Scaling To A Million Cores And Beyond: Using
Light-Weight Simulation to Understand The Challenges
Ahead On The Road To Exascale

Christian Engelmann
Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 87831-6173, USA

Abstract

As supercomputers scale to 1,000 PFlop/s over the next decade, investi-
gating the performance of parallel applications at scale on future architec-
tures and the performance impact of different architecture choices for high-
performance computing (HPC) hardware/software co-design is crucial. This
paper summarizes recent efforts in designing and implementing a novel HPC
hardware /software co-design toolkit. The presented Extreme-scale Simulator
(xSim) permits running an HPC application in a controlled environment with
millions of concurrent execution threads while observing its performance in
a simulated extreme-scale HPC system using architectural models and vir-
tual timing. This paper demonstrates the capabilities and usefulness of the
xSim performance investigation toolkit, such as its scalability to 227 simu-
lated Message Passing Interface (MPI) ranks on 960 real processor cores, the
capability to evaluate the performance of different MPI collective commu-
nication algorithms, and the ability to evaluate the performance of a basic
Monte Carlo application with different architectural parameters.

Keywords: Parallel Discrete Event Simulation, Message Passing Interface,
Collective Communication, High Performance Computing, Exascale

1. Introduction

With the recent deployment of 10-20 PFlop/s (1 PFlop/s = 10' floating-
point operations per second) supercomputers and the exascale roadmap tar-
geting 100, 300, and eventually 1,000 PFlop/s over the next decade, the trend
in supercomputer architecture goes clearly in only one direction. Systems

Preprint submitted to Future Generation Computer Systems April 30, 2013

will dramatically scale up in size, i.e., in compute node and processor thread
counts. By 2020, an exascale system may have 1,000,000 compute nodes
with 1,000-10,000 threads per node. This poses several challenges related to
power consumption, performance, resilience, productivity, programmability,
data movement, and data management.

The expected growth in concurrency from today’s 1.57 million hard-
ware threads in the IBM BlueGene/Q Sequoia supercomputer at Lawrence
Livermore National Laboratory to 1-10 billion hardware threads at exas-
cale, causes parallel application scalability issues due to sequential appli-
cation parts, synchronizing communication, and other bottlenecks. High-
performance computing (HPC) hardware/software co-design is crucial to en-
able extreme-scale computing by closing the gap between the peak capa-
bilities of the hardware and the performance realized by HPC applications
(application-architecture performance gap).

Investigating the performance of parallel applications at scale on future
architectures and the performance impact of different architecture choices
is an important component of HPC hardware/software co-design. Without
having access to future architectures at scale, simulation approaches provide
an alternative for estimating parallel application performance on potential
architecture choices. As highly accurate simulations are extremely slow and
less scalable, different solution paths exist to trade-off simulation accuracy
in order to gain simulation performance and scalability.

This paper summarizes recent efforts in designing and implementing a
novel HPC hardware/software co-design toolkit. The presented work focuses
on a lightweight parallel discrete event simulation (PDES) solution for in-
vestigating the performance of Message Passing Interface (MPI) applications
at extreme scale. The developed Extreme-scale Simulator (xSim) permits
running an HPC application in a controlled environment with millions of
concurrent execution threads while observing its performance in a simulated
extreme-scale system using architectural models and virtual timing. This
paper demonstrates the capabilities and usefulness of the xSim performance
toolkit. Specifically, it shows:

e the scalability to 134,217,728 (227) simulated MPI ranks, each with its
own context, on a 960-core Linux cluster (a world record in extreme-
scale simulation);

e the capability to evaluate the performance of MPI collective commu-
nication algorithms on 2,097,152 (22!) simulated MPI ranks using the

same cluster; and

e the ability to estimate the performance of a Monte Carlo solver on
16,777,216 (2%*) simulated MPI ranks with varying architectural pa-
rameters using the same cluster.

The paper is structured as follows. Section 2 briefly discusses related
work, while Section 3 provides an overview of xSim’s architecture and design.
Section 4 demonstrates the capabilities and usefulness of xSim via a variety
of experimental results. Sections 5 and 6 conclude this paper with a summary
and an outlook on future work.

2. Related Work

xSim’s predecessor, the Java Cellular Architecture Simulator (JCAS) [1],
was developed in 2001 to investigate scalable fault-tolerant algorithms for
large-scale systems. The prototype was able to run up to 500,000 simulated
processes on a cluster with 5 native processors (using 1 for visualization)
solving basic mathematical problems. While it was able to run algorithms
at scale, it lacked important features, such as time-accurate simulation, high
performance, support for running the simulator atop MPI, and a fully func-
tional simulated MPI. The JCAS project sparked a new area of research in
fault-tolerant algorithms [2, 3, 4].

