The INTERSECT Open Federated Architecture
for the Laboratory of the Future*

Christian Engelmann, Olga Kuchar, Swen Boehm, Michael J. Brim, Thomas
Naughton, Suhas Somnath, Scott Atchley, Jack Lange, Ben Mintz, and Elke
Arenholz

Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Abstract. A federated instrument-to-edge-to-center architecture is needed
to autonomously collect, transfer, store, process, curate, and archive sci-
entific data and reduce human-in-the-loop needs with (a) common in-
terfaces to leverage community and custom software, (b) pluggability to
permit adaptable solutions, reuse, and digital twins, and (c) an open
standard to enable adoption by science facilities world-wide. The Self-
driven Experiments for Science / Interconnected Science Ecosystem (IN-
TERSECT) Open Architecture enables science breakthroughs using in-
telligent networked systems, instruments and facilities with autonomous
experiments, “self-driving” laboratories, smart manufacturing and arti-
ficial intelligence (AI) driven design, discovery and evaluation. It creates
an open federated architecture for the laboratory of the future using a
novel approach, consisting of (1) science use case design patterns, (2) a
system of systems architecture, and (3) a microservice architecture.

Keywords: software architecture; federated ecosystem; design patterns;
system of systems architecture; microservice architecture

1 Introduction

The U. S. Department of Energy (DoE)’s Artificial intelligence (AI) for Science
report [41] outlines the need for intelligent systems, instruments, and facilities
to enable science breakthroughs with autonomous experiments, “self-driving”
laboratories, smart manufacturing, and Al-driven design, discovery and evalu-
ation. The DoE’s Computational Facilities Research Workshop report [9] iden-
tifies intelligent systems/facilities as a challenge with enabling automation and
eliminating human-in-the-loop needs as a cross-cutting theme.

* Research sponsored by the Laboratory Directed Research and Development Pro-
gram’s INTERSECT Initiative of Oak Ridge National Laboratory. This manuscript
has been authored by UT-Battelle, LLC under Contract No. DE-AC05-000R22725
with the U.S. Department of Energy. The United States Government retains and
the publisher, by accepting the article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevocable, world-wide license
to publish or reproduce the published form of this manuscript, or allow others to do
so, for United States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance with the
DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Autonomous experiments, “self-driving” laboratories and smart manufactur-
ing employ machine-in-the-loop intelligence for decision-making. Human-in-the-
loop needs are reduced by an autonomous online control that collects experiment
data, analyzes it, and takes appropriate operational actions to steer an ongoing
or plan a next experiment. It may be assisted by an Al that is trained online
and/or offline with archived data and/or with synthetic data created by a digi-
tal twin. Analysis and decision making may also rely on rule-based approaches,
causal or physics-based models, and advanced statistical methods. Human inter-
action for experiment planning, observation and steering is performed through
appropriate human-machine interfaces.

A federated hardware/software architecture for connecting instruments with
edge and center computing resources is needed that autonomously collects, trans-
fers, stores, processes, curates, and archives scientific data in common formats.
It must be able to communicate with scientific instruments and computing and
data resources for orchestration and control across administrative domains, and
with humans for critical decisions and feedback. Standardized communication
and programming interfaces are needed that leverage community and custom
software for scientific instruments, automation, workflows and data transfer.
Pluggability is required to permit quickly adaptable and deployable solutions,
reuse of partial solutions for different use cases, and the use of digital twins, such
as a virtual instrument, robot or experiment. This federated architecture needs
to be an open standard to enable adoption.

This paper details the Self-driven Experiments for Science / Interconnected
Science Ecosystem (INTERSECT) Open Architecture, which enables science
breakthroughs using intelligent networked systems, instruments and facilities. It
creates an open federated instrument-to-edge-to-center architecture for the lab-
oratory of the future using a novel approach, consisting of (1) science use case
design patterns, (2) a system of systems (SoS) architecture, and (3) a microser-
vice architecture.

2 Related Work

There are about 300 workflow solutions for instrument science and data anal-
ysis [2]. However, only very few holistic automated solutions or research and
development efforts exist. None offer a federated architecture standard.

The National Energy Research Scientific Computing Center (NERSC) Super-
facility framework [33] integrates instruments with computational/data facilities
for automation, such as connecting the SLAC National Accelerator Laboratory’s
Linac Coherent Light Source via ESnet to the Cori supercomputer for photo-
synthesis research [43]. The RESTful Superfacility APT offers access to common
supercomputer functions [32]. Oak Ridge National Laboratory (ORNL) offers
federated environments for connecting instruments with computational/data re-
sources, leveraging advances in software containerization and softwarization of
hardware for processing data from ORNL’s Spallation Neutron Source and High
Flux Isotope Reactor [34, 1]. Data transfer and workflow tools developed at Ar-

gonne National Laboratory (ANL) and the University of Chicago, such as Globus
Automate [17], Gladier [16] and Balsam [3], permit automated analysis of in-
strument data, such as by connecting ANL’s Advanced Photon Source with the
Theta supercomputer for real-time analysis [19]. Other solutions exist, such as
the autonomous robot-controlled chemistry laboratory at the University of Liv-
erpool [39], the FireCrest RESTful API at the Swiss National Supercomputing
Centre [12], the design of experiments as a Cloud service by Kebotix [25], and
robotic process automation using Al by UIPath [44].

