
James Elliott, Kishor Kharbas, David Fiala,
Frank Mueller, Kurt Ferreira, and Christian

Engelmann
North Carolina State University

Sandia National Laboratory
Oak Ridge National Laboratory

Combing Partial Redundancy and
Checkpointing for HPC

 2

Motivation

  Target:
— High Performance Computing (HPC)
— Assumes capability computing (uses entire system)

  Systems classified by floating point operations per second (FLOPS)
—  teraflop : 1012; petaflop : 1015; exaflop : 1018

—  terascale 1990s, petascale 2008-, exascale ?
  Trends

—  Roadrunner: 1 petaflops 2008
—  K: 10 petaflops 2011
—  Sequoia: 16.32 petaflops 2012
—  Exascale by 2020

– Top500 projection

 3

Motivation

 Components have reliability
•  Reliability follows a
statistical distribution
 e.g., Exponential
•  Mean Time Before
Failure
 MTBF denoted as θ
•  Nodes form a
system, with system
MTBF Θ

Θ :System MTBF

Assume a node has 5yr MTBF (θ = 43,800 hours)

Θ = 43,800 hr. Θ = 21,900 hr. Θ = 5,475 hr.

Assumes capability computing
(using entire system)

 4

Motivation

Checkpoint Restart (C/R)
•  Enable unreliable systems to complete jobs
that exceed the system’s reliability.
e.g., job runtime > system MTBF
•  C/R has no impact on system reliability
•  Any component fails => application fails
•  Idea: periodically save state (checkpoint),
if failure occurs: load prev chkpt and restart
•  I/O from parallel file system (not local disk)

time

 5

Motivation

At petascale 50yr node MTBF (438,000 hours)
N = 25 Θ = 17,520 hr. δ = 76 hr. N = 1000 Θ = 438 hr. δ = 11 hr. N = 100,000 Θ = 4.39 hr. δ = 60 min.

 6

Motivation
  Scalability limitations of Checkpoint/Restart

  Redundancy is expensive: Is it advantageous to use various
degrees of redundancy in conjunction with C/R to minimize job
execution time?

  Can this relationship be modeled analytically?
  What are the optimal parameters for degree of redundancy

and checkpoint interval to achieve the lowest wallclock time?
  Goal: maximize time spent in useful application work

 – not fault tolerance code.

No. of Nodes Work Checkpoint Re-computation Restart
100 96% 1% 3% 0%

1,000 92% 7% 1% 0%
10,000 75% 15% 6% 4%

100,000 35% 20% 10% 35%

Less than 50% time spent doing meaningful work

 7

  Virtual process: contains r physical processes
—  in a parallel (redundant) configuration.

  r := degree of redundancy.
—  State machine replication.
— Active and redundant nodes perform same computation.
— Upon failure, replica process takes over execution.
—  Substantial increase in process MTBF.

  A system of N virtual processes connected in a series
configuration (single failure = total system failure)

  Traditional redundancy: all N virtual processes
 have same r and r must be a positive integer.

  Partial redundancy, N virtual processes have ceiling(r) or floor(r)
level of redundancy, r may be a real number ≥ 1

Redundancy and Partial Redundancy
r = 3

r = 2

r = 1

 r = 3 r = 2

System
N = 3, r = 2.5

 8

Motivation Revisited

Redundancy improves system reliability

Assume 100 components available Assume 1,000 components available Assume 20,000 components available Assume 100,000 components available

N = 100 Θ = 4,380 hr. δ = 38 hr.
N = 50 Θ = 15,994,299 hr. δ = 2308 hr.
N = 50 Θ = 8,760 hr. δ = 53 hr.)

N = 1000 Θ = 438 hr. δ = 12 hr.
N = 500 Θ = 1,599,430 hr. δ = 730 hr.
N = 500 Θ = 876 hr. δ = 16 hr.)

N = 20,000 Θ = 21.90 hr. δ = 2.5 hr.
N = 10,000 Θ = 79,971 hr. δ = 163 hr.
N = 10,000 Θ = 43.80 hr. δ = 3.7 hr.)

