
Science Use Case Design Patterns for Autonomous Experiments
Christian Engelmann

Suhas Somnath
engelmannc@ornl.gov
somnaths@ornl.gov

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA

ABSTRACT
Connecting scientific instruments and robot-controlled laboratories
with computing and data resources at the edge, the Cloud or the
high-performance computing (HPC) center enables autonomous
experiments, self-driving laboratories, smart manufacturing, and
artificial intelligence (AI)-driven design, discovery and evaluation.
The Self-driven Experiments for Science / Interconnected Science
Ecosystem (INTERSECT) Open Architecture enables science break-
throughs using intelligent networked systems, instruments and
facilities with a federated hardware/software architecture for the
laboratory of the future. It relies on a novel approach, consisting of
(1) science use case design patterns, (2) a system of systems architec-
ture, and (3) a microservice architecture. This paper introduces the
science use case design patterns of the INTERSECT Architecture.
It describes the overall background, the involved terminology and
concepts, and the pattern format and classification. It further offers
an overview of the 12 defined patterns and 4 examples of patterns
of 2 different pattern classes. It also provides insight into building
solutions from these patterns. The target audience are computer,
computational, instrument and domain science experts working in
the field of autonomous experiments.

CCS CONCEPTS
• Software and its engineering→ Software architectures.

KEYWORDS
smart laboratories, autonomous experiments, federated ecosystem,
system architecture, design patterns

ACM Reference Format:
Christian Engelmann and Suhas Somnath. 2023. Science Use Case Design
Patterns for Autonomous Experiments. In EuroPLoP ’23: 28th European
Conference on Pattern Languages of Programs, July 05–09, 2023, Kloster Irsee,
Germany. ACM, New York, NY, USA, 14 pages. https://doi.org/XXXXXXX.
XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroPLoP ’23, July 05–09, 2023, Kloster Irsee, Germany
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
The U.S. Department of Energy (DoE)’s AI for Science reports [8, 45]
outline the need for intelligent systems, instruments, and facilities
to enable science breakthroughs with autonomous experiments,
self-driving laboratories, smart manufacturing, and AI-driven de-
sign, discovery and evaluation [52]. The DoE’s Computational Fa-
cilities Research Workshop report [11] identifies intelligent sys-
tems/facilities as a challenge with enabling automation and reduc-
ing human-in-the-loop needs as a cross-cutting theme.

Autonomous experiments, self-driving laboratories and smart
manufacturing employmachine-in-the-loop intelligence for decision-
making. Human-in-the-loop needs are reduced by an autonomous
control that collects experiment data, analyzes it, and takes ap-
propriate actions to steer an ongoing or plan a next experiment.
It may be assisted by an AI that is trained online and/or offline
with archived data and/or with synthetic data created by a digital
twin. Analysis and decision making may also rely on rule-based ap-
proaches, causal or physics-based models, and advanced statistical
methods. Human interaction for experiment planning, observation
and steering is performed through appropriate interfaces.

Figure 1: The INTERSECT autonomous robotic chemistry
laboratory operates 24/7 using analysis of experimental data
for the design of experiments.

For example, both the rate and output of traditional materials
synthesis and discovery are currently too slow and too small to effi-
ciently provide needed advances. An autonomous robotic chemistry
laboratory (ACL) (Figure 1) can operate 24/7 with high precision to
greatly accelerate materials discovery and innovation. It relies on
the design of a laboratory utilizing robotic and autonomous tools
for the manipulation of laboratory equipment and characterization
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tools. A robotic platform with three major components is used:
a mobile base, a robotic arm, and software/characterization tools
including integration/feedback with AI.

A federated hardware/software architecture for connecting in-
struments with edge and center computing resources is needed
that autonomously collects, transfers, stores, processes, curates,
and archives scientific data. It must be able to communicate with
scientific instruments and computing and data resources for orches-
tration and control across administrative domains, andwith humans
for critical decisions and feedback. Standardized communication
and programming interfaces are needed that leverage community
and custom software for scientific instruments, automation, work-
flows and data transfer. Pluggability is required to permit quickly
adaptable and deployable solutions, reuse of partial solutions for
different use cases, and the use of digital twins, such as a virtual
instrument, robot or experiment. This federated architecture needs
to be an open standard to enable adoption.

This paper introduces the science use case design patterns of the
INTERSECT Open Architecture Specification. The basic template
for a science use case design pattern is defined in a loop control
problem paradigm. At the moment, there are two classes of science
use case design patterns, based (1) on high-level solution methods
using experiment control architecture features at a very coarse
granularity and (2) on more specific solution methods using hard-
ware and software architecture features at a finer granularity. The
classification scheme itself is open for extension, such as for adding
new patterns for each class or new classes entirely. For example, a
new class may map the existing patterns to other workflow proper-
ties, such as (a) data-intensive, (b) time-sensitive and (c) long-term
experiment campaigns. The paper describes the overall background,
the involved terminology and concepts, and the pattern format and
classification. It further offers an overview of the defined patterns
and 4 examples of patterns of 2 different pattern classes. It also pro-
vides insight into building solutions from these patterns. The target
audience are computer, computational, instrument and domain
science experts working in the field of autonomous experiments.

