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Motivation 

  Target: 
— High Performance Computing (HPC) 
— Assumes capability computing (uses entire system) 

  Systems classified by floating point operations per second (FLOPS) 
—  teraflop : 1012;   petaflop : 1015;   exaflop : 1018 

—  terascale 1990s, petascale 2008-, exascale ? 
  Trends 

—  Roadrunner: 1 petaflops 2008 
—  K: 10 petaflops 2011 
—  Sequoia: 16.32 petaflops 2012 
—  Exascale by 2020 

– Top500 projection 
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Motivation 

  Components have reliability 
•  Reliability follows a 
statistical distribution 
         e.g., Exponential 
•  Mean Time Before 
Failure 
 MTBF denoted as θ 
•  Nodes form a 
system, with system 
MTBF Θ 

Θ :System MTBF  

Assume a node has 5yr MTBF (θ = 43,800 hours) 

Θ  = 43,800 hr.  Θ  = 21,900 hr.  Θ  = 5,475 hr.  

Assumes capability computing 
(using entire system) 
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Motivation 

Checkpoint Restart (C/R) 
•  Enable unreliable systems to complete jobs 
that exceed the system’s reliability. 
e.g.,         job runtime > system MTBF 
•  C/R has no impact on system reliability 
•  Any component fails => application fails 
•  Idea: periodically save state (checkpoint), 
if failure occurs: load prev chkpt and restart  
•  I/O from parallel file system (not local disk) 

time 
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Motivation 

At petascale 50yr node MTBF ( 438,000 hours) 
N  = 25             Θ  = 17,520 hr.       δ  = 76 hr. N  = 1000            Θ  = 438 hr.         δ  = 11 hr. N  = 100,000        Θ  = 4.39 hr.     δ  = 60 min. 
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Motivation 
  Scalability limitations of Checkpoint/Restart 

  Redundancy is expensive: Is it advantageous to use various 
degrees of redundancy in conjunction with C/R to minimize job 
execution time? 

  Can this relationship be modeled analytically? 
  What are the optimal parameters for degree of redundancy 

and checkpoint interval to achieve the lowest wallclock time? 
  Goal: maximize time spent in useful application work 

  – not fault tolerance code. 

No. of  Nodes Work Checkpoint Re-computation Restart 
100 96% 1% 3% 0% 

1,000 92% 7% 1% 0% 
10,000 75% 15% 6% 4% 

100,000 35% 20% 10% 35% 

Less than 50% time spent doing meaningful work 
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  Virtual process: contains r physical processes 
—   in a parallel (redundant) configuration. 

  r := degree of redundancy. 
—  State machine replication. 
— Active and redundant nodes perform same computation. 
— Upon failure, replica process takes over execution. 
—  Substantial increase in process MTBF. 

  A system of N virtual processes connected in a series 
configuration (single failure = total system failure) 

  Traditional redundancy: all N  virtual processes 
 have same r and r must be a positive integer. 

  Partial redundancy, N virtual processes have ceiling(r) or floor(r) 
level of redundancy, r  may be a real number ≥ 1 

Redundancy and Partial Redundancy 
r = 3 

r = 2 

r = 1 

  r = 3      r = 2 

System 
N = 3, r = 2.5 
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Motivation Revisited 

Redundancy improves system reliability 

Assume 100 components available Assume 1,000 components available Assume 20,000 components available Assume 100,000 components available 

N  = 100  Θ  = 4,380 hr.           δ  = 38 hr. 
N  = 50    Θ  = 15,994,299 hr.  δ  = 2308 hr. 
N  = 50    Θ  = 8,760 hr.           δ  = 53 hr.) 

N  = 1000  Θ  = 438 hr.             δ  = 12 hr. 
N  = 500    Θ  = 1,599,430 hr.   δ  = 730 hr. 
N  = 500    Θ  = 876 hr.             δ  = 16 hr.) 

N  = 20,000     Θ  = 21.90 hr.         δ  = 2.5 hr. 
N  = 10,000      Θ  = 79,971 hr.      δ  = 163 hr. 
N  = 10,000      Θ  = 43.80 hr.        δ  = 3.7 hr.) 