The BigSim [5] project was a competitor to JCAS and initiated to study
programming issues in large-scale HPC systems. The BigSim Emulator is
for application testing and debugging at scale and build atop Charm-++ and
AMPI [6]. Tt supports up to 100,000 simulated MPI processes distributed
over 2,000 native processors. Similar to JCAS, it does not offer time-accurate
simulation. It offers more functionality, but scales worse. The BigSim Simu-
lator is for identification of performance bottlenecks and uses a trace-driven
PDES that models architectural parameters of a HPC system. For time-
accurate simulation, it supports a variable-resolution processor model and a
detailed network model. While it uses a PDES to maintain accuracy, it does
not run applications.

pum [7] is a PDES-based system under development for predicting the
performance of parallel programs. It uses different grafting methods for in-
terfacing applications with the simulation, such as at the source code, li-
brary (currently implemented), and virtual machine level. It supports con-
servative and optimistic execution based on the usik PDES engine (http:

3

//kalper.net/kp/software/musik). A prototype was tested on 216,000 cores
of the Jaguar Cray XT5 system, providing over 27 million simulated MPI
ranks, each with its own thread context, and all ranks synchronized by simu-
lated time. xSim is far more scalable as pum requires an extreme-scale system
to simulate an extreme-scale system. pum’s PDES engine usik is superior.

The Structural Simulation Toolkit (SST) [8] (http://www.cs.sandia.gov/
sst) offers simulation of novel architectures, including processor, memory,
and network. It is a modular PDES framework atop MPI that scales to a
few simulated multi-core nodes. Its value is in the ability to investigate the
performance of future node architectures and to generate models for larger-
scale simulations. SST/macro is a complementary simulation toolkit that
processes output from the MPI tracing library DUMPI (http://sst.sandia.
gov/about_dumpi.html) for performance evaluation. Similar to the BigSim
Emulator/Simulator combination, SST and SST/macro enable the synergy
between small-scale cycle-accurate and large-scale communication-accurate
simulations. While SST is mature, it is quite complex to use. SST /macro is
still under development.

Other trace-driven PDES solutions for investigating application perfor-
mance exist. For example, DIMEMAS [9] processes traces from MPID-
Trace and generates trace files suitable for the two performance tools, PAR-
AVER [10] (http://www.bsc.es/computer-sciences/performance-tools/paraver)
and Vampir [11] (http://www.vampir.eu).

There are a also variety of network simulators, such as ns3 (http://www.
nsnam.org) and NetSim (http://tetcos.com/software.html), that are able to
provide network performance metrics at various abstraction levels, such as
network, sub-network, and packet traces. These detailed simulators offer
high-accuracy /low-scalability results that are not compatible with the high-
scalability approach needed for extreme-scale system simulation.

3. xSim: The Extreme-scale Simulator

The Extreme-scale Simulator (xSim) is a performance investigation toolkit
that permits running HPC applications in a controlled environment with mil-
lions of concurrent execution threads. It allows observing application per-
formance in a simulated extreme-scale HPC system for hardware/software
co-design. Much of its architecture and design details has been published
before [12, 13, 14, 15] and is only summarized in this paper. Additionally, a
few new features have been added that will be detailed in this paper.

Application

Virtual MPI MPI Application
PDES :
Processes

MPI

(a) Architecture ((© 2010 IEEE [14]) (b) Design ((© 2010 IEEE [14])

Figure 1: xSim’s implementation architecture and design.

Using a lightweight PDES (Figure 1(a)), xSim executes a parallel appli-
cation on a much smaller HPC system in an oversubscribed fashion with
a simulated wall clock time, such that performance data can be extracted
based on processor and network model. xSim is designed like a traditional
performance tool (Figure 1(b)), as an interposition library between the MPI
application and the MPI library, using the MPI performance tool interface. It
has support for simulated MPI point-to-point communication, groups, com-
municators, and collective communication, and for native MPI data types. In
total, xSim offers 81 MPI functions for each of the supported programming
languages, C and Fortran.

xSim employs its own user-space process threading for optimal perfor-
mance, offering each simulated MPI rank its own full thread context (CPU
registers, stack, heap, and global variables) while retaining control over the
thread schedule [12]. The network model offers latency and bandwidth re-
strictions with different network architectures, such as star, ring, mesh, torus,
twisted torus and tree [13]. It also supports hierarchical combinations, such
as for a network-on-chip and network-on-node, as well as, rendezvous protocol
and sender /receiver network interface contention simulation. For scalability
reasons, the network model does not provide full contention modeling at
this point. The processor model is based on the actual single-core execution
time on the real hardware platform scaled to the simulated processor core
speed [14], which is estimated using external node architecture simulators,
such as SST. xSim supports operating system (OS) noise simulation by in-
jecting waste time at the processor model using the abstraction of OS noise

t

frequency (periodic recurrence) and period (duration of each occurrence) [15].