Design patterns systematize software development using proven engineering
paradigms and methodologies [6]. In object-oriented programming, design pat-
terns provide methods for defining class interfaces, inheritance hierarchies and
class relationships [15]. Pattern systems also exist for concurrent and networked
object-oriented environments [40], resource management [26], and distributed
systems [5]. Design patterns have been discovered in other domains, such as
for natural language processing [42], user interface design [4], Web design [11],
visualization [18], software security [10], high-performance computing (HPC) re-
silience [20, 21], and data processing for automation of business processes [14].

The SoS approach designs a highly complex system by decomposing it into
many smaller and easier to design systems [31,37]. The set of systems interact
to provide a unique capability that none of the individual systems can accom-
plish on its own [22]. A SoS has five key characteristics [29]: operational indepen-
dence of systems, managerial independence of systems, geographical distribution,
emergent behavior, and evolutionary development. Systems are individually de-
veloped and evolved, as the architecture of a SoS is the system interfaces [38, 30].
A recent example is Defense Advanced Research Projects Agency (DARPA)’s
System of Systems Integration Technology and Experimentation (SoSITE) [§]
System-of-systems Technology Integration Tool Chain for Heterogeneous Elec-
tronic Systems (STITCHES) [13,7]. The U. S. Department of Defense Architec-
ture Framework (DoDAF) [46] is an overarching, comprehensive framework for
the development of architectures from different viewpoints. It is used across the
U. S. Department of Defense (DoD) for developing SoS architectures.

Microservice architectures emerged from service-oriented architectures, ini-
tially realized with Web services [47]. They have since become the modern ap-
proach to decompose complex software systems. For example, Netflix created
an open source microservice architecture for their internal applications [35, 36].
Kubernetes uses a microservice architecture for automating deployment, scaling,
and management of containerized applications [28]. Cray/HPE is working on a
management software solution for supercomputers using microservices [24].

3 The INTERSECT Open Architecture

The INTERSECT Open Architecture approach roughly follows the DoDAF [46]
with its different architectural viewpoints, such as (i) operational scenarios, (ii)
composition, interconnectivity and context, (iii) services and their capabilities,
(iv) policies, standards and guidance, and (v) capability. The major difference is

that the INTERSECT Open Architecture splits these views over three different
parts: (1) science use case design patterns, (2) a SoS architecture, and (3) a
microservice architecture.

Science use cases for autonomous experiments, “self-driving” laboratories,
smart manufacturing, and Al-driven design, discovery and evaluation are de-
scribed as design patterns that identify and abstract the involved components
and their interactions in terms of control, work and data flow. The SoS architec-
ture clarifies used terms, architectural elements, the interactions between them
and compliance. The microservice architecture maps the patterns to the SoS
architecture with loosely coupled microservices and standardized interfaces.

This approach permits separating (a) coarse-grain architectural decisions,
such as what objective a particular “self-driving” laboratory has and how that
objective is being achieved, from (b) mid-grain architectural decisions, such as
which instruments, robots, networks and computing systems are part of this
“self-driving” laboratory and how do they communicate with each other, and
from (c) fine-grain architectural decisions, such as which particular experiment
control, data transfer and compute microservices are being used and how. The
science use case design patterns, SoS architecture and microservice architecture
complement each other, just like the different viewpoints of the DoDAF. Ad-
ditionally, the SoS architecture itself offers complementary viewpoints, such as
user, data, operational, logical, physical and standards view.

3.1 Science Use Case Design Patterns

Machine-in-the-loop capabilities with connected scientific instruments, robot-
controlled laboratories and edge or center computing and data resources that
enable autonomous experiments, “self-driving” laboratories, smart manufactur-
ing, and Al-driven design, discovery and evaluation is an inherent open or closed
loop control problem. Therefore, the basic template for a science use case design
pattern is defined in a loop control problem paradigm (Fig. 1). The abstract
science use case design pattern consists of a behavior and a set of interfaces in
the context of performing a single or a set of experiments in an open or closed
loop control. Such an abstract definition creates universal patterns that describe
solutions free of implementation details.

Design Pattern Format Design patterns for science use cases are expressed
in a written form and in a highly structured format, which permits quick identi-
fication of relevant patterns given a certain problem to be solved and easy com-
parison of patterns regarding their applicability and capabilities. The format for
describing science use case design patterns consists of individual descriptions of
pattern properties, including text, diagrams, and mathematical models. It can
be extended over time by adding more pattern properties and their descriptions.
The current science use case design pattern format is as follows:

— Name: A name that distinctly identifies the pattern and permits thinking
about designs in an abstract manner and communicating design choices.

