
ORNL is managed by UT-Battelle LLC for the US Department of Energy

The INTERSECT Open Federated Architecture for the
Laboratory of the Future

Christian Engelmann, Olga Kuchar, Swen Boehm, Michael J.
Brim, Thomas Naughton, Suhas Somnath, Scott Atchley, Jack
Lange, Ben Mintz, and Elke Arenholz
Oak Ridge National Laboratory Contact: Christian Engelmann

engelmannc@ornl.gov

22

Overarching Goal of INTERSECT LDRD Initiative

• Enable science breakthroughs using intelligent networked systems,
instruments and facilities with
– Autonomous experiments
– “Self-driving” laboratories
– Smart manufacturing
– AI-driven design, discovery and evaluation

33

Problem Statement

• A federated instrument-to-edge-to-center hardware/software architecture is
needed to autonomously collect, transfer, store, process, curate, and archive
scientific data and reduce human-in-the-loop needs with
– Common interfaces to leverage community and custom software
– Pluggability & composability to permit adaptable solutions, reuse, and digital twins
– An open architecture standard to promote adoption by DOE’s science facilities

44

Current State of the Field: Instrument/Data Science Workflows

• There are ~300 workflow solutions for instrument and data science

• Only very few are holistic; none offer an architecture standard
– NERSC Superfacility framework: SLAC LCLS + Esnet + Cori
– ANL Globus Automate, Gladier, Balsam and funcX: APS + Theta
– ORNL’s FY20/21 Federated Science Instruments LDRD: SNS/HFIR + OLCF
– Autonomous robot-controlled chemistry laboratory at the University of Liverpool
– Various other laboratory, university and industry human-in-the-loop solutions

55

Architecture?

• What is an architecture: A set of principal hardware/software design decisions!
– What hardware/software components are involved?
– Why and how do they communicate with each other?
– What data formats do they use and why?
– How and when do they synchronize with each other?
– What are the work, data and control flows?
– How do they interface with the rest of the world, like humans?

• Why an architecture?: Would you buy a house that wasn’t architected?
– An architecture is purpose-driven design with forethought!
– It permits creating flexible solutions that meet different requirements.
– It prevents reengineering costs.
– It allows standardization (IEEE/DIN/ISO/…).

66

Approach

• Create an open federated hardware/software architecture for the
laboratory of the future using novel methods, consisting of

Use Case
Design

Patterns

System of
Systems

Architecture
Microservice
Architecture

INTERSECT Open Architecture Specification

77

INTERSECT Architecture Specification
A written documentation of the INTERSECT Architecture, like a blueprint

• Science Use Case Design Patterns
– Abstract descriptions of the involved hardware and software components and their

work, data and control flows.

• System of Systems (SoS) Architecture
– Detailed design decisions about the involved hardware and software components

from different points of view (e.g., logical, physical, operational, data, …)

• Microservice Architecture
– Detailed design decisions about software microservices, including their functionalities,

capabilities, compositions, with control, work, and data flows.

88

Current State of the Field: HW/SW Architecture

• Design patterns have been used for several decades to systematize software
development using proven software engineering techniques
– Used in object-oriented programming, distributed systems, data processing/automation, etc.
– Also: HPC resilience design patterns (Christian Engelmann’s 2015 DOE Early Career Award)

• System of Systems architectures have been used in the defense sector for designing
complex systems from smaller and easier to design systems
– 5 key characteristics: Operational independence, managerial independence, geographical

distribution, emergent behavior, and evolutionary development
– Example: DARPA’s System-of-systems Technology Integration Tool Chain for Heterogeneous

Electronic Systems (STITCHES)

• Microservice architectures are the modern approach to decompose complex software
– Examples: Netflix OSS, Kubernetes, Cray/HPE system management

99

Science Use Case Design Pattern Anatomy

• Basic template is defined in a control
problem paradigm:

– Open vs. closed loop control
– Single vs. multiple experiment control

• Universal patterns that describe solutions
free of implementation details

• Patterns may exclude each other or may
be combined with each other

• Described pattern properties:
– Name, Problem, Context, Forces, Solution,

Capabilities, Resulting Context, Related
Patterns, Examples, and Known Uses

Experiment
Plan

Experiment
Controller Experiment

Safety-Related
Feedback Only

Experiment
Plan n-1

Experiment
Controller n-1 Experiment n-1

Safety-Related
Feedback Only

Experiment
Plan n

Experiment
Controller n Experiment n

Safety-Related
Feedback Only

Multi-
Experiment
Workflow
Controller

Multi-Experiment
Workflow Plan

...

Dependency-Related
Feedback Only

Dependency-Related
Feedback Only

1010

Science Use Case Design Patterns: Classification

• Strategy patterns: High-level solutions using different control features

• Architectural patterns: More specific solutions using different
hardware/software architectural features

Experiment
Control

Experiment
Steering

Multi-Experiment
WorkflowDesign of Experiments

Local
Experiment

Steering

Remote
Experiment

Steering

Local
Design of

Experiments

Remote
Design of

Experiments

S
tra

te
gy

A
rc
hi
te
ct
ur
al Remote

Experiment
Control

Local
Experiment

Control

11

Experiment Control

Experiment
Plan

Experiment
Controller Experiment

Safety-Related
Feedback Only

Experiment
Result

Experiment Steering

Experiment
Plan

Experiment
Controller Experiment

Safety-/Progress-
Related Feedback

Experiment
Result

Design of Experiments

Experiment
Design Plan

Experiment
Planner

Experiment
Controller

Safety-Related
Feedback Only

Experiment

Result-Related Feedback

Experiment
Plan

Experiment
Result

Science Use Case Design Patterns: Strategy Patterns
Multi-Experiment
Workflow

Experiment
Plan 1

Experiment
Controller 1 Experiment 1

Safety-Related
Feedback Only

Experiment
Plan n

Experiment
Controller n Experiment n

Safety-Related
Feedback Only

Multi-
Experiment
Workflow
Controller

Multi-Experiment
Workflow Plan

...

Dependency-Related
Feedback Only

Dependency-Related
Feedback Only

Experiment
Result 1

Experiment
Result n

 Executes existing plan

• Open loop control
• Automated operation

 Executes existing plan,
depending on progress

• Closed loop control
• Autonomous operation

• Extends patterns:
• Experiment Control

 Creates/executes plan,
based on prior result

• Closed loop control
• Autonomous operation

• Uses patterns:
• Experiment Control

• May use patterns:
• Experiment Steering

 Executes existing plans
(workflow/experiments)

• Open loop control
• Automated operation

• Uses patterns:
• Experiment Control

• May use patterns:
• Experiment Steering
• Design of Experiments

1212

Science Use Case Design Patterns: Architectural Patterns

parent strategy patterns. The architectural patterns provide abstractions for dif-
ferent hardware and software architecture choices of implementing control and
workflow, such as using experiment-local or experiment-remote computing and
data resources. Fig. 3 shows the Remote Design of Experiments architectural
pattern as an example. Table 2 shows the science use case architectural design
patterns, their relationships to the strategy design patterns and their features.

Fig. 3: Remote Design of Experiments architectural pattern

Table 2: Features and relationships of the science use case architectural patterns

Architectural Pattern Related Strategy Pattern Remote Components
Local Experiment Control Experiment Control None
Remote Experiment Control Experiment Control Controller
Local Experiment Steering. Experiment Steering None
Remote Experiment Steering Experiment Steering Analyzer and Controller (optional)
Local Design of Experiments Design of Experiments None
Remote Design of Experiments Design of Experiments Analyzer and Planner (optional)