2 BACKGROUND AND RELATEDWORK
The following discusses the overall background of the presented
work, the overarching approach of the INTERSECT Open Archi-
tecture. It also describes relevant work related to the individual
components of the architecture, including research and develop-
ment in scientific workflows, design patterns, system of systems
(SoS) architectures, and microservice architectures.

2.1 The INTERSECT Open Architecture
The INTERSECT Open Architecture approach [14] roughly fol-
lows the U.S. Department of Defense Architecture Framework
(DoDAF) [49] with its different architectural viewpoints, such as
(i) operational scenarios, (ii) composition, interconnectivity and
context, (iii) services and their capabilities, (iv) policies, standards
and guidance, and (v) capability. The major difference is that the
INTERSECT Open Architecture splits these views over three dif-
ferent parts: (1) science use case design patterns [15], (2) a SoS
architecture [32], and (3) a microservice architecture [5].

Science use cases for autonomous experiments, self-driving lab-
oratories, smart manufacturing, and AI-driven design, discovery
and evaluation are described as design patterns that identify and
abstract the involved components and their control, work and data
flow interactions. The SoS architecture clarifies used terms, architec-
tural elements, the interactions between them, and compliance. The
microservice architecture maps the patterns to the SoS architecture
with loosely coupled microservices and standardized interfaces.

This approach permits separating coarse-, mid- and fine-grain ar-
chitectural decisions. Coarse-grain architectural decisions define as
what objective a particular self-driving laboratory has and how that
objective is being achieved. Mid-grain architectural decisions clarify
which instruments, robots, networks and computing systems are
part of this self-driving laboratory and how do they communicate
with each other. Fine-grain architectural decisions describe which
particular experiment control, data transfer and compute microser-
vices are being used and how. The science use case design patterns,
SoS architecture and microservice architecture complement each
other, just like the different viewpoints of the DoDAF. Additionally,
the SoS architecture itself offers complementary viewpoints, such
as user, data, operational, logical, physical and standards view.

2.2 Scientific Workflows
There are about 300 workflow solutions for instrument science and
data analysis [2]. Only few holistic automated solutions exist.

The National Energy Research Scientific Computing Center
(NERSC) Superfacility framework [37] integrates instruments with
computational/data facilities for automation. For example, it con-
nects the SLAC National Accelerator Laboratory’s Linac Coherent
Light Source via ESnet to the Cori supercomputer for photosyn-
thesis research [48]. Its RESTful Superfacility API offers access to
common supercomputer functions [36]. Oak Ridge National Lab-
oratory (ORNL) offers federated environments for connecting in-
struments with computational/data resources. It leverages software
containerization and softwarization of hardware for processing
data from ORNL’s Spallation Neutron Source and High Flux Iso-
tope Reactor [1, 38]. Data transfer and workflow tools developed at
Argonne National Laboratory (ANL) and the University of Chicago,
such as Globus Automate [22], Gladier [21] and Balsam [3], permit
automated analysis of instrument data. For example, they connect
ANL’s Advanced Photon Source with the Theta supercomputer
for real-time analysis [24]. Other solutions exist, such as the ACL
at the University of Liverpool [43], the FireCrest RESTful API at
the Swiss National Supercomputing Centre [16], and the design of
experiments as a Cloud service by Kebotix [29].

2.3 Design Patterns
Design patterns systematize software development using proven
engineering paradigms and methodologies [7]. In object-oriented
programming, design patterns providemethods for defining class in-
terfaces, inheritance hierarchies and class relationships [19]. Pattern
systems also exist for concurrent and networked object-oriented
environments [44], resource management [30], and distributed sys-
tems [6]. Design patterns have been discovered in other domains,
such as for natural language processing [46], user interface de-
sign [4], Web design [13], visualization [23], software security [12],
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HPC resilience [25, 26], and data processing for automation of
business processes [18].

Execution patterns, not design patterns, for workflows in gen-
eral describe the functionality of a workflow [50], such as execu-
tion graphs, decision points and synchronization points. Common
motifs in scientific workflows [20] start making the connection
between the functionality of a workflow and certain common ex-
ecution patterns, such as data movement and data analysis steps.
Similar workflow execution patterns, not design patterns, have
been recently proposed for instrument science [51].

2.4 System of Systems Architectures
The SoS approach designs a highly complex system by decompos-
ing it into many smaller and easier to design systems [35, 41]. The
set of systems interact to provide a unique capability that none of
the individual systems can accomplish on its own [27]. A SoS has
five key characteristics [33]: operational independence of systems,
managerial independence of systems, geographical distribution,
emergent behavior, and evolutionary development. Systems are in-
dividually developed and evolved, as the architecture of a SoS is the
system interfaces [34, 42]. A recent example is Defense Advanced
Research Projects Agency (DARPA)’s System of Systems Integration
Technology and Experimentation (SoSITE) [10] System-of-systems
Technology Integration Tool Chain for Heterogeneous Electronic
Systems (STITCHES) [9, 17]. The DoDAF [49] is an overarching,
comprehensive framework for the development of architectures
from different viewpoints. It is used across the U.S. Department of
Defense (DoD) for developing SoS architectures.