Expenmenl
Cunlmller 1

Expenmem : : : Experiment
. Safety-Related_; Result 1
Feedback Only

Dependency-Related
Feedback Only

Multi-
Experiment
Workflow

Controller <4
Experiment Experiment ! Mult-Experiment : Expenmem
Planner Commuer = Workflow Plan 3 Com oller n

Experiment Experiment ; : Expefiment | Ex Permem H ! Safel ety-Related 5 Experiment
Design Plan Plan i___Sefety-Related __: Repult ! Plan "~ Feedback Only Resultn

Feedback Only’
Dependency-Related
Related F Feedback Only

(a) Design of experiments (b) Multi-experiment workflow

Fig. 1: Science use case anatomy as design of experiments (closed) loop control
problem and as multi-experiment workflow (open) loop control problem

— Problem: A description of the problem, providing insight on when to apply
the pattern. Multiple patterns may address the same problem differently.

— Context: The preconditions under which the pattern is relevant, including
a description of the system before the pattern is applied.

— Forces: A description of the relevant forces/constraints, and how they inter-
act or conflict with each other and with the intended goals and objectives.

— Solution: A description of the solution that defines the abstract elements
that are necessary for the composition of the design solution as well as their
relationships, responsibilities, and collaborations.

— Capabilities: The specific capabilities provided by this pattern in terms of
the control problem it solves.

— Resulting context: A description of the post-conditions arising from the
application of the pattern. There may be trade-offs between competing pa-
rameters due to the implementation of a solution using this pattern.

— Related patterns: The relationships between this and other patterns, which
may be predecessors or successors. This pattern may complement or enhance
others. There may also be dependencies between patterns.

— Examples: A description of one or more examples, including their proper-
ties, that illustrate the use of the pattern for solving concrete problems.

— Known Uses: A list of known applications of the pattern in existing sys-
tems, including any practical considerations and limitations.

Design Pattern Classification A pattern classification helps to identify groups
of patterns that address similar problems in different ways or that describe solu-
tions at different levels of granularity or from different view points. A classifica-
tion scheme codifies these relationships between patterns and enables designers
to better understand individual pattern capabilities and relationships. It also
helps to understand how patterns rely on each other and can be composed to
form a complete solution.

At this point, there are two classes of science use case design patterns (Fig. 2):
(1) strategy patterns that define high-level solutions using control architecture
features at a very coarse granularity, and (2) architectural patterns that define
more specific solutions using hardware and software architecture features at a

finer granularity. While the architectural patterns do inherit the features of cer-
tain parent strategy patterns, they also address additional problems that are not
exposed at the high abstraction level of the strategy patterns.

Experiment Experiment Design of Experiments Multi-Experiment

Strategy

Control Steering Workflow
B Local Remote Local Remote Local Remote
g Experiment Experiment Experiment Experiment Design of Design of
2 Control Control Steering Steering Experiments Experiments
<
N
<

Fig. 2: Classification of the science use case design patterns

Strategy Design Patterns The science use case strategy design patterns de-
fine high-level solutions using control architecture features at a very coarse gran-
ularity. Their descriptions are deliberately abstract to enable architects to reason
about the overall organization of the used techniques and their implications on
the full system design. The features of these patterns and their relationships are
compared in Table 1, where Fig. 1a shows the components of the Design of Ex-
periments pattern and Fig. 1b of the Multi-Experiment Workflow pattern. The
strategy patterns solve the following problems:

— Experiment Control: Certain predetermined actions need to be performed
while running an experiment.

— Experiment Steering: Certain predetermined actions need to be per-
formed while running an experiment, depending on experiment progress.

— Design of Experiments: Certain predetermined actions need to be per-
formed to run a set of similar experiments with different experiment plan
parameters, depending on experiment results.

— Multi-Experiment Workflow: Certain predetermined actions need to be
performed to run a set of experiments in serial and/or parallel.

Table 1: Features and relationships of the science use case strategy patterns

Feature Experiment | Experiment Design of Multi-Experiment
Control Steering Experiments ‘Workflow

7## of experiments|1 1 Multiple Multiple

Control type Open loop Closed loop Closed loop Open loop

Operation type |[Automated |[Autonomous Autonomous Automated

Extends Experiment Control

Uses Experiment Control [Experiment Control

May also use or Experiment Steering|Experiment Steering,

use instead Design of Experiments

Architectural Design Patterns The science use case architectural design
patterns define more specific solutions using hardware and software architecture
features at a finer granularity. They offer more detailed descriptions, conveying
different design choices for implementing strategy patterns and their abstract
architectural features. Architectural patterns inherit the features of their par-
ent strategy patterns. However, they also address additional problems through
specific design choices that are not exposed at the high abstraction level of the

parent strategy patterns. The architectural patterns provide abstractions for dif-
ferent hardware and software architecture choices of implementing control and
workflow, such as using experiment-local or experiment-remote computing and
data resources. Fig. 3 shows the Remote Design of Experiments architectural
pattern as an example. Table 2 shows the science use case architectural design
patterns, their relationships to the strategy design patterns and their features.