A recent extension to the processor model is the support for heterogeneous
architectures. This new feature allows to simulate cores with different relative
speeds within the same processor, processors with different core counts and
speeds within the same node, and node configurations with different proces-
sors. Accelerator-based architectures, such as CPU-GPGPU combinations
are currently not supported.

For better simulation flexibility and scalability, xSim was recently im-
proved with support for the execution of application models. Similar to an
MPI trace replay, an application model feeds the simulator with timing and
communication behavior, but does not require certain native resources to
scale with the simulation. It simply advances the simulated time according
to the time the application would have spent between MPI calls and executes
MPI calls without actually sending message payloads and without the need
for valid buffers. While no real application code is executed and only message
envelopes are sent, both, the processor and network model account for the
virtual time an application would have spent on these activities.

xSim was also recently enhanced to offer full support for error handling
within the simulated MPI, including default MPI error handlers, user-defined
MPT error handlers, and MPI_Abort(). xSim virtualizes the MPI error han-
dling, such that errors caused by the application or injected by xSim for
application testing purposes are handled by xSim according to the MPI stan-
dard. Any simulated abort results in a termination of the simulation with
performance results and information about the source and time of the abort.

4. Experimental Results

The main contribution of this paper is the demonstration of the capabili-
ties and usefulness of xSim. Experiments were executed focusing on evaluat-
ing xSim’s scalability, using it for investigating the performance of different
MPIT collective communication algorithms, and employing it to identify the
impact of different architectural choices on the performance of a basic Monte
Carlo application. The experiments were performed on a 960-core Linux
cluster with 40 compute nodes, two 1.7 GHz AMD Opteron 6164 HE pro-
cessors/node, 12 cores/processor, 64 GB RAM/node, and a bonded dual
non-blocking 1 Gbps Ethernet interconnect. The system is running Ubuntu
10.04 LTS and Open MPI 1.5.5. Despite its small size, in comparison to the

simulated systems, this system has been proven to be particularly useful due
to its large amount of total RAM (2.5 TB).

4.1. Simulator Performance

The first series of experiments evaluate the scalability of xSim itself by ex-
ecuting a basic MPI program that only calls MPI_Init() and MPI_Finalize()
without performing any communication or input/output (I/O) operations.
While it is clear that an x-times oversubscribed execution of a parallel pro-
gram atop xSim would cause a corresponding x-times native execution over-
head, such as by running 1,000,000 MPI ranks in xSim on a native system
with 1,000 cores, the main motivation of this evaluation is to obtain the na-
tive baseline execution overhead and trade-offs involved when using xSim in
the highly oversubscribed fashion.

=#=24 cores-per-node =M=12 cores-per-node 6 cores-per-node ==#=24 cores-per-node =12 cores-per-node 6 cores-per-node
w L.E+05 w 1.E+05
3 8
S 1E+04 S 1E+04
] g
& 1.E+03 =i ‘:ﬂa & LE+03
s v sk £
S LE+02 ,w T LE+02
E 1eo01 ”’ E 1601 - Y
§ 1E400 7 § LE+00 AV Wawh
2 LEH .ﬁ 2 (E+ Y
] P Ed
2 1E01 g 2 1EO0L - 2 —
d o BEBEEEETEY S o2 BEmELE
. g W
2 e B ¥V
] H
E 270 273 2% 279 2°12 2M15 2018 2421 2M24 2027 E 200 203 2% 279 2A12 2715 2718 2°21 2M24 2027
& A

Number of Simulated MPI Processes Number of Simulated MPI Processes
(a) Using as few nodes as possible (b) Using as many nodes as possible
=& As few nodes as possible = As many nodes as possible —&—As few nodes as possible —f—As many nodes as possible
w 1.E+05 w LE+05
° T
§ 1E+04 E 1E+04
& 1E+03 & 1E+03
c s
o LE+02 o LE+02
',g 1.E+01 E 1E+01
c =
5 J
S LE+00 / / S LE+00
3 3
g LE-01 / g LEO01
X x
Y 1E0 -”;'}»" Y 1E02
S -]
& 1E03 & 1E03 T T
3 3
£ 2°0 273 276 2°A9 2A12 2M15 2A18 2421 2A24 2°27 E 200 2°3 246 209 2712 2°15 2°18 2A21 2R24 2A27
& b

Number of Simulated MPI Processes Number of Simulated MPI Processes

(c) Using 24 cores per node (d) Using 6 cores per node

Figure 2: xSim performance with up to 134,217,728 simulated MPI ranks.