2.5 Microservice Architectures
Microservice architectures emerged from service-oriented archi-
tectures, initially realized with Web services [53]. They have since
become the modern approach to decompose complex software sys-
tems. For example, Netflix created an open source microservice
architecture for their internal applications [39, 40]. Kubernetes uses
a microservice architecture for automating deployment, scaling,
and management of containerized applications [31].

3 TERMINOLOGY AND CONCEPTS
This section describes the relevant terminology and concepts, the-
matically grouped and ordered by their relationships. This is by no
means an exhaustive list, but rather represents the core descriptions
needed to understand this paper.

General Terms:

• Test:A procedure or a method to evaluate the characteristics
of a product, service, or system under specific conditions.
For example, characterizing the chemical composition of a
compound in a gas chromatograph.

• Experiment: A test under controlled conditions to demon-
strate a known truth or examine the validity of a hypothesis.
For example, creating a compound based on the hypothesis
that it has a certain chemical composition, characterizing
the chemical composition of the compound in a gas chro-
matograph, and analyzing the result to examine the validity
of the hypothesis.

• Multi-experiment workflow: A set of experiments per-
formed in serial (one after another) and/or in parallel (simul-
taneously). For example, a created compound is character-
ized with different tools, including a gas chromatograph, to
examine the validity of multiple hypotheses. This may be
performed by splitting the compound up and performing
the experiments simultaneously (parallel), or by reusing the
compound in subsequent (serial) experiments.

• Campaign: A scientific endeavor that may consist of one
or more experiments that may take place sequentially or in
parallel to answer a broader overarching scientific question.
For example, performing multiple experiments involving a
gas chromatograph in which different compounds are cre-
ated and characterized to find an optimal compound for a
specific practical application.

Experiment and Multi-experiment Workflow Data:

• Experiment plan: A list of actions that need to be executed
while running an experiment.

• Experiment design plan: An initial experiment plan and a
plan for creating new experiment plans based on experiment
results.

• Multi-experiment workflow plan: A list of actions that
need to be executed while running a multiple experiments in
a workflow, i.e., a set of experiments in serial and/or parallel.
Each experiment in this workflow still has its own experi-
ment plan.

• Experiment result: The data collected from sensors before,
during and/or after running an experiment.

Operational Experiment Properties:

• Automated: Executing an existing experiment or multi-
experiment workflow plan, by performing its list of actions,
without external or human intervention that can unneces-
sarily hold up execution.

• Autonomous: Creating a new or modifying an existing ex-
periment or multi-experiment workflow plan and executing
it, by performing its list of actions, without external or hu-
man intervention that can unnecessarily hold up execution.

• Self-driving: Synonymous with autonomous operation.

Experiment Devices:

• Sensor: A device for measuring something before, during
and/or after running an experiment.

• Actuator: A device for moving or controlling something
before, during and/or after running an experiment.

• Instrument: A device containing sensors and potentially
actuators.

• Robot: An automated or autonomous device containing
actuators and potentially sensors.

• Laboratory: A room or building equipped with experiment
devices, such as sensors, actuators, instruments, and robots.

Experiment and Workflow Control:

• Loop control: The devices and functions necessary to au-
tomatically or autonomously perform an experiment or a
multi-experiment workflow.
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• Open loop control:A loop control without feedback, except
to monitor the experiment(s) for safety reasons.

• Closed loop control: A loop control with feedback, such
as to monitor experiment(s) progress or result and to adapt
experiment or multi-experiment workflow plans.

• Observe, orient, decide, and act (OODA) loop control: A
closed loop control with 4 distinct components: (1) Observe
the evolving situation, (2) Orient the observed information
for decision making, (3) Decide on appropriate actions, and
(4) Act on the made decisions [47].

• Experiment controller: A component that executes an ex-
periment plan by performing its list of actions and collecting
any feedback.

• Experiment planner: A component that creates an experi-
ment plan based on an experiment design plan and experi-
ment results.

• Multi-experiment workflow controller: A component
that executes a multi-experiment workflow plan by perform-
ing its list of actions and collecting any feedback.

Other Terms:
• Smart manufacturing: Computer-integrated manufactur-
ing with high levels of adaptability and rapid design changes,
treating the manufacturing process as series of experiments
that improve the product through feedback.

• AI-driven design, discovery and evaluation: The use
of AI technology in product design, scientific discovery, or
product evaluation/testing.