Decide : : Act : — Control »

- - owa)>
Local
Storage

Local
Storage
(Remote)
Planner

H Optional
i | Post-Processing *

El=

Design Plan

B

Optional
Post-Processed
Experiment Result

ol [E
Storage

Fig. 3: Remote Design of Experiments architectural pattern

Local H Somote DA | sensors
Storage alyser) 1

Raw Experiment
Result

Table 2: Features and relationships of the science use case architectural patterns

Architectural Pattern Related Strategy Pattern|Remote Components

Local Experiment Control Experiment Control None

Remote Experiment Control Experiment Control Controller

Local Experiment Steering. Experiment Steering None

Remote Experiment Steering |Experiment Steering Analyzer and Controller (optional)
Local Design of Experiments |Design of Experiments None

Remote Design of Experiments|Design of Experiments Analyzer and Planner (optional)

3.2 System of Systems Architecture

The SoS architecture decomposes the federated hardware/software ecosystem
into smaller and less complex systems and components within these systems.
It permits the development of individual systems and components with clearly
defined interfaces, data formats and communication protocols. This not only
separates concerns and functionality for reusability, but also promotes plugga-
bility and extensibility with uniform protocols and system/component life cycles.
Instead of developing individual monolithic solutions for each science use case,
the SoS architecture provides one solution that can be easily adapted to dif-
ferent use cases using different compositions of systems. It offers operational
and managerial independence of systems and of components within systems, ge-
ographical distribution with a physically distributed and federated ecosystem,
emergent behavior based on the interplay between systems and components, and
evolutionary development through pluggability and extensibility.

The SoS architecture consists of various architectural views of the INTER-
SECT system that connects scientific instruments, robot-controlled laboratories,

computational facilities, data centers, and edge computing devices to enable au-
tonomous experiments, “self-driving” laboratories, smart manufacturing, and
Al-driven design, discovery, and evaluation. The architecture specification in-
corporates the IEEE 42010 Standard [23], entitled “Systems and software engi-
neering — Architecture description.” It uses the concepts of multiple, concurrent
views to describe a complex system. The views are used to describe the system
from the viewpoint of different stakeholders, such as end-users, developers, and
project managers. There are many examples of view-based architectural descrip-
tions, such as “the 441 Architectural View Model” [27], the DoDAF [46], and
the UK Ministry of Defence Architecture Framework (MoDAF) [45]. We use a
hybrid of the well-known 441 view model and the DoDAF.

User View The user view is a representation of a SoS that illustrates different
human interactions with the system. It does not include interactions between
systems themselves. This view highlights the human facing functionality required
from the overall system. A person’s view changes depending on their role, which
is specific to a context. We identify the following five roles:

— User: This is the default role for a person interacting with a given resource
in the system. Persons with this role do not own, administer, provide, or
maintain the resource. Users leverage the interfaces provided by the resources
in the system to compose and run scientific experiment campaigns.

— Maintainer/Operator: This person maintains or operates a given resource
in the system. Examples include experts who configure instruments, such as
a microscope, or those who maintain computational clusters.

— Administrator: This person performs most administrative tasks associ-
ated with a given resource, including assigning and managing maintain-
ers/ operators, granting users access to a resource, and ensuring that a re-
source complies with membership requirements for the system.

— Owner: This person is fiscally responsible for a given resource and assigns
corresponding administrators.

— Provider: This person is a creator of software infrastructure underpinning
the system or an application, such as a visualization widget or simulation
module. They could alternatively be a representative of the manufacturer of
resource, such as a compute cluster or an instrument.

A given person can hold multiple roles. For example, they could be the owner
of a compute cluster, the administrator of three edge compute resources and a
user of all other resources in the system. Roles can also be temporary and expire
after a predetermined time.

The user view also provides a basic graphical representation or views of every
possible interaction a person could have with the system for all relevant roles to
serve as guidelines for implementors of the system. For example, the user view
includes graphical representations of users logging into the system, applying for
an account, viewing the catalog of resources available in the system, composing
a new campaign, and monitoring or steering a running campaign. Fig. 4 shows

an example of graphical representations for a user configuring a dashboard for a
running campaign.

Resource Monitor
. Resource Status Performance
10t00: plot01:
(LB predicted_temperature -> Asylum Research Cypher Normal 0.25 locations/sec
raw_data -> plot.scatter e (P..M.ARC1)
plot.image L
NVIDIA DGX 2 Normal 8 sec/batch turnaround
(P.C.E.DGX2CNMS1) time
OLCF Summit Degraded 12 min/simulation
(P.C.H.OLCFSummit)
Add new plot Edge Storage Down 0 MB/sec
f Title: (P.D.E.BlackPearlCNMS)
Viz Resource: Add Resource or component of o
lotoa:
« uncertainty- » y_series: | pressure 14 V]
> plot.image (+) Campaign progress
colormap: Time: Elapsed: 01 hr 12 min Est. remaining: 45 min 13 min
L 4 refresh:

Progress: 68%

Corcer QR set |

Fig. 4: Graphical representation of a user view

Logical View The logical view addresses the logical composition and interac-
tions between the different components in the overall system. By decomposing
the overall architecture into systems, subsystems, services, capabilities and ac-
tivities, it simplifies the overall design and makes it easier to architect the inter-
actions between the different components. It contains the definition of system
concepts and of system options, the system resource flow requirements, capability
integration planning, system integration management, and operational planning.
The logical view uses the term agent to categorize any internal or external actor
that is interacting with a system or subsystem, such as humans or systems (as
system agents). Additionally, it describes the resource structure of the overall
system and identifies the primary systems, subsystems, performers (agents) and
activities (functions), and their interactions.