Figure 2 shows the wall clock execution time of xSim using 24, 12, and
6 cores/node on the 40-node cluster with up to 134,217,728 (2%7) simulated

7

MPT ranks. At 227 ranks, xSim uses 2 TB of RAM as user-space stack (16
kB/rank). Most of xSim’s time is spent with setting up each rank, e.g.,
the initial stack frame, and performing context switches between ranks, e.g.,
switching the stack frame. In Figure 2(a), xSim’s native MPI ranks are
placed to use as few nodes as possible to reduce the communication overhead
of the PDES for virtual time synchronization. Memory access contention
overheads from the context switches are visible at large scale. In Figure 2(b),
xSim’s native MPI ranks are placed on as many nodes as possible to reduce
memory access contention. The higher native communication overhead is
visible at small scale, as well as, the impact of imbalanced load when using 6
cores/node. The Figures 2(c) and 2(d) show side-by-side comparisons of using
as few or as many nodes as possible for 24 and 6 cores/node. The trade-off
between concentrating communication vs. distributing memory contention
is clearly demonstrated.

These experiments not only demonstrate the relatively low baseline execu-
tion overhead and the on-node/off-node contention trade-offs involved when
using xSim, but also hint at a balance between communication-intensive sim-
ulations that should be executed on as few native compute nodes as possible
and computation- or memory-intensive simulations that should exploit as
many compute nodes as possible.

4.2. Sitmulated MPI Collective Communication Performance

The second series of experiments investigate the performance of different
collective communication algorithms for MPI_Reduce() and MPI_Barrier()
in a simulated future HPC system with 2,097,152 (22!) nodes organized in
a 128x128x128 3-D torus with 1 s link latency and 32 GB/s link band-
width. The number of cores/node is not considered as an MPI+X, e.g.,
MPI4+OpenMP, programming model is assumed. Therefore, each simulated
MPI rank is placed on one simulated compute node.

The targeted collective communication algorithms are based on the vir-
tual MPI implementation xSim offers using a point-to-point communication
overlay network in a linear or tree-based fashion. For the tree-based algo-
rithms, the trees are balanced using a simple top-down divide-and-conquer
approach to create a temporary overlay topology. In every hierarchy level,
the hierarchy’s root is chosen and the remaining nodes are divided by the
tree degree to build the next hierarchy levels. The collective communication
topology type and the tree degree can be configured as part of xSim’s virtual
MPI configuration on startup. For MPI Reduce(), the execution time of the

8

MPI_Reduce_local() operation on the data itself is explicitly not considered
for this experiment for clarity. xSim uses a shortest path routing within the
3-D torus network and simulates sender- and receiver-side network interface
contention, but not contention in the nodes along the routing path [13]. The
simulated eager communication threshold is set to 256 kB, i.e., MPI payloads
above 256 kB utilize the simulated rendezvous protocol.

—&—270 ——2710 2A20 =6=2A30 —4—2r0 ——2710 2020 ==2A30

1.E+04 1.E+04

1.E+02 1.E+02

1.E+00

X
M
M -
1.E-02 M\ =
LE-04 W
1.E-06 P T

1.E+00

oo W
1.E-04 -F.@
1.6-06 B T

T
©
<

~

2714
2715
2716 -
2717 o
2718 o
2719
2720
2721 -

T
n
o~
<

~

2710
2711

T
~ o o
< < <
NN N

270
g -
275

o o~ oo
< < <
N NN

Simulation Execution Time in Seconds
Simulation Execution Time in Seconds

T
~
o
<
&

M

Number of Simulated MPI Processes Number of Simulated MPI Processes
(a) Linear (b) Tree degree of 2
=4=270 =@=2/10 2020 =¢=2730 —=2n0 —E—2710 2020 =>2730

1.E+04 1.E404

1.E+02 1.E402

1.E+00 1.E4+00 7

“w “
° °
c =
g s
9 @
] a
£ £
@ o
£ £
E W E
S LEO02 S 1E-02
‘E B
3 3
@ LEO04 7 - o 1E04 7
& &
S 1.E06 F —T—T—T—T————T—T—T—T—T—T——T—— § 1E06F —
k] O N M FTNO~NONOAN®MIFNON 0N O k] OHNMTNONRNDOANMTNON®XDNO
- << S S S, S, S, S S, S, e oo oA NS = < < 5 5, S €, S, S, oA Ao A NN
S NAdNAdANANdNaddddd T g F] NNANNANNANNNNLL g
H NANANNSNNNN NS £ NNANNNNNNNN NS
@ @
Number of Simulated MPI Processes Number of Simulated MPI Processes
(c) Tree degree of 3 (d) Tree degree of 4

Figure 3: MPI_Reduce()in a 128 x128x 128 torus with 2°-23° bytes of payload using a linear
and different tree-based collective communication algorithms. The results for payloads of
20 and 2'° bytes are too similar to differentiate.

