

multidisciplinary approach involving different and complementary scientific communities.1542

In particular, it clearly appeared that a fundamental distinction lies in whether faults1543

are detected or not, and if they are not automatically detected, whether they are detectable.1544

If they are, algorithms can often be developed to detect errors and in a second stage to1545

correct them. It was found that some algorithms are naturally tolerant against faults or have1546

the intrinsic feature to be error oblivious. They can thus be naturally applied on a system1547

subject to errors.1548

Besides redundancy and checkpointing as classical techniques to mitigate faults, new1549

algorithm-based resilience techniques have been developed for several classes of numerical1550

algorithms. This includes linear algebra and solvers for partial differential equations, two1551

classes of algorithms that are prominent in many scientific workloads on supercomputers.1552

Some of these mitigation methods show remarkable success in the sense that faults can be1553

compensated algorithmically by recovery procedures with only little extra cost in time or1554

in silicon. On the other hand it also becomes clear that integrating such techniques in a1555

computational infrastructure is still facing many obstacles. This includes the still poorly1556

defined interface between user-level fault mitigation techniques and system level functionality,1557

as, it is, e.g., necessary to reliably and quickly detect a device (core, memory, ...) failure on1558

a large parallel machine.1559

Despite its breadth, the article is far from being comprehensive. The selection of topics is1560

a subjective overview of current research in the field of resilience for extreme scale computing1561

and it delivers an outlook into possible and promising future research topics and solutions.1562
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