N  = 100,000    Θ  = 4.38 hr.        δ  = 1 hr. 
N  = 50,000      Θ  = 15,994 hr.    δ  = 72 hr. 
N  = 50,000      Θ  = 8.76 hr.        δ  = 1.5 hr.) 

 r = 1 
 r = 2 
(r = 1 
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  RedMPI  library 

  Works at profiling layer 

  Goal: ensure output is correct 
—  Related work already handles file IO 

 (Böhm and Englemann ‘12) 
— We focus solely on MPI messages 

  Intercepts MPI function calls 

  MPI_Comm_rank() returns same value for replica processes 

  Each redundant copy needs to receive same messages in same order 

  Each message is sent/received r number of times. 

Design of Redundancy 

Application 

RedMPI 

MPI 
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Design of Redundancy: Blocking MPI P2P calls 

  MPI_Send() -> MPI_Isend()s 
      MPI_Waitall() 

  Allocation of additional buffers 
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Design of Redundancy: Other MPI functions 

  Non-blocking MPI calls 
— maintain list of MPI_Requests 

  Collectives : e.g. MPI_Bcast(), MPI_Alltoall() 
—  use redundant point-to-point calls 

  Same info return by MPI_Probe() , MPI_Test() and MPI_Wtime() 
functions 
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Modeling Preliminaries 

  A physical process (node) follows an exponential failure 
distribution 

—  θ - Mean Time Between Failures (MTBF) 
  A system of virtual processes has an exponential failure 

distribution 
— Θ - system MTBF 
—  r - Degree of Redundancy 
—  α - Communication to Computation ratio 

  Failures arrive following a Poisson process 
  Redundancy increases the system reliability. 
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Modeling Preliminaries 

  Effect of Redundancy on Execution Time 
— Application execution time ≥ base execution time 
— Dependent upon many factors 

–  Placement of processes, communication to computation 
ratio, degree of redundancy, relative speed, etc. 

—  Consider  ideal execution environment: 
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System 
N = 3, r = 2.5 

System Reliability Model 

  Probability of failure of a physical node: 

  Probability of survival of a virtual node with some integer k 
degree of redundancy 

  Partition N virtual processes into sets of                                real-
world redundancy levels 

  Reliability of the system may be expressed as 
  r = 3      r = 2 
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System Reliability Model 

  Assuming an Exponential distribution, 

  The system failure rate is 

  System MTBF is 
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Effect of Redundancy on Reliability 

• Reliability spikes at whole number redundancy levels 
• (stepping function as component count increases) 

• Reliability now depends on Communication to Computation ratio 
• Time is a function of alpha 

α increased by 3x 
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Mathematical Analysis 

  Using system MTBF, optimal checkpoint interval may be 
calculated from Daly (Daly 2003) 

  Cost function to compute total wallclock time derived by 
—  Computing expected lost work 
—  Computing amount of rework using lost work. 
—  Total time = t + num_chkpts*chkpt_overhead + rework 

  Formally, 
—  c – time to write a checkpoint to storage 
—  R – time to load a checkpoint from storage 
—  δ - optimal checkpoint interval 
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Base Configuration Increased node MTBF 

Model Evaluation 

Minimum runtime similar, even though components are 3x less 
reliable. 

Tmin ≈ 157 
Tmin ≈ 163 
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  Architecture: 
—  108 node cluster (w/ 16 cores each) 
— QDR Infiniband 
—  2-socket shared-memory nodes 
—  octo-core AMD Opterons per socket 

  OpenMPI, BLCR, RedMPI 
  NPB-CG, class D for 128 processes 
  Base execution time: 46 min. 
  MTBF: 6 hrs, 12 hrs, … 30 hrs 
  Redundancy degree: 1x, 1.25x, 1.5x, … 3x 

Simulation Environment 
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Results – Model vs. Experiment 

• Experiments agree with model (+ additive const) 
• minimum runtime always achieved at 2x redundancy 
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• Determine when a redundancy level becomes beneficial 
• Assumes weak scaling 

• Dual redundancy may be beneficial now 
• At 78,536 processes, two dual redundant jobs of 
128 hours can be run in the time of just one job 
without redundancy. 