Figure 3 describes the simulated execution time of an MPI_Reduce() in the
3-D torus with up to 22! simulated MPI ranks and 2°-23° bytes of payload in
a linear collective communication algorithm (Figure 3(a)) and in tree-based
collective communication algorithms with tree degrees of 2, 3, and 4 (Fig-
ures 3(b)-3(d)). The results clearly show the performance difference between
the payloads and between the linear and tree-based collectives. They also
clearly demonstrate an almost negligible difference between the various tree-

9

based collectives at high payloads (22° and 2% bytes), due to the increased
receiver contention with higher tree degrees and the missing architecture-
awareness of the overlay tree-based collective in a 3-D torus. They further
illustrate the superiority of the linear collective at low payloads (2° and 2'°
bytes) due to the higher 0-byte message latency of the architecture-unaware
tree-based collectives.

—&—Linear ——2 3 =4 —&—Linear —i—2 3 =4

3.5E-03 5.0E-04

4.5E-04
4.0E-04

3.5E-04

3.0E-04 /
2.5E-04

2.0E-04

1.5E-04

1.0E-04

5.0E-05 | R/l v

0.0E+00 g T T

270 2% 2%2 273 2™ 275 276 2°7 278 279

3.0E-03

2.5E-03

2.0E-03

1.5€-03

1.0E-03 7

5.0E-04

0.0E+00

Simulation Execution Time in Seconds
Simulation Execution Time in Seconds

Number of Simulated MPI Processes Number of Simulated MPI Processes

(a) 20-22! simulated MPI ranks (b) 2°-29 simulated MPI ranks

Figure 4: MPI_Barrier() in a 128x128x128 torus using a linear and different tree-based
collective communication algorithms.

Figure 4(a) shows the simulated execution time of an MPI_Barrier() in
the 3-D torus with up to 22! simulated MPI ranks and with linear and tree-
based collective communication. As the MPI_Barrier()is implemented in this
case with a 0-byte MPI_Gather() (equivalent to a 0-byte MPI_Reduce()) fol-
lowed by a 0-byte MPI_Bcast(), the results demonstrate the superiority of the
linear collective due to the higher 0-byte message latency of the architecture-
unaware tree-based collectives. Figure 4(b) further demonstrates the effect
of rank placement within the 3-D torus. Scaling up from 27 to 2% simulated
MPI ranks causes a change from a 1-D to a 2-D topology and a corresponding
change in scaling behavior due to shortest path routing.

4.8. Simulated Application Performance

The last series of experiments employ xSim to identify the impact of dif-
ferent architectural choices on the performance of a basic Monte Carlo (MC)
application. The structure of this MC application consists of an embarrass-
ingly parallel computation phase and a final communication-intensive aggre-
gation of the result. This makes it easy to study how architectural trade-offs
affect an application’s computation and communication phases differently.

10

For simplicity, the MC implementation for estimating 7 from an earlier se-
ries of experiments [14] is used. The MPI application follows the dart-board
approach for computing 7 by creating random coordinates in a square and
tests if the points are within the centered circle fitted in the square. The
ratio of total points vs. the points inside the circle eventually converges to
the ratio of the square area vs. the circle area, from which 7 can be easily
computed. The computation load is set via the total number of points to
create. The communication load scales with the application, as a double
precision value is accumulated across all MPI ranks. The implementation
uses an architecture-aware linear MPI_Reduce() for the accumulation based
on neighbor communication in a chain.

——1x 128x ~#&—1/1AMD CPU —#—1/8 AMD CPU 1/64 AMD CPU

1.E406
1.E+05
1.E+04
1.E+03
1.E+02
1.E+01
1.E+00 -

1E-01 S—
e s TOOBS A

1.E-02 L S e e e

1.E+06
1.E+05
1.E+04
1.E+03
1E+02 7
1LE+01 7
1.E+00
1E-01
102 +—— T T T T T T T T T T T T T T T T T

Simulation Execution Time in Seconds
Simulation Execution Time in Seconds

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Number of Simulated MPI Processes Number of Simulated MPI Processes

(a) Different iterations with 1/1 AMD CPU (b) Different CPU performances with 128x
Figure 5: Monte Carlo solver in a perfect network with different iterations and CPUs.