4 PATTERN FORMAT
Reducing human-in-the-loop requirements with machine-in-the-
loop capabilities by connecting scientific instruments, robot-controlled
laboratories and edge/center computing/data resources to enable
autonomous experiments, self-driving laboratories, smart manu-
facturing, and AI-driven design, discovery and evaluation is an
inherent open or closed loop control problem. Therefore, the basic
template for a science use case design pattern is defined in a loop
control problem paradigm. The abstract science use case design
pattern consists of a behavior and a set of interfaces in the context
of performing a single or a set of experiments in an open or closed
loop control. Such an abstract definition creates universal patterns
that describe solutions free of implementation details.

Figure 2 shows two different loop control problems. Figure 2a
describes a closed loop control of an experiment that performs a test
with some feedback to an experiment controller running the test.
Figure 2b describes a multi-experiment workflowwith a closed loop
control of multiple experiments, each with their own a closed loop
control. There are a number of different loop control problems that
the science use case design patterns systematize and categorize.

Design patterns for science use cases are expressed in a writ-
ten form and in a highly structured format, which permits quick
identification of relevant patterns given a certain problem to be
solved and easy comparison of patterns regarding their applica-
bility and capabilities. The format for describing science use case
design patterns consists of individual descriptions of pattern prop-
erties, including text, diagrams, and mathematical models. It can
be extended over time by adding more pattern properties and their

Experiment
Controller Test

Feedback

(a) Experiment loop control problem

Experiment
Controller 1 Test 1

Feedback

Experiment
Controller n Test n

Feedback

Multi-
Experiment
Workflow
Controller

...

Feedback

Feedback

(b) Multi-experiment workflow loop control problem

Figure 2: Science use case as a loop control problem

descriptions. Patterns are described in the traditional design pattern
paradigm: from context to problem to solution to resulting context.
The current science use case design pattern format is as follows:

Name: A descriptive name that distinctly identifies the pattern
and enables designers to think about designs in an abstract manner
and communicate their design choices to others.

Context: The preconditions under which the pattern is relevant,
including a description of the system before the pattern is applied.

Problem: A description of the problem that provides insight on
when it is appropriate to apply the pattern. Multiple patterns may
address the same problem differently.

Forces: A description of the relevant forces and constraints, and
how they interact or conflict with each other and with the intended
goals and objectives.

Solution: A description of the solution that defines the abstract el-
ements that are necessary for the composition of the design solution
as well as their relationships, responsibilities, and collaborations.
The specific capabilities provided by this pattern.

Resulting Context: A brief description of the post-conditions aris-
ing from the application of the pattern. There may be trade-offs
between competing optimization parameters that arise due to the
implementation of a solution using this pattern.

Related Patterns: The relationships between this pattern and
other relevant patterns. Other patterns may be predecessor or suc-
cessor patterns. This pattern may complement or enhance other
patterns. There may also be dependencies between patterns to
provide a complete solution.

Examples: A description of one or more examples, including their
specific pattern properties, that illustrate the use of the pattern for
solving concrete problems.

Known Uses: A list of known applications of the pattern in exist-
ing systems, including any practical considerations and limitations.

5 PATTERN CLASSIFICATION
There can be different categories, or classes, of design patterns,
depending on context. A classification of patterns helps to iden-
tify groups of patterns that address similar problems in different
ways or that describe solutions at different levels of granularity or
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Figure 3: Classification of the science use case design patterns

from different points of view. A classification scheme codifies these
relationships between patterns and enables designers to better un-
derstand individual pattern capabilities and relationships. It also
further helps to understand how patterns rely on each other and
can be composed to form a complete solution.

There are currently two classes of science use case design pat-
terns (Figure 3): (1) strategic patterns that define high-level solution
methods using experiment control architecture features at a very
coarse granularity, and (2) architectural patterns that define more
specific solution methods using hardware and software architec-
ture features at a finer granularity. While the architectural patterns
do inherit the features of certain parent strategic patterns, they
also address additional problems that are not exposed at the high
abstraction level of the strategic patterns.

Strategic patterns currently focus on the differences in experi-
ment control features, such as steering of an ongoing experiment
using live experimental data vs. design of the next experiment(s)
using past experimental data. The key differences in features be-
tween the 4 strategic patterns are (1) no feedback, (2) feedback for
the same experiment, (3) feedback for the next experiment, and (4)
workflow of multiple experiments.

The primary feature currently explored by the architectural pat-
terns is the distinction between local and remote components used
by a corresponding strategic pattern, where local means that there
is not a potentially significant communication delay to a component
and remote means that there is a potentially significant communi-
cation delay to a component. Other architectural features may be
explored in the future with different patterns.

For example, the Experiment Steering strategic pattern is used in
every experiment, where live feedback of experiment data is being
used to autonomously change parameters during the experiment.
Known uses range from a simple proportional–integral–derivative
(PID) controller to complex probabilistic approaches or domain sci-
ence informed AI in the feedback loop. The Distributed Experiment
Steering architectural pattern inherits all the properties of the Ex-
periment Steering strategic pattern, but has the architectural prop-
erty of potentially significant communication delay between the
experiment and a remote analysis. This severely restricts real-time
feedback. In contrast, the Local Experiment Steering architectural
pattern also inherits all the properties, but experiment progress is
analyzed and judged locally, i.e., without significant communication
delay to remote components.