Fig. 5 shows an example of the system level functions and their interac-
tions which are required for a user to configure and schedule an experiment and
viewing of the experiment results after the experiment was run. Interactions are
defined through interfaces, which capture the data and resource flow required to
execute the different activities that comprise a capability. The data exchanged
between the different system functions is captured in exchange items, which
are also visible in the diagram in Fig. 5. By doing do, the logical view is tying
together the data view and the operational view.

Physical View The physical view provides a mapping of the architecture onto
the physical infrastructure. This view of the environment enables system design-
ers to determine how to decompose and place the various system components
onto the resources that make up the overall system. This view provides the archi-
tecture with an understanding of the attributes of the environment, and allows

Instrument Adapter §¥3] NTersecT
b D=3l instrument data experiment result
@ orchestration service
@) Provide instrument Data
D= experiment ?
/ @ Dais Manageent Sarvice
Dell system status
@ Update System Status . ® Wonitoring Service
D=1 validated dxperiment plan
£ user
D=8 experiment t plan 2
@ Configure Experiment @ vosoe oermenerin] @ Schedtiing Service
D=5l experiment result
2 g & v samapunen & Losging Servics
@ View Experiment Resuit [) Provide User Interaction
&) Sysiem Mavmens Service @ Huthentication Service

Fig.5: Example of a high-level system diagram with services and connections
between a user and an instrument

the system to configure its services based on the constraints and capabilities of
the underlying system components. The elements in this view consist of physical
resources that provide services to the architecture as well as the network topology
that connects them together. Types of physical resources include computational
resources, data storage services, data sources, and network connections.

The physical view enables the enumeration of constraints placed on the over-
all system. These constraints can consist of capacity constraints (e.g., available
storage capacity or computational elements), network constraints (e.g., available
bandwidth between elements in the architecture), policy constraints (e.g., fire-
wall rules or access control policies), and availability constraints (e.g., ability
to allocate resources within necessary time frames). These constraints limit the
configuration space of the architecture, and enumerate the necessary interfaces
and processes required to configure the physical infrastructure to support the
operations of the overall system.

Operational View The operational view describes the tasks, activities, proce-
dures, information exchanges/flows from the perspective of the real-world oper-
ations stakeholders, i.e., systems administrators, maintenance, facility engineers,
system managers, instrument scientists. The operational view captures restric-
tions that may be necessary to reflect facility constraints and procedures. The
intent of the view is to capture the elements needed for the operation and usage
of the distributed resources in the SoS environment.

The operational view captures activities like the creation and connection of
SoS services, and subsequent monitoring of services (Fig. 6), e.g., availability,
health monitoring. The overall system control tree is another key component of
the operational view. These control connections provide the basis for performing

10

operations across the distributed system. The addition and removal of services
within the control channel need to be clearly defined in order to maintain a
coherent control network. Additionally, the registration and coordination of ser-
vices must adhere to security policies. These are the types of details captured
within the operational view.

—
<«—
Compute System

GetServiceStatus(

—_—
Compute:status
i
Compute
Sched-A Storage System

GetServiceStatus()

Storage:status
Storage
Ctrl-X Xyz System

GetServiceStatus()

Xyz:status

Fig. 6: Example high-level operational view diagram of service monitoring, using
service adapters to connect resources to the INTERSECT environment (blue).

Data View The data view of a SoS architecture is a representation of the
system from the perspective of data needs, and the data framework that needs
to exist to support the INTERSECT Open Architecture. The data view is a
specification for all data aspects of the system as a whole, and shall include
the conceptual, logical, and physical data models. The conceptual data model
provides the high-level data concepts and their relationships that are important
to the SoS’s operations that meet its intended purpose. Fig. 7 depicts one such
conceptual concept regarding building and executing a workflow in the SoS.
The logical data model bridges the conceptual and physical data models and
introduces the data structure for needed components. The physical data model
is the actual data schema and specifications for SoS services and applications.

Standards View The SoS architecture incorporates various versioned stan-
dards, including instrument-specific standards, messaging standards, and other
external standards. The standards view provides a list of supported standards
and the corresponding views or architecture elements that are impacted by each
standard (see Table 3 as an example). The standards view also provides block
diagrams to illustrate exactly where each standard impacts a given system.

11

Data View: INTERSECT User Login to Workflow Execution

ual paradigmcom/ guide/data-flow

Legend
R B D | Authentication Server
Process Temginte AN x L
[erid Lo 1 bl
-/ i 1) R
° < . -
| Request Resources e
| v

D | DatasStore Template
» Ak Jastatus ﬂ)
/
w4| Trigger Workflow |—ere> [
3
\ J

Login Web

Entity Template
ederated Compile DAG
D

Recioes

w—l

= J

¥

L b

)
[fervratems |
| €

5 ~

sy

Evant Nctfations

EEm

Fig. 7: Example data view of user logging in and building/executing a workflow.