Figure 5 illustrates the simulated execution time of the 7 MC solver with
strong scaling to 16,777,216 (22%) simulated MPI ranks in a perfect network
(0 latency and oo bandwidth). Figure 5(a) displays the execution results
with different computation load (1x vs. 128x) using a 1:1 scaling model
for the simulated processor speed relative to one 1.7 GHz AMD Opteron
6164 HE core of the cluster the experiment is performed on. The scaling
limitation due to Amdahl’s law is clearly visible as the amount of work per
simulated MPI process approaches its minimum in the form of command line
parsing, basic setup, and a relatively small amount of randomly generated
points. The rest of the experiments are executed at problem size 128 x for
comparison. Figure 5(b) illustrates the effect of different simulated processor
speeds on the scaling properties. An increase in execution time of a factor
of 8, or 64 respectively, can be observed with a processor speed slowed by a
factor of 8, or 64 respectively.

11

LE+05

1.E403

1.E402

1.E+00

1.E-01

Simulation Execution Time in Seconds

1.E+01

—#—16-core ==128-core 1024-core

1.E+04 ¥

O NNTNONNNOANMITNONONO A NMT
< << < Ao daddd oo NN NN
NNNNNNNNNNS < < << < < << << < < < <
NNNNNNNNNNNNNNN

Number of Simulated MPI Processes

(a) In a 8x8x...torus

Simulation Execution Time in Seconds

1.E+05 i
1.E+04 35

1.E+03

~A—16-core ——128-core 1024-core

1.E+02

1.E+01

1.E+00

1.E-01

OHNMTNONVNIOANMNTNON VN o NM S
R R R I T B R I I R AN NN N

<< < S < << < <
NANNANNANNRNNNZ 222 << <2< << <

NNNNNNNNNNNNNNN

Number of Simulated MPI Processes

(b) In a 16x16x. .. torus

Figure 6: Monte Carlo solver in different torus networks with different cores per node.

Figure 6 shows the simulated execution time of the m MC solver with
strong scaling to 22* ranks in two different 3-D torus networks with dif-
ferent core counts per node. The simulated architecture was derived from
an existing extreme-scale supercomputer and scaled up. The network in-
terconnect is an 8x8x...or 16x16x...3-D torus, with an open-ended 3rd
dimension to accommodate different total node counts. Each compute node
within the torus has 16, 128, or 1024 cores per node connected with each
other over shared memory communication simulated with an on-node star
network. The simulated system has an on-node latency of 0.32 us, an off-
node latency of 7 us, an on-node bandwidth of 9600 Mbps, and an off-node
bandwidth of 8800 Mbps. In comparison to Figure 5(a) (128 %) the impact
of the communication-intensive aggregation phase being slowed down by the
network is clearly visible in Figure 6. The performance gain of using more
cores per node is also clearly visible. Only slight differences exist between
Figures 6(a) (using a 8x8x...3-D torus) and 6(b) (using a 16x16x...3-D
torus). The rest of the experiments are executed using the 16x16x...3-D
torus for comparison.

The path to exascale is limited by the power consumption envelope. 1
MW of power consumption throughout an entire year roughly costs $1M U.S
Dollars (or $1M Euros). As it does not make much sense to spend more
money on powering a system for its 5-year life time than on purchasing it, a
certain power consumption envelope exists (~20 MW) in which an exascale
system needs to operate. Due to this limitation, HPC architects are opting to
increase energy efficiency by deploying less powerful cores in larger quantities,
a well-known trade-off between operating frequency and power consumption.

12

=f=16-core 1/1 =3=128-core 1/2 == 1024-core 1/4 ~#—16-core 1/1 =¥*—=128-core 1/8 ———1024-core 1/64

1.E+06 1.E4+06

« n
° -]
S 1.E+05 S 1.E+05 \\
b4 B, S
& 1.E+04 G 1E+04 4
£ £
g 1E403 - ¢ LE03 7
[Nt E 15402 1
H H
'5 1.E+01 '§1.E+01 1
X% 1Ev00 £ LE00 -
S 1EO01 S 1E01 T
k] K OHNMNMTNOVN VPO ANMINONNNO o NmM T
o k] LOQILLOP22d000ILEGRARIRAY
3 =3 NANNNNNNNNNS S S < < < < < < << <& & <
£ £ SAJRJJIANAARNARARA
& &