This classification scheme is open for extension. New patterns
may be added for each class if new strategic or architectural patterns
emerge that do not fit in the existing patterns. New classes may be
added if new pattern features emerge that express commonalities
across workflows that are not covered by patterns. For example, a
new class may map the existing patterns to data-intensive, time-
sensitive and long-term experiment campaigns, which are workflow

features that are orthogonal to the current pattern classes. Another
new class may focus on the algorithms used in the feedback loop,
such as probabilistic (e.g., Bayesian) vs. domain science based (e.g.,
physics informed) algorithms.

6 STRATEGIC PATTERNS
The science use case strategic patterns define high-level solution
methods using experiment control architecture features at a very
coarse granularity. Their descriptions are deliberately abstract to
enable architects to reason about the overall organization of the
used techniques and their implications on the full system design.
The catalog of science use case design patterns defines the following
strategic patterns:

• Experiment Control: Certain predetermined actions need to
be performed while running an experiment. This pattern
would be used in all automated experiments that do not
have feedback for steering the ongoing or designing the next
experiment. Since autonomous operation requires to first
figure out automation, this pattern provides a basic solution
that covers most experiments performed at this point.

• Experiment Steering: Certain predetermined actions need to
be performed while running an experiment to positively in-
fluence experiment progress. This pattern involves feedback
for the ongoing experiment as an extension to Experiment
Control. It offers autonomous operation and is used in ex-
periments that require live feedback to adjust parameters.

• Design of Experiments: Certain predetermined actions need
to be performed to run a set of similar experiments with
different experiment plan parameters, depending on (prior)
experiment results. This pattern makes use of either Experi-
ment Control or Experiment Steering and additionally offers
feedback between experiments, typically to define the param-
eters of the next experiment or next series of experiments.
It is typically used in conjunction with probabilistic (e.g.,
Bayesian) or domain science based (e.g., physics informed)
analysis of experiment results. This pattern is predominantly
used in large-scale parameter studies, such as to find the op-
timal conditions of a chemical catalysis.

• Multi-Experiment Workflow: Certain predetermined actions
need to be performed to run a set of experiments in serial
(one after another) and/or in parallel (simultaneously). This
pattern utilizes the other 3 patterns to orchestrate multiple
experiments that may depend on each other. An example use
case is the creation of a certainmaterial using physical and/or
chemical processes (e.g., catalysis) and the analysis of the
properties of the created material in multiple experiments
(e.g., spectroscopy and stress testing).

The features of these science use case strategic patterns and their
relationships are compared in Table 1.
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Table 1: Feature comparison and relationships of the science use case strategic patterns

Feature Experiment Control Experiment Steering Design of Experiments Multi-Experiment Workflow
# of experiments 1 1 Multiple Multiple
Control type Open loop Closed loop Closed loop Open loop
Operation type Automated Autonomous Autonomous Automated
Extends Experiment Control
Uses Experiment Control Experiment Control
May also use Experiment Steering Experiment Steering,
or use instead Design of Experiments

In the following, the Experiment Steering and Design of Experi-
ments strategic patterns are described as examples. The full design
pattern catalog is beyond the scope of this paper. A preliminary ver-
sion of the catalog has already been published [15] and an improved
version based on this paper is forthcoming.

6.1 Example: Experiment Steering
Name: Experiment Steering

Context: The pattern applies to a system with the following
characteristics:

• An experiment plan exists that lists the predetermined ac-
tions to be performed while running the experiment, in-
cluding potential parameter changes based on experiment
progress.

• Sensors exist to allow for measuring experiment progress.
• Actuators may exist to allow for moving or controlling some-
thing before, during and/or after running the experiment.

• Additional sensors may exist to allow for measuring some-
thing before, during and/or after running the experiment.

• Instruments may exist that contain sensors and potentially
actuators.

• Robots may exist that contain actuators and potentially sen-
sors and that execute predetermined actions from the exper-
iment plan in an automated or autonomous fashion.

Problem: Certain predetermined actions need to be performed
while running an experiment to positively influence experiment
progress.

Forces: Only pre-experiment conditions and changing conditions
during the experiment are considered in performing the prede-
termined actions while running an experiment. Post-experiment
conditions are not considered.

Solution: An experiment controller executes an experiment using
a predetermined experiment plan and changes the plan’s param-
eters during execution based on experiment progress (Figure 4).
The plan’s execution is autonomous, performed in a closed loop
control and may involve human interaction. The controller may
monitor the experiment for safety reasons. The plan contains a
complete description of the predetermined actions to be performed
for running the experiment, including any safety-related responses
and how to analyze and judge experiment progress and change the
plan accordingly.