3.2 System of Systems Architecture

The SoS architecture decomposes the federated hardware/software ecosystem
into smaller and less complex systems and components within these systems.
It permits the development of individual systems and components with clearly
defined interfaces, data formats and communication protocols. This not only
separates concerns and functionality for reusability, but also promotes plugga-
bility and extensibility with uniform protocols and system/component life cycles.
Instead of developing individual monolithic solutions for each science use case,
the SoS architecture provides one solution that can be easily adapted to dif-
ferent use cases using di↵erent compositions of systems. It o↵ers operational
and managerial independence of systems and of components within systems, ge-
ographical distribution with a physically distributed and federated ecosystem,
emergent behavior based on the interplay between systems and components, and
evolutionary development through pluggability and extensibility.

The SoS architecture consists of various architectural views of the INTER-
SECT system that connects scientific instruments, robot-controlled laboratories,

7

parent strategy patterns. The architectural patterns provide abstractions for dif-
ferent hardware and software architecture choices of implementing control and
workflow, such as using experiment-local or experiment-remote computing and
data resources. Fig. 3 shows the Remote Design of Experiments architectural
pattern as an example. Table 2 shows the science use case architectural design
patterns, their relationships to the strategy design patterns and their features.

Orient

Decide Act

Observe

Experiment
Design Plan

(Remote)
Planner

Experiment

Sensors

Actuators

Remote
Analyser Local

Storage
Local

Storage

Local
Storage

Controller

Local
Storage

Experiment
Plan

Experiment
Result

Fig. 3: Remote Design of Experiments architectural pattern

Table 2: Features and relationships of the science use case architectural patterns

Architectural Pattern Related Strategy Pattern Remote Components
Local Experiment Control Experiment Control None
Remote Experiment Control Experiment Control Controller
Local Experiment Steering. Experiment Steering None
Remote Experiment Steering Experiment Steering Analyzer and Controller (optional)
Local Design of Experiments Design of Experiments None
Remote Design of Experiments Design of Experiments Analyzer and Planner (optional)

3.2 System of Systems Architecture

The SoS architecture decomposes the federated hardware/software ecosystem
into smaller and less complex systems and components within these systems.
It permits the development of individual systems and components with clearly
defined interfaces, data formats and communication protocols. This not only
separates concerns and functionality for reusability, but also promotes plugga-
bility and extensibility with uniform protocols and system/component life cycles.
Instead of developing individual monolithic solutions for each science use case,
the SoS architecture provides one solution that can be easily adapted to dif-
ferent use cases using di↵erent compositions of systems. It o↵ers operational
and managerial independence of systems and of components within systems, ge-
ographical distribution with a physically distributed and federated ecosystem,
emergent behavior based on the interplay between systems and components, and
evolutionary development through pluggability and extensibility.

The SoS architecture consists of various architectural views of the INTER-
SECT system that connects scientific instruments, robot-controlled laboratories,

7

1313

Architecture Framework and Views

Electrician’s view
Plumber’s view

HVAC prof’s view
Buyer’s view

Intersection of multiple constraint spaces

1414

INTERSECT System of Systems Architecture Views

INTERSECT

User View

Data View

Operational View

Logical View

Physical View

Standards View

1515

System of Systems Architecture: User View

• Highlights user-facing functionality

• Does not include system-internal
interactions

• Described activities:

– Logging into dashboard

– Experiment creation

– Start experiment

– Steer experiment

– Experiment end

plot00:
raw_data -> plot.scatter

plot01:
predicted_temperature ->

plot.image

Progress: 68%

Time: Elapsed: 01 hr 12 min Est. remaining: 45 min 13 min

Resource Monitor

Resource Status Performance
Asylum Research Cypher
(P.I.M.ARC1)

Normal 0.25 locations/sec

NVIDIA DGX 2
(P.C.E.DGX2CNMS1)

Normal 8 sec/batch turnaround
time

OLCF Summit
(P.C.H.OLCFSummit)