N = 100,000 Θ = 4.38 hr. δ = 1 hr.
N = 50,000 Θ = 15,994 hr. δ = 72 hr.
N = 50,000 Θ = 8.76 hr. δ = 1.5 hr.)

 r = 1
 r = 2
(r = 1

 9

  RedMPI library

  Works at profiling layer

  Goal: ensure output is correct
—  Related work already handles file IO

 (Böhm and Englemann ‘12)
— We focus solely on MPI messages

  Intercepts MPI function calls

  MPI_Comm_rank() returns same value for replica processes

  Each redundant copy needs to receive same messages in same order

  Each message is sent/received r number of times.

Design of Redundancy

Application

RedMPI

MPI

 10

Design of Redundancy: Blocking MPI P2P calls

  MPI_Send() -> MPI_Isend()s
 MPI_Waitall()

  Allocation of additional buffers

 11

Design of Redundancy: Other MPI functions

  Non-blocking MPI calls
— maintain list of MPI_Requests

  Collectives : e.g. MPI_Bcast(), MPI_Alltoall()
—  use redundant point-to-point calls

  Same info return by MPI_Probe() , MPI_Test() and MPI_Wtime()
functions

 12

Modeling Preliminaries

  A physical process (node) follows an exponential failure
distribution

—  θ - Mean Time Between Failures (MTBF)
  A system of virtual processes has an exponential failure

distribution
— Θ - system MTBF
—  r - Degree of Redundancy
—  α - Communication to Computation ratio

  Failures arrive following a Poisson process
  Redundancy increases the system reliability.

 13

Modeling Preliminaries

  Effect of Redundancy on Execution Time
— Application execution time ≥ base execution time
— Dependent upon many factors

–  Placement of processes, communication to computation
ratio, degree of redundancy, relative speed, etc.

—  Consider ideal execution environment:

 14

System
N = 3, r = 2.5

System Reliability Model

  Probability of failure of a physical node:

  Probability of survival of a virtual node with some integer k
degree of redundancy

  Partition N virtual processes into sets of real-
world redundancy levels

  Reliability of the system may be expressed as
 r = 3 r = 2

 15

System Reliability Model

  Assuming an Exponential distribution,

  The system failure rate is

  System MTBF is

 16

Effect of Redundancy on Reliability

• Reliability spikes at whole number redundancy levels
• (stepping function as component count increases)

• Reliability now depends on Communication to Computation ratio
• Time is a function of alpha

α increased by 3x

 17

Mathematical Analysis

  Using system MTBF, optimal checkpoint interval may be
calculated from Daly (Daly 2003)

  Cost function to compute total wallclock time derived by
—  Computing expected lost work
—  Computing amount of rework using lost work.
—  Total time = t + num_chkpts*chkpt_overhead + rework

  Formally,
—  c – time to write a checkpoint to storage
—  R – time to load a checkpoint from storage
—  δ - optimal checkpoint interval

 18

Base Configuration Increased node MTBF

Model Evaluation

Minimum runtime similar, even though components are 3x less
reliable.

Tmin ≈ 157
Tmin ≈ 163

 19

  Architecture:
—  108 node cluster (w/ 16 cores each)
— QDR Infiniband
—  2-socket shared-memory nodes
—  octo-core AMD Opterons per socket

  OpenMPI, BLCR, RedMPI
  NPB-CG, class D for 128 processes
  Base execution time: 46 min.
  MTBF: 6 hrs, 12 hrs, … 30 hrs
  Redundancy degree: 1x, 1.25x, 1.5x, … 3x

Simulation Environment

 20

Results – Model vs. Experiment

• Experiments agree with model (+ additive const)
• minimum runtime always achieved at 2x redundancy

 21

• Determine when a redundancy level becomes beneficial
• Assumes weak scaling

• Dual redundancy may be beneficial now
• At 78,536 processes, two dual redundant jobs of
128 hours can be run in the time of just one job
without redundancy.

Results – Optimal Redundancy Level

 22

Results – Extrapolation based on Jaguar

• Jaguar: node MTBF ~ 50 years (on 18,688 nodes)
• K-Computer: has 2.3X more components (equiv. 44,064)
• Exascale lane 1: ~100k nodes

• Jaguar: No redundancy necessary yet
• Titan maintains node count/component

• increases core count by 33%, adds GPUseffect?
• K-Computer: Dual redundancy possibly break-even
• Exascale: dual redundancy offers improves runtime over single,

•  triple redundancy still in the distance, unless SDC considered

r = 1 r = 2 r = 3

 K 156
(44,064)

154
(22,032)

179
(14,688)

 Exascale 173
(100,000)

154
(50,000)

179
(14,688)

Jaguar 145
(18,688)

154
(9,344)

179
(6,229)

SDC – Silent Data Corruption – bit flips due to radiation, etc,…

ECC (error correcting code), correct single bit flip, detect double, triple
no protection.