Table 3: Example of messaging standards maintained in the standards view

Name Version |Affected Views Affected Elements

INTERSECT Core Messages 1.0 Et?(t)e:l,a{,ogical, Oper- Microservice Capabilities: All
Microservice Capabilities:

Compute Allocation Capability [1.0 Data, Logical Application Execution,

Container Execution, Host
Command Execution

e . Microservice Capabilities:
Compute Queue Capability 1.0 Data, Logical Compute Queue Reservation
NION Swift API 0.16.3 |Logical, Operational Sg’;;i’;“s Electron Micro-
Robot Operating System (ROS) [2.rolling |Logical, Operational tsgfifgmsz Additive Manufac-

3.3 Microservice Architecture

Within the INTERSECT Open Architecture, the microservice architecture spec-
ification provides a catalog of infrastructure and experiment-specific microser-
vices that may be useful within an interconnected science ecosystem (Fig. 8).
All microservices are defined to facilitate composition within federated SoS ar-
chitectures, where each subsystem corresponds to one or more coordinating mi-
croservices. INTERSECT infrastructure microservices represent common service
functionality and capabilities, such as data management, computing, messaging,
and workflow orchestration that are likely to be generally useful across many
science ecosystems without the need for customization. Experiment-specific mi-
croservices, on the other hand, represent services whose implementation may
require detailed application knowledge, such as experiment planning or steering
services that require knowledge of experiment-specific control parameters and
their associated constraints. The INTERSECT science use case design patterns
help identify the relevant infrastructure and experiment-specific microservices
for a given science ecosystem.

12

Each microservice provides a well-defined set of functions that is domain-
scoped to ensure separation of concerns between differing microservices, avoid
duplicate functionality, and encourage reuse. The supported functions are de-
fined by the microservice contract, which describes the purpose for each service
function and associated data (e.g., request parameters and response types). A
microservice may have several different implementations, where each implemen-
tation provides the same contract but uses different underlying technologies or
supports a particular deployment environment. Where multiple implementations
exist, an application can choose the implementation most suitable for its envi-
ronment or application needs.

Connected
Laboratory/Instruments

Machine-In-The-Loop Intelligence for Self-Driving Laboratories and Experiments

Experiment-Specific Services i INTERSECT Infrastructure Services

P — : —
s R Data Collection Data Processing Networking and
ensors . f : - b
; R Services Services Messaging Services
/ \ : { Resource Management,
H Orchestration and
B : Monitoring Services

{s.ee,.ngme J { Desgn Service }
» Experiment <):\l> Computing Services l

T T
: Data Storage and
: Transfer Services

Experiment Parameter Changes New Experiment Plan

Control Plan
Approval Service Approval Service
T T

Experiment Parameter Changes New Experiment Plan

Human-Machine Interface Services
Human-Machine Interface Services

Robots, Actuators, | Control Service Plan Service
nsors & Instruments : [71 ¢
........................... o \ Y N)
a / i
H quided Experiment As A Service Interface for Access to Instrument,
Design and Steering of Experiments Laboratory Automation Computing and Data Resources

Fig. 8: Classification of INTERSECT microservices

Interaction Patterns To enable federation of microservices, it is useful to un-
derstand the types of interactions a given microservice may reasonably expect
from one of its clients. Fig. 9 shows three common patterns that substantively
cover the expected interactions: Command, Request-Reply, and Asynchronous
Status. The Command Interaction Pattern involves the client asking the mi-
croservice to do something. The microservice typically responds immediately
with a simple acknowledgement that the command has been received success-
fully or some error status indicating why the command was not acceptable. The
Request-Reply Interaction Pattern has the client making a request of the mi-
croservice that includes an expected reply containing pertinent information or
data related to the request. Finally, the Asynchronous Status Interaction Pattern
represents cases where the microservice generates status or event information as
a result of its internal actions or state, and sends that information to one or
more of its clients.

These common interaction patterns form the basis for definition of a limited
set of core message types (i.e., Command, CommandResponse, Request, Reply,
Event, and Status). Each message type is easily mapped to a wide variety
of messaging protocols used in both RESTful client-server communication and

13

asynchronous messaging via message brokers. The microservice architecture spec-
ifies a consistent yet flexible message structure across all message types that
incorporates two sections: (1) a generic header containing information necessary
for message routing and tracing, and (2) a data content section that is specific
to the particular microservice function being exercised. For instance, the data
contents of a Command or Request message may include function-specific pa-
rameters, while an Event message would include details of the associated event
occurrence.

Client Microservice Client Microservice
. Command | - Request |
OK or ERROR H
processCommand()

Status or Event Status or Event
Py

A

processRequest()

Microservice

A

Fig.9: Interaction patterns of INTERSECT microservices

4 Conclusion

This paper detailed the INTERSECT Open Architecture, which enables science
breakthroughs using intelligent networked systems, instruments and facilities
with autonomous experiments, “self-driving” laboratories, smart manufacturing
and Al driven design, discovery and evaluation. The proposed open federated
instrument-to-edge-to-center architecture for the laboratory of the future uses
a novel approach, consisting of (1) science use case design patterns, (2) a SoS
architecture, and (3) a microservice architecture.