Number of Simulated MPI Processes

(a) 8x more cores that are 2x less powerful (b) 8x more cores that are 8x less powerful
—h—16-core 1/1 =H=128-core 1/2 —1024-core 1/4 =#=16-core 1/1 =>=128-core 1/8 =1024-core 1/64
» LE+06 ., LE+06
-] °
§ 1.E+05 S 1E+05
§ g
v 1.E+04 v 1.E+04
£ £
@ LE+03 @ 1.E+03
E E
EoLE+02 T E 1E02 -
c s
8 4 2 4
£ Le0l £ LEw01
2 1E+00 @ 1E+00 -
a &
S 1.E01 S 1EO0L
s O N MTWLWONRRNDOANMT NWYON OO e OH N MTMONNNOANMT N ONXDO O
- < 0% %5, 5, 5,5, 5, 5,5, o4 oA oA A A A A A AN - < <. <. <. < < < < < < o oA A A A A A A A AN
E SRR’/] R I R IR
H SAAIIIIIINA H SIS SSSNS
v Number of Simulated Nodes v Number of Simulated Nodes

—
o
-~

8x more cores that are 2x less powerful (d) 8x more cores that are 8x less powerful

Figure 7: Monte Carlo solver in a 16 x16x. .. torus network with different CPUs.

Figure 7 illustrates the simulated execution time of the 7 MC solver with
strong scaling to 22* simulated MPI ranks in the 16x16x...3-D torus with
16, 128, or 1024 cores/node when decreasing the computational capability of
the cores while increasing the number of cores/node. Figures 7(a) and 7(b)
clearly show the impact of deploying n-times more cores per node that are
m-times less powerful. As a result, the application’s overall performance
decreases. Figures 7(c) and 7(d) display the same results with simulated
compute node counts on the z-axis, allowing a more comparative study con-
sidering node, instead of core, performance/count.

5. Conclusions

With this paper, a recent effort was summarized that focused on the de-
sign and implementation of a novel HPC hardware /software co-design toolkit.
The presented Extreme-scale Simulator (xSim) focuses on a unique concept

13

that utilizes a light-weight PDES to run an HPC application in a controlled
environment with millions of concurrent execution threads. Using architec-
tural models and virtual timing, application performance can be observed in
a simulated extreme-scale HPC system.

The capabilities and usefulness of the xSim toolkit have been demon-
strated by showing that it scales to 227 simulated MPI ranks on a 960-core
Linux-based cluster (a world record in extreme-scale simulation), different
MPI collective communication algorithms could be evaluated on a simulated
future-generation system with up to 22! simulated MPI ranks, and the scal-
ing properties of a basic Monte Carlo application with different architectural
parameters could be investigated on a simulated HPC system with up to
224 simulated MPI ranks. The results clearly demonstrate that architecture-
awareness is key to enable extreme-scale computing. Whether it is collec-
tive communication algorithms within the MPI implementation, application
scalability limits imposed by Amdahl’s law, or energy efficiency trade-offs in
hardware, HPC hardware/software co-design is essential to guarantee effi-
cient utilization of future-generation HPC systems.

6. Future Work

While the presented work is quite novel and useful, a few limitations
remain that will be addressed in the near future. First and foremost, full
network contention modeling is planned as an optional part of xSim. The
current sender-/receiver-based network contention modeling does not include
all network nodes in the routing path and will be extended to support this as
an optional feature (limiting scalability though). Another deficiency is the
quite simplistic processor model. Current plans include the extension of the
processor model to utilize processor counters to more accurately model future
processors. Another issue that will be addressed in the near future is valida-
tion of simulation accuracy by comparing native with simulated application
executions on different HPC platforms. Initial studies were performed in [12]
using the NAS Parallel Benchmark suite on a real and a simulated Linux
cluster. More extensive validation using large-scale HPC systems with more
complex network architectures have not been done until now due to general
stability issues, that have been solved now, and the missing full network
contention modeling.

Future work will also target a simulation-based HPC hardware/software
performance, resilience, and power consumption co-design toolkit. It focuses

14

on enhancing xSim with (1) fault injection mechanisms, (2) fault propagation,
isolation, and detection models, (3) fault avoidance, masking, and recovery
simulation, and (4) power consumption models.

Acknowledgements

This research is sponsored by the Office of Advanced Scientific Computing
Research, U.S. Department of Energy (DOE). This manuscript has been
authored by UT-Battelle, LLC, under Contract No. DE-AC05-000R22725
with the DOE. The United States Government retains and the publisher, by
accepting the article for publication, acknowledges that the United States
Government retains a non-exclusive, paid-up, irrevocable, world-wide license
to publish or reproduce the published form of this manuscript, or allow others
to do so, for United States Government purposes.