This pattern offers a closed loop control with safety-related
feedback on the experiment and feedback on experiment progress.
Experiment plan execution is autonomous, i.e., its list of actions
changes during execution based on feedback and is performed

Experiment
Plan

Experiment
Controller Test

Safety-/Progress-
Related Feedback

Experiment
Result

Figure 4: Experiment Steering strategic pattern components
and control/data flow

without external or human intervention that can unnecessarily
hold up execution. Only 1 experiment is being controlled.

Resulting Context: An experiment is executed autonomously us-
ing a predetermined experiment plan, with the plan’s parameters
changing autonomously during the experiment based on experi-
ment progress.

Related Patterns: This strategic pattern is an extension of the Ex-
periment Control strategic pattern with an added closed loop con-
trol and feedback on experiment progress. The Multi-Experiment
Workflow and Design of Experiments strategic patterns can be
extended using this strategic pattern for autonomously execut-
ing a predetermined experiment plan, with the plan’s parameters
changing autonomously during experiments based on experiment
progress.

Examples: An autonomous microscopy science use case [28]
(Figure 5) implements the Experiment Steering strategic pattern,
as an ongoing scanning transmission electron microscopy (STEM)
experiment is controlled by analyses of periodic experiment data.
At the strategic pattern level of abstraction, the individual pattern
components are as follows:

• The experiment plan contains a complete description of the
predetermined actions to be performed for running the ex-
periment, including any parameters for operating the STEM,
safety-related responses and how to analyze and judge ex-
periment progress and change the plan accordingly. The
experiment plan also contains the goal of the STEM experi-
ment to steer it in the right direction and to stop its closed
loop control upon completion.

• The experiment controller executes a STEM experiment us-
ing a predetermined experiment plan and changes the plan’s
parameters during execution based on experiment progress.
The plan’s execution is autonomous, performed in a closed
loop control and may involve human interaction.

• The test performed in a STEM experiment determines the
properties of microscopic structures.

• The experiment result is a combination of raw and analyzed
STEM data and insights derived from this data.

Known Uses: This strategic pattern is used in every experiment,
where live feedback of experiment data is being used to autonomously
change parameters during the experiment. Known uses range from
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Figure 5: The autonomous INTERSECT scanning transmis-
sion electron microscopy experiment investigates and modi-
fies samples at atom-scale using analysis of periodic experi-
mental data.

having simple PID controller to complex probabilistic or domain
science informed AI in the feedback loop.

6.2 Example: Design of Experiments
Name: Design of Experiments

Context: The pattern applies to a system with the following
characteristics:

• An experiment design plan exists that lists the predetermined
actions to be performed for creating a new experiment plan
based on prior experiment results.

• An initial experiment plan exists that lists the predetermined
actions to be performed while running the experiment.

• Sensors exist to allow for measuring experiment results.
• Actuators may exist to allow for moving or controlling some-
thing before, during and/or after running the experiment.

• Additional sensors may exist to allow for measuring some-
thing before, during and/or after running the experiment.

• Instruments may exist that contain sensors and potentially
actuators.

• Robots may exist that contain actuators and potentially sen-
sors and that execute predetermined actions from the exper-
iment plan in an automated or autonomous fashion.

Problem: Certain predetermined actions need to be performed
to run a set of similar experiments with different experiment plan
parameters, depending on experiment results.

Forces: Only pre- and post-experiment conditions are considered
in performing the predetermined actions to run a set of similar ex-
periments with different experiment plan parameters. Only safety-
related conditions during the experiment may be considered. Other
changing conditions during the experiments are not considered,
unless the Experiment Steering strategic pattern is being used in
conjunction with this strategic pattern.

Solution: An experiment controller executes each experiment
using a predetermined experiment plan (Figure 6). The plan’s exe-
cution is automated, performed in an open loop control and may

involve human interaction. The controller may monitor the experi-
ment for safety reasons. The experiment plan contains a complete
description of the predetermined actions to be performed for run-
ning the experiment, including any safety-related responses. An
experiment planner creates the experiment plan, based on an ex-
periment design plan and prior experiment results (if any). The
experiment plan change is autonomous, performed in a closed loop
control and may involve human interaction. The experiment design
plan contains an initial experiment plan and a plan for creating
new experiment plans based on experiment results, including how
to analyze and judge experiment results and change the plan ac-
cordingly.

Experiment
Design Plan

Experiment
Planner

Experiment
Controller

Safety-Related
Feedback Only

Test

Result-Related Feedback

Experiment
Plan

Experiment
Result

Figure 6: Design of Experiments strategic pattern compo-
nents and control/data flow

This pattern offers an open loop control with safety-related
feedback on the experiment and a separate closed loop control
with feedback on experiment results. Experiment plan execution
is automated within the open loop control, i.e., its list of actions
is performed without external or human intervention that can
unnecessarily hold up execution. Experiment design plan execution
is autonomous, i.e., it creates a new experiment plan after each
experiment based on experiment results and is performed without
external or human intervention that can unnecessarily hold up
execution. A set of similar experiments with different experiment
plan parameters is controlled.