Degraded 12 min/simulation

Edge Storage
(P.D.E.BlackPearlCNMS)

Down 0 MB/sec

Add Resource or component of

Campaign progress

plot02:
uncertainty-
> plot.image

y_series: pressure_14 V

Viz Resource: Line V

refresh: 15

Add new plot

x_axis: Temp_norm V

Cancel Set

sec

Add variable V +
colormap: viridis V

Title: plot03
+

1616

System of Systems Architecture: Data View

• Highlights the system’s data
needs and framework

• Includes conceptual, logical,
and physical data models

• Does not include specifications
for scientific, instrument,
experiment data

Initial Data Flow Diagram

1717

System of Systems Architecture: Operational View

• Highlights tasks, activities, procedures,
information exchanges/flows from the
perspective of operations stakeholders

• Does not include formats for data
exchanges or details of user applications

1818

System of Systems Architecture: Logical View

• Highlights the logical composition
and interactions between the
different systems

• Includes:
– Definition of system concepts
– Definition of system options
– System resource flow

requirements capture
– Capability integration planning
– System integration management
– Operational planning

1919

System of Systems Architecture: Physical View

• Highlights the underlying system
components from the perspective of
resource managers/owners, system
administrators, network engineers,
and facility space managers

• Includes descriptions and definitions
of physical systems, networks,
connectivity and organizational
boundaries

• Does not include specifications for
instruments, resources, experiments
and data

2020

System of Systems Architecture: Standards View

• Highlights various standards
including instruments specific
standards, messaging standards,
and other external standards

• Provides a table of supported
standards and other views or
architecture elements that are
impacted by each standard

• Provides a block diagram to
illustrate exactly where each
standard impacts a given system

Fig. 7: Example data view of user logging in and building/executing a workflow.

Table 3: Example of messaging standards maintained in the standards view

Name Version A↵ected Views A↵ected Elements

INTERSECT Core Messages 1.0
Data, Logical, Oper-
ational

Microservice Capabilities: All

Compute Allocation Capability 1.0 Data, Logical

Microservice Capabilities:
Application Execution,
Container Execution, Host
Command Execution

Compute Queue Capability 1.0 Data, Logical
Microservice Capabilities:
Compute Queue Reservation

NION Swift API 0.16.3 Logical, Operational
Systems: Electron Micro-
scopes

Robot Operating System (ROS) 2.rolling Logical, Operational
Systems: Additive Manufac-
turing

3.3 Microservice Architecture

Within the INTERSECT Open Architecture, the microservice architecture spec-
ification provides a catalog of infrastructure and experiment-specific microser-
vices that may be useful within an interconnected science ecosystem (Fig. 8).
All microservices are defined to facilitate composition within federated SoS ar-
chitectures, where each subsystem corresponds to one or more coordinating mi-
croservices. INTERSECT infrastructure microservices represent common service
functionality and capabilities, such as data management, computing, messaging,
and workflow orchestration that are likely to be generally useful across many
science ecosystems without the need for customization. Experiment-specific mi-
croservices, on the other hand, represent services whose implementation may
require detailed application knowledge, such as experiment planning or steering
services that require knowledge of experiment-specific control parameters and
their associated constraints. The INTERSECT science use case design patterns
help identify the relevant infrastructure and experiment-specific microservices
for a given science ecosystem.