 23

  Runtime of apps employing redundancy+C/R may be modeled.
—  For a large system or unreliable system

 redundancy+C/R can achieve significantly shorter runtimes
— @ 80,000 nodes:

 2x redundancy  2x # resources but 2x # jobs
 @ exascale: 2x redundancy best!

  Future Work
—  Propose optimal checkpoint model that is redundancy aware
— Work towards eliminating assumptions

–  exponential failure model of system…

Conclusions and Future Work

 24

— Now is the time to ask.

  Acknowledgements: This work was supported in part by
—  NSF grants 1058779, 0958311, 0937908,
—  DOE DE-AC05-00OR22725 as well as by subcontracts from
—  Sandia and
—  Lawrence Berkeley (LBL-6871849) National Laboratories.
—  The research at SNL was supported by DOE DE-AC04-94AL85000 and that

at
—  ORNL by Office of Advanced Scientific Computing Research and DOE DE-

AC05-00OR22725 with UT-Battelle, LLC.

Questions?

 25

Outline

  Motivation
  Overview of Redundancy and Partial Redundancy

— Design of Redundancy
—  Preliminaries for Redundancy model and implementation
—  System Reliability Model
—  Effect of Redundancy on Execution Time and Reliability

  Mathematical Analysis
— Wallclock Model
— Model Evaluation

  Simulations and Model Comparison
—  Simulations performed on ARC
—  Extrapolated model of Jaguar

  Conclusions and Future Work

 26

Motivation

  Fault Tolerance and HPC
— As # of components in a system increases

 likelihood of failure increases
—  Fail-Stop failures

– Node dies, switch fails,___ => running application fails
—  Checkpoint/Restart (C/R) addresses fail-stop failures

– Periodically save application state
–  process level checkpoint on each node to shared storage, …

– In event of failure, reload from last checkpoint

 27

Design of Redundancy: MPI_ANY_SOURCE
  Message ordering requirement
  Primary replica posts MPI_Recv(any_src)
  Other replicas wait for primary
  Similarly for
 MPI_ANY_TAG

 28

Base Configuration Decreased Dump Time

Model Evaluation

• Similar minimal runtime, even w/ 10X higher dump time
• Lower system MTBF = significantly fewer checkpoints

•  458 vs 26 and 1,163 vs 82
• minimizes impact of C/R overhead

Tmin ≈ 157
Tmin ≈ 163

 29

• Background Processes
• failure simulator
• checkpointer

• Scaled down HPC
Environment
• Goal : Validate
analytical model

Simulation Framework

 30

  lower MTBF - 3x optimal redundancy
 Higher MTBF - 2x optimal redundancy

Results

 31

Results – Animated Crossover

• Same params as published crossovers (5yr MTBF, etc..)

• 2x behaves like 1x, given large enough N
• 3x should behave similarly given sufficiently large N.

• 1x fails at ~ 250k, reliability reaches floating limit for zero.

 32

Results – Jaguar Extrapolation

• Jaguar node MTBF is estimated to be roughly 50 years
• 18,688 nodes

• No redundancy necessary yet
• Dual redundancy in the very near future

• Titan maintains node count
• increases core count by 33%, adds GPUs.

 33

Results – Model

• minimum runtime always achieved at 2x redundancy

 34

Motivation

 Components have reliability
•  Reliability follows a
statistical distribution
 e.g., Exponential

•  Mean Time Before
Failure
 MTBF denoted as θ

Θ :System MTBF

Assume a node has 5yr MTBF (43,800 hours)

Θ = 43,800 hr. Θ = 21,900 hr. Θ = 10,940 hr. Θ = 5,475 hr.

 35

Motivation

At petascale 50yr node MTBF (438,000 hours)
N = 25 Θ = 17,520 hr. δ = 76 hr. N = 100 Θ = 4380 hr. δ = 38 hr. N = 1000 Θ = 438 hr. δ = 11 hr. N = 20,000 Θ = 21.90 hr. δ = 155 min. N = 100,000 Θ = 4.39 hr. δ = 60 min.