Science use cases are described as design patterns that identify and abstract
the involved components and their interactions. The SoS architecture clarifies
used terms, architectural elements, the interactions between them and compli-
ance. The microservice architecture maps the patterns to the SoS architecture
with loosely coupled microservices and standardized interfaces. While there are
about 300 workflow tools and only very few holistic automated scientific work-
flows, this is the first published work in a federated architecture standard for
automated and autonomous instrument science and data analysis.

Ongoing work focuses on refining the INTERSECT Open Architecture and
applying it to the following six initial science use cases at ORNL: (1) automation

14

for grid interconnected-laboratory emulation, (2) autonomous additive manufac-
turing, (3) autonomous continuous flow reactor synthesis, (4) autonomous mi-
croscopy, (5) an autonomous robotic chemistry laboratory, and (6) an ion trap
quantum computing resource. Detailed architecture specification documents are
currently under development for the science use case design patterns, the SoS
architecture, and the microservice architecture.

In the near future, we seek to publish the specification documents and reach
out to research institutions world-wide for feedback, collaboration and adoption.
There is also a significant amount of work needed to develop the software en-
vironment that implements this architecture, in part using existing tools, and
performing the necessary research in certain critical areas, such as (1) algorithms
for autonomy and Al-driven design, discovery and evaluation, (2) codesign of
“self-driving” laboratories and smart manufacturing facilities, (3) data manage-
ment for scientific computing and instrument science, (4) cybersecurity, and (5)
distributed operating and runtime systems as enabling technology.

References

1. Al-Najjar, A., Rao, N., Imam, N., Naughton, T., Hitefield, S., Sorrillo, L.,
Kohl, J., Elwasif, W., Bilheux, J.C., Bilheux, H., Boehm, S., Kincl, J.: Virtual
framework for development and testing of federation software stack. In: 2021
IEEE 46th Conference on Local Computer Networks (LCN). pp. 323-326 (2021).
https://doi.org/10.1109/LCN52139.2021.9524993

2. Amstutz, P., Mikheev, M., Crusoe, M.R., Tijanié¢, N., Lampa, S., et al.: Existing
workflow systems (Jun 2022), https://s.apache.org/existing-workflow-systems

3. Balsam workflows (Jun 2022), https://www.alcf.anl.gov /support-
center/theta/balsam

4. Borchers, J.: A Pattern Approach to Interaction Design. John Wiley & Sons, Inc.,
New York, NY, USA (2001)

5. Buschmann, F., Henney, K., Schmidt, D.C.: Pattern-Oriented Software Architec-
ture - Volume 4: A Pattern Language for Distributed Computing. Wiley Publishing
(2007)

6. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture - Volume 1: A System of Patterns. Wiley Pub-
lishing (Aug 1996)

7. Defense Advanced Research Projects Agency, U.S. Department of Defense: Creat-
ing cross-domain kill webs in real time (Jun 2022), https://www.darpa.mil/news-
events/2020-09-18a

8. Defense Advanced Research Projects Agency, U.S. Department of Defense: Sys-
tem of systems integration technology and experimentation (sosite) (Jun 2022),
https://www.darpa.mil/program/system-of-systems-integration-technology-and-
experimentation

9. DOE national laboratories’ computational facilities — Research workshop report.
Tech. Rep. ANL/MCS-TM-388, Argonne National Laboratory, Lemont, IL, USA
(Feb 2020), https://publications.anl.gov/anlpubs/2020/02/158604.pdf

10. Dougherty, C., Sayre, K., Seacord, R., Svoboda, D., Togashi,
K.: Secure design patterns. Tech. Rep. CMU/SEI-2009-TR-
010, Software Engineering Institute, Carnegie Mellon Univer-

15

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

sity, Pittsburgh, PA (2009). https://doi.org/10.1184/R1/6583640.v1,
https://dx.doi.org/10.1184/R1/6583640.v1

Duyne, D.K.V., Landay, J., Hong, J.I.: The Design of Sites: Patterns, Principles,
and Processes for Crafting a Customer-Centered Web Experience. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA (2002)

FireCrest RESTful API (Jun 2022), https://firecrest.readthedocs.io/en/latest/ in-
dex.html

Fortunato, E.: STITCHES - SoS technology integration tool chain for heteroge-
neous electronic systems (Sep 2016), https://ndiastorage.blob.core.usgovcloudapi.
net/ndia/2016/systems/18869_Fortunato_SoSITE_STITCHES_Overview_Long_
9Sep2016_.pdf

Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA (2002)

Gamma, E., Helm, R.; Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley Professional (1994)

Gladier experiment steering (Jun 2022), https://labs.globus.org/projects/ glad-
ier.html

Globus automation services (Jun 2022), https://docs.globus.org/globus-
automation-services

Heer, J., Agrawala, M.: Software design patterns for information vi-
sualization. IEEE Transactions on Visualization and Computer Graph-
ics 12(5), 853-860 (Sep 2006). https://doi.org/10.1109/TVCG.2006.178,
https://dx.doi.org/10.1109/TVCG.2006.178

Heinonen, N.: Argonne researchers use Theta for real-time analysis of COVID-
19 proteins (Jul 2020), https://www.alcf.anl.gov/news/argonne-researchers-use-
theta-real-time-analysis-covid-19-proteins