Resulting Context: An experiment is executed autonomously
with different experiment plan parameters using a predetermined
experiment plan, with the plan’s parameters changing autonomously
between experiments based on experiment results.

Related Patterns: This strategic pattern relies on the Experiment
Control strategic pattern for automatically executing a predeter-
mined experiment plan. This strategic pattern can be extended
using the Experiment Steering strategic pattern (instead of the
Experiment Control strategic pattern) for autonomously execut-
ing a predetermined experiment plan, with the plan’s parameters
changing autonomously during experiments based on experiment
progress.

Examples: An ACL science use case (Figure 1) implements the
Design of Experiments strategic pattern, as a robot automates ex-
periment execution and the software/characterization tools in the
feedback loop to plan the experiments to be performed. At the
strategic pattern level of abstraction, the individual pattern compo-
nents are as follows:

• The experiment design plan describes the goal, which is the
desired chemical compound, and the logic necessary to craft
subsequent experiments towards achieving the goal.

• The experiment planner is the subject matter expert (SME)
that may be substituted by a machine learning or deep learn-
ing model for autonomous operation to decide on the next
experiment plan, given the results from past experiments.
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• The experiment plan is the sequence of predetermined steps
and associated parameters necessary to run the experiment.
The predetermined steps include the parameters for synthe-
sizing the chemical compound, route navigation instructions
for the robots to move the sample between the different
synthesis and characterization stations, parameters for char-
acterizing the synthesized chemical compound, and safety
related feedback instructions.

• The test performed in an experiment characterizes the syn-
thesized chemical compound.

• The experiment controller is a central workstation that is
able to command and control the robots, synthesis equip-
ment, analytical instruments, and any data and computing
resources for analyzing the measurement data.

• The experiment result is a combination of the sample char-
acterization results.

The experiment is a complex sequence of steps involving multi-
ple instruments, actuators, sensors, etc. Thus, the experiment itself
could be considered a Multi-Experiment Workflow strategic pat-
tern using a sequence of Experiment Control strategic patterns.
Examples of steps that constitute the Multi-Experiment Workflow
strategic include the synthesis step and each of the individual char-
acterization steps, such as the gas chromatography, high perfor-
mance liquid chromatography, and X-raymicroscopy. Some of these
steps could potentially be performed in parallel if the sample were
broken down into pieces such that the pieces could be analyzed be
the characterization instruments in parallel.

Known Uses: This strategic pattern is used in every experiment,
where feedback of experiment results is being used to autonomously
change the parameters of the next experiment(s). Known uses range
from having simple linear or random parameter scan to complex
probabilistic approaches (e.g., Bayesian design of experiments) or
domain science informed AI (e.g., physics-informed design of ex-
periments) in the feedback loop.

7 ARCHITECTURAL PATTERNS
Architectural patterns define more specific solution methods using
hardware and software architecture features at a finer granularity.
They inherit the features of their parent strategic patterns. How-
ever, they address additional problems through design choices that
are not exposed at the high abstraction level of the parent strategic
patterns. They address different choices of implementing experi-
ment control and workflow, such as using experiment-local, edge
and/or center computing/data resources. The catalog of science use
case design patterns defines the following architectural patterns:

• Local Experiment Control: A local experiment controller exe-
cutes an experiment. There are no remote components that
could incur a significant communication delay.

• Distributed Experiment Control: A remote experiment con-
troller executes an experiment, incurring a potentially sig-
nificant communication delay.

• Local Experiment Steering: Experiment progress is analyzed
and judged locally. There are no remote components that
could incur a significant communication delay.

• Distributed Experiment Steering: Experiment progress is ana-
lyzed and optionally also judged/controlled remotely, incur-
ring a potentially significant communication delay.

• Local Design of Experiments: Experiment results are analyzed
and judged locally. There are no remote components that
could incur a significant communication delay.

• Distributed Design of Experiments: Experiment results are
analyzed and optionally also judged/controlled remotely,
incurring a potentially significant communication delay.

• Local Multi-Experiment Workflow: All experiments are local.
There are no remote experiments that could incur a signifi-
cant communication delay.

• Distributed Multi-Experiment Workflow: One or more exper-
iments are remote, incurring a potentially significant com-
munication delay.

Table 2 shows the architectural patterns and their relationships
to the strategic patterns.

Table 2: Relationships of the science use case strategic and
architectural patterns

Architectural Pattern Implements Strategic Pattern
Local Experiment Control Experiment Control
Distributed Experiment Control Experiment Control
Local Experiment Steering Experiment Steering
Distributed Experiment Steering Experiment Steering
Local Design of Experiments Design of Experiments
Distributed Design of Experiments Design of Experiments
Local Multi-Experiment Workflow Multi-Experiment Workflow
Distributed Multi-Experiment Workflow Multi-Experiment Workflow

In the following, the Distributed Experiment Steering and Local
Design of Experiments architectural pattern are described.