Results – Optimal Redundancy Level 
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Results – Extrapolation based on Jaguar 

• Jaguar: node MTBF ~ 50 years (on 18,688 nodes) 
• K-Computer: has 2.3X more components (equiv. 44,064) 
• Exascale lane 1: ~100k nodes 

• Jaguar: No redundancy necessary yet 
• Titan maintains node count/component 

• increases core count by 33%, adds GPUseffect?  
• K-Computer: Dual redundancy possibly break-even 
• Exascale:  dual redundancy offers improves runtime over single, 

•  triple redundancy still in the distance, unless SDC considered 

r = 1 r = 2 r = 3 

       K 156 
(44,064) 

154 
(22,032) 

179 
(14,688) 

 Exascale 173 
(100,000) 

154 
(50,000) 

179 
(14,688) 

Jaguar 145 
(18,688) 

154 
(9,344) 

179 
(6,229) 

SDC – Silent Data Corruption – bit flips due to radiation, etc,… 

ECC (error correcting code), correct single bit flip, detect double, triple 
no protection. 
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  Runtime of apps employing redundancy+C/R may be modeled. 
—  For a large system or unreliable system 

 redundancy+C/R can achieve significantly shorter runtimes 
— @ 80,000 nodes: 

 2x redundancy  2x # resources but 2x # jobs 
 @ exascale: 2x redundancy best! 

  Future Work 
—  Propose optimal checkpoint model that is redundancy aware 
— Work towards eliminating assumptions 

–  exponential failure model of system… 

Conclusions and Future Work 
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— Now is the time to ask. 
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Questions? 
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Outline 

  Motivation 
  Overview of Redundancy and Partial Redundancy 

— Design of Redundancy 
—  Preliminaries for Redundancy model and implementation 
—  System Reliability Model 
—  Effect of Redundancy on Execution Time and Reliability 

  Mathematical Analysis 
— Wallclock Model 
— Model Evaluation 

  Simulations and Model Comparison 
—  Simulations performed on ARC 
—  Extrapolated model of Jaguar 

  Conclusions and Future Work 
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Motivation 

  Fault Tolerance and HPC 
— As # of components in a system increases 

 likelihood of failure increases 
—  Fail-Stop failures 

– Node dies, switch fails,___ => running application fails 
—  Checkpoint/Restart (C/R) addresses fail-stop failures 

– Periodically save application state 
–  process level checkpoint on each node to shared storage, … 

– In event of failure, reload from last checkpoint 
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Design of Redundancy: MPI_ANY_SOURCE 
  Message ordering requirement 
  Primary replica posts MPI_Recv(any_src) 
  Other replicas wait for primary 
  Similarly for 
   MPI_ANY_TAG 
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Base Configuration Decreased Dump Time 

Model Evaluation 

• Similar minimal runtime, even w/ 10X higher dump time 
• Lower system MTBF = significantly fewer checkpoints 

•  458 vs 26 and 1,163 vs 82 
• minimizes impact of C/R overhead 

Tmin ≈ 157 
Tmin ≈ 163 
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• Background Processes 
• failure simulator 
• checkpointer 

• Scaled down HPC 
Environment 
• Goal : Validate 
analytical model 

Simulation Framework 
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  lower MTBF - 3x optimal redundancy 
 Higher MTBF - 2x optimal redundancy 

Results 
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Results – Animated Crossover 

• Same params as published crossovers (5yr MTBF, etc..) 

• 2x  behaves like 1x, given large enough N 
• 3x should behave similarly given sufficiently large N. 

• 1x fails at ~ 250k, reliability reaches floating limit for zero. 
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Results – Jaguar Extrapolation 

• Jaguar node MTBF is estimated to be roughly 50 years 
• 18,688 nodes 

• No redundancy necessary yet 
• Dual redundancy in the very near future 

• Titan maintains node count 
• increases core count by 33%, adds GPUs. 
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Results – Model 

• minimum runtime always achieved at 2x redundancy 
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Motivation 

  Components have reliability 
•  Reliability follows a 
statistical distribution 
         e.g., Exponential 

•  Mean Time Before 
Failure 
 MTBF denoted as θ 

Θ :System MTBF  

Assume a node has 5yr MTBF ( 43,800 hours) 

Θ  = 43,800 hr.  Θ  = 21,900 hr.  Θ  = 10,940 hr.  Θ  = 5,475 hr.  
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Motivation 

At petascale 50yr node MTBF ( 438,000 hours) 
N  = 25             Θ  = 17,520 hr.       δ  = 76 hr. N  = 100             Θ  = 4380 hr.         δ  = 38 hr. N  = 1000            Θ  = 438 hr.         δ  = 11 hr. N  = 20,000         Θ  = 21.90 hr.      δ  = 155 min. N  = 100,000        Θ  = 4.39 hr.     δ  = 60 min. 