Hukerikar, S., Engelmann, C.: Resilience design patterns: A structured ap-
proach to resilience at extreme scale. Journal of Supercomputing Frontiers and
Innovations (JSFI) 4(3), 4-42 (Oct 2017). https://doi.org/10.14529/jsfi170301,
https://dx.doi.org/10.14529/jsfi170301

Hukerikar, S., Engelmann, C.: Resilience design patterns: A structured ap-
proach to resilience at extreme scale (version 1.2). Tech. Rep. ORNL/TM-
2017/745, Oak Ridge National Laboratory, Oak Ridge, TN, USA (Aug 2017).
https://doi.org/10.2172/1436045, https://dx.doi.org/10.2172/1436045

ISO/IEC JTC 1/SC 7 Software and systems engineering: ISO/IEC/IEEE
21839:2019 (Jul 2019), https://www.iso.org/standard/71955.html
ISO/IEC/IEEE: ISO/IEC/IEEE 42010 - A Conceptual Model of Architecture De-
scription (Jul 2019), http://www.iso-architecture.org/42010/cm/

Kaplan, L.: Hpe cray supercomputer modernized system management and compute
environment. Presentation at the 10th Accelerated Data Analytics and Computing
Institute Workshop (May 2021)

Kebotix (Jun 2022), https://www.kebotix.com

Kircher, M., Jain, P.: Pattern-Oriented Software Architecture, Volume 3: Patterns
for Resource Management. Wiley Publishing (2004)

Kruchten, P.. Architectural blueprints - The “4+1” view model
of software architecture. IEEE Software 12(6), 42-50 (Nov 1995),
http://www.cs.ubc.ca/ gregor/teaching/papers/4+1view-architecture.pdf
Kubernetes (Jun 2022), https://kubernetes.io

Maier, M.W.: Architecting principles for system-of-systems. Systems Engineering
1(4), 267-284 (Nov 1998)

16

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Maier, M.W., Rechtin, E.: The Art of Systems Architecting (Systems Engineering).
CRC Press, Boca Raton, FL, USA (2009)

Manthorpe Jr., W.H.J.: The emerging joint system of systems: A systems engi-
neering challenge and opportunity for apl. John Hopkins APL Technical Digest
17(3), 305-313 (Jul 1996)

National Energy Research Scientific Computing Center (NERSC): Superfacility
API (Jun 2022), https://api.nersc.gov

National Energy Research Scientific Computing Center (NERSC): Su-
perfacility project (Jun 2022), https://www.nersc.gov/research-and-
development /superfacility

Naughton, T., Hitefield, S., Sorrillo, L., Rao, N., Kohl, J., Elwasif, W., Bilheux,
J.C., Bilheux, H., Boehm, S., Kincl, J., Sen, S., Imam, N.: Software framework
for federated science instruments. In: Nichols, J., Verastegui, B., Maccabe, A.B.,
Hernandez, O., Parete-Koon, S., Ahearn, T. (eds.) Driving Scientific and Engineer-
ing Discoveries Through the Convergence of HPC, Big Data and AI. pp. 189-203.
Springer International Publishing (2020)

Netflix: Netflix OSS (Jun 2022), https://netflix.github.io

Netflix: Spring Cloud Netflix (Jun 2022), https://spring.io/projects/spring-cloud-
netflix

Pei, R.S.: System of systems integration (sosi) - a smart way of acquiring army
c4i2ws systems. In: Proceedings of the Summer Computer Simulation Conference
2000. pp. 574-579 (2000)

Rechtin, E.: Systems Architecting: Creating & Building Complex Systems. Prentice
Hall (1990)

Sanderson, K.: Automation: Chemistry shoots for the Moon. Nature
568, 577-579 (Apr 2019). https://doi.org/10.1038/d41586-019-01246-y,
https://www.nature.com/articles/d41586-019-01246-y

Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software
Architecture Volume 2: Patterns for Concurrent and Networked Objects. Wiley
Publishing (2000)

Stevens, R., Taylor, V., Nichols, J., Maccabe, A.B., Yelick, K., Brown, D.: AT for
science report (Mar 2020), https://www.anl.gov/ai-for-science-report

Talton, J., Yang, L., Kumar, R., Lim, M., Goodman, N., Méch, R.: Learning design
patterns with bayesian grammar induction. In: Proceedings of the 25th Annual
ACM Symposium on User Interface Software and Technology (UIST) 2012. pp. 63—
74. ACM, New York, NY, USA (2012). https://doi.org/10.1145/2380116.2380127,
https://dx.doi.org/10.1145/2380116.2380127

Troutman, K.: Superfacility framework advances photosynthesis research
(May 2019), https://www.nersc.gov/news-publications/nersc-news/science-
news/2019/superfacility-framework-advances-photosynthesis-research

UIPath (Jun 2022), https://www.uipath.com

UK Ministry of Defense: MOD architecture framework (Dec 2012),
https://www.gov.uk/guidance/mod-architecture-framework

U.S. Department of Defense: The DoDAF architecture framework version 2.02
(Aug 2010), https://dodcio.defense.gov/Library /DoD-Architecture-Framework
Wolff, E.: Microservices: Flexible Software Architectures. Addison-Wesley Profes-
sional (2016)

17