12

2121

Microservice Architecture: Overview

• A design methodology for structuring an application as a set of loosely-
coupled, independently developed, managed, and operated
microservices that communicate over the network
– A flexible alternative to the more prescriptive and tightly-coupled Service-oriented Architecture

• What makes a service a “microservice”?
– Despite the moniker, has nothing to do with relative size of service code or its resource utilization
– Definition: A service that provides a well-defined set of functionalities

• typically scoped using domain-driven design, and defined using APIs and/or message structures

• There may be several interchangeable implementations of a microservice
– Each implementation may use different underlying technology or algorithms, or may be tailored

for use in a particular execution environment (e.g., edge vs. cloud vs. HPC)

2222

Microservice Architecture: Classification & Catalog
Machine-In-The-Loop Intelligence for Self-Driving Laboratories and Experiments

INTERSECT Infrastructure ServicesExperiment-Specific Services

Connected
Laboratory/Instruments

Experiment

Data Processing
Services

Design ServiceSteering Service

Sensors

Robots, Actuators,
Sensors & Instruments Control Service

Plan
Approval Service

Experiment Parameter Changes New Experiment Plan

Plan Service

New Experiment Plan

Control
Approval Service

Experiment Parameter Changes

Human-guided Interactive
Design and Steering of Experiments

Access to Instrument,
Computing and Data Resources

Data Collection
Services

Data Storage and
Transfer Services

Computing Services

Resource Management,
Orchestration and

Monitoring Services

Networking and
Messaging Services

Identification,
Authentication and

Authorization Services

H
um

an
-M

ac
hi

ne
 In

te
rfa

ce
 S

er
vi

ce
s

H
um

an
-M

ac
hi

ne
 In

te
rfa

ce
 S

er
vi

ce
s

Experiment As A Service Interface for
Laboratory Automation

2323

Microservice Architecture: Systems, Subsystems, Services
and Microservice Capabilities
• System consists of

– Subsystems
– System resources
– System services

• Subsystem consists of
– Services
– (Subsystem resources)

• Service consists of
– Microservice capabilities

System

System
Resource

System
Resource

System
Service

Subsystem

Service
Microservice Capability Microservice Capability

2424

Microservice Architecture: Interaction Patterns

• Command / Acknowledgement
– Responds immediately

• Request / Reply
– Responds after fulfilling the request

• Asynchronous Event
– Status update or event information

• Can be mapped to asynchronous and
RESTful client-server communication
implementations

Client Microservice Client

EventEvent

Client Microservice

processCommand()

Ack: OK or ERROR

Command

Client Microservice

processRequest()

Reply

Request

2525

Microservice Architecture: Catalog Example -
Data Management Services

• Data Storage Services
– File System Storage
– Key-value Storage
– Object Storage
– Relational Database
– Non-relational Database

• Data Transfer Services
– File Transfers
– Block Data Transfers
– Streaming Data Transfers
– Multi-party Data Transfers

2626

Microservice Architecture: Orchestration and Deployment

• Orchestration
– Asynchronous messaging vs. RESTful services
– Conductor vs. choreography

• Deployment
– Sidecar pattern
– Ambassador Proxy pattern
– Service Mesh pattern

Host / Container

Primary Service

Service Core Logic

Sidecar Service

Common Service Functionality
(configuration, logging, monitoring)

API

Host / Container

Primary
Service

Service Core Logic

Ambassador
Proxy Service

Communication Context
Management

Secure Communication

Communication Resiliency

Request Routing

request

response

Remote Service

Remote Service

Remote Service

Remote Service

Service Mesh Configuration, Discovery, and Security

Service Proxy

Service Proxy

Service Proxy

Service Proxy

Service Proxy Service Proxy

Service Proxy

Service Proxy

Service Proxy

2727

Status & Future Work

• Refining the INTERSECT Open Architecture and applying it to six initial
science use cases at ORNL
1. automation for electric grid interconnected-laboratory emulation
2. autonomous additive manufacturing
3. autonomous continuous flow reactor synthesis
4. autonomous STEM microscopy
5. an autonomous robotic chemistry laboratory
6. an ion trap quantum computing resource

• Publication of the initial INTERSECT Open Architecture specification in the
next few months

2828

Questions?

Acknowledgments:

Research sponsored by the Laboratory Directed Research and
Development Program of Oak Ridge National Laboratory,
managed by UT-Battelle, LLC, for the U. S. Department of Energy.