References

[1] C. Engelmann, A. Geist, Super-scalable algorithms for computing on
100,000 processors, in: Lecture Notes in Computer Science: Proceedings
of the 5 International Conference on Computational Science (ICCS)
2005, Part I, volume 3514, Springer Verlag, Berlin, Germany, Atlanta,
GA, USA, 2005, pp. 313-320.

[2] G. Bosilca, Z. Chen, J. Dongarra, J. Langou, Recovery patterns for
iterative methods in a parallel unstable environment, STAM Journal on
Scientific Computing (SISC) 30 (2007) 102-116.

[3] Z. Chen, J. Dongarra, Algorithm-based checkpoint-free fault tolerance
for parallel matrix computations on volatile resources, in: Proceedings
of the 20° IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS) 2006, IEEE Computer Society, Rhodes Island, Greece,
2006, p. 10.

[4] H. Ltaief, E. Gabriel, M. Garbey, Fault tolerant algorithms for heat
transfer problems, Journal of Parallel and Distributed Computing

(JPDC) 68 (2008) 663-677.

15

[5]

[12]

G. Zheng, G. Kakulapati, L. V. Kale, BigSim: A parallel simulator for
performance prediction of extremely large parallel machines, in: Pro-
ceedings of the 18" IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS) 2004, IEEE Computer Society, Santa Fe,
New Mexico, 2004.

L. V. Kale, E. Bohm, C. L. Mendes, T. Wilmarth, G. Zheng, “Program-
ming petascale applications with Charm-++ and AMPI”, in: Petascale
Computing: Algorithms and Applications, CRC Press, 2007, pp. 421—
441.

K. S. Perumalla, pm: A highly scalable and transparent system for
simulating MPI programs, in: Proceedings of the 3rd"" International
ICST Conference on Simulation Tools and Techniques (SIMUTools)
2010, ACM Press, New York, NY, USA, Malaga, Spain, 2010.

A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield,
M. Weston, R. Risen, J. Cook, P. Rosenfeld, E. CooperBalls, B. Jacob,
The structural simulation toolkit, SIGMETRICS Perform. Eval. Rev.
38 (2011) 37-42.

S. Girona, J. Labarta, R. M. Badia, Validation of Dimemas communi-
cation model for MPI collective operations, in: Lecture Notes in Com-
puter Science: Proceedings of the 7" European PVM/MPI Users* Group
Meeting (EuroPVM/MPI) 2000, volume 1908, Springer Verlag, Berlin,
Germany, Balatonfiired, Hungary, 2000, pp. 39-46.

V. Pillet, J. Labarta, T. Cortes, S. Girona, PARAVER: A Tool to
Visualize and Analyze Parallel Code, in: Proceedings of WoTUG-18:
Transputer and occam Developments, pp. 17-31.

A. Kniipfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler,
M. S. Miiller, W. E. Nagel, The Vampir performance analysis tool-
set, in: M. Resch, R. Keller, V. Himmler, B. Krammer, A. Schulz
(Eds.), Tools for High Performance Computing, Springer Berlin Heidel-
berg, 2008, pp. 139-155.

S. Bohm, C. Engelmann, xSim: The extreme-scale simulator, in: Pro-
ceedings of the International Conference on High Performance Comput-
ing and Simulation (HPCS) 2011, IEEE Computer Society, Los Alami-
tos, CA, USA, Istanbul, Turkey, 2011, pp. 280-286.

16

[13]

[14]

[15]

I. S. Jones, C. Engelmann, Simulation of large-scale HPC architectures,
in: Proceedings of the 40" International Conference on Parallel Pro-
cessing (ICPP) 2011: 2" International Workshop on Parallel Software
Tools and Tool Infrastructures (PSTI), IEEE Computer Society, Los
Alamitos, CA, USA, Taipei, Taiwan, 2011, pp. 447-456.

C. Engelmann, F. Lauer, Facilitating co-design for extreme-scale sys-
tems through lightweight simulation, in: Proceedings of the 12
IEEE International Conference on Cluster Computing (Cluster) 2010:
1t Workshop on Application/Architecture Co-design for Extreme-scale
Computing (AACEC), IEEE Computer Society, Hersonissos, Crete,
Greece, 2010, pp. 1-8.

C. Engelmann, Investigating operating system noise in extreme-scale
high-performance computing systems using simulation, in: Proceed-
ings of the 11" TASTED International Conference on Parallel and Dis-
tributed Computing and Networks (PDCN) 2013, ACTA Press, Calgary,
AB, Canada, Innsbruck, Austria, 2013.

17