7.1 Example: Distributed Experiment Steering
Name: Distributed Experiment Steering

Context: The pattern applies to a system with the following
characteristics:

• An experiment plan exists that lists the predetermined ac-
tions to be performed while running the experiment, in-
cluding potential parameter changes based on experiment
progress.

• A local or remote experiment controller exists that executes
the predetermined actions to be performed while running
the experiment.

• A remote experiment analyzer exists that orients the ob-
served information for the experiment controller.

• Sensors exist to allow for measuring experiment progress.
• Actuators may exist to allow for moving or controlling some-
thing before, during and/or after running the experiment.

• Additional sensors may exist to allow for measuring some-
thing before, during and/or after running the experiment.

• Instruments may exist that contain sensors and potentially
actuators.

• Robots may exist that contain actuators and potentially sen-
sors and that execute predetermined actions from the exper-
iment plan in an automated or autonomous fashion.

• A component may exist that post-processes raw experiment
data, such as to identify features.
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Problem: Certain predetermined actions need to be performed
while running an experiment to positively influence experiment
progress. Experiment progress is analyzed and optionally also
judged/controlled remotely, incurring a potentially significant com-
munication delay.

Forces: Only pre-experiment conditions and changing conditions
during the experiment are considered in performing the predeter-
mined actions while running an experiment. Post-experiment con-
ditions are not considered. Experiment progress is analyzed and
optionally also judged with significant communication delay to
remote components. Proper computational analysis and decision
making capability does not need to be local, but must be able to
respond within a certain amount of time.

Solution: The is pattern implements the Experiment Steering
strategic pattern using an OODA loop control. The Orient com-
ponent and optionally the Decide component of the of the OODA
loop control are remote, i.e., physically located and connected in
a way that does incur a significant communication delay between
the components.

As in the Experiment Steering strategic pattern, an experiment
controller executes an experiment using a predetermined exper-
iment plan and changes the plan’s parameters during execution
based on experiment progress (Figure 7). The plan’s execution is
autonomous, performed in a closed loop control and may involve
human interaction. The controller may monitor the experiment
for safety reasons. The plan contains a complete description of the
predetermined action to be performed for running the experiment,
including any safety-related responses and how to analyze and
judge experiment progress and change the plan accordingly. Raw
experiment data may be post-processed by an optional component,
such as to identify features.

Orient

Decide

Act

Observe

Experiment
Plan

(Remote)
Controller

Test

Sensors

Actuators

Remote
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Storage
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Storage
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Figure 7: Distributed Experiment Steering architectural pat-
tern components and control/data flow

The OODA loop control is formed by sensors that observe the
experiment, an analyzer that orients the observed information, an
experiment controller that decides on appropriate actions and actu-
ators that perform the appropriate actions. As some components
of the OODA loop control are remote, component-local storage
and explicit data transfer between components may be used for
sensor, analyzer and controller data. Control messages between
these components orchestrate the control flow.

This pattern offers a closed OODA loop control with safety-
related feedback on the experiment and feedback on experiment
progress. Experiment plan execution is autonomous, i.e., its list of
actions changes during execution based on feedback and is per-
formed without external or human intervention that can unnec-
essarily hold up execution. Only 1 experiment is being controlled.
There is a significant communication delay to remote components
in the closed OODA loop control, as the experiment progress anal-
ysis is remotely and the experiment controller may be remote as
well.

Resulting Context: An experiment is executed autonomously us-
ing a predetermined experiment plan, with the plan’s parameters
changing autonomously during the experiment based on experi-
ment progress. Experiment progress is analyzed and potentially
also judged remotely, i.e., with significant communication delay to
remote components.

Related Patterns: This architectural pattern implements the Ex-
periment Steering strategic pattern. In contrast to this architectural
pattern, the Local Experiment Steering architectural pattern ana-
lyzes and judges experiment progress locally, i.e., without signifi-
cant communication delay to remote components.

Examples: The autonomous microscopy use case [28] (Figure 5)
implements the Distributed Experiment Steering architectural pat-
tern, as an ongoing STEM experiment is controlled by remote anal-
yses of periodic experiment data. At the architectural pattern level
of abstraction, the individual pattern components are as follows:

• In addition to the properties identified by the Experiment
Steering strategic pattern, the experiment controller is either
local or remote and may feature a graphical user interface
(GUI) or some other human-machine interface (HMI).

• The actuator is part of the STEM and moves the scanning
electron beam.

• The test is performed in the STEM experiment determines
the properties of microscopic structures.

• The sensor is part of the STEM and provides the raw micro-
scope data.

Known Uses: This architectural pattern is used in every experi-
ment, where live feedback of remotely analyzed experiment data is
being used to autonomously change experiment parameters. Given
the potentially significant communication delay between the ex-
periment and the remote analysis, real-time feedback is limited.

7.2 Example: Local Design of Experiments
Name: Local Design of Experiments

Context: The pattern applies to a system with the following
characteristics:

• An experiment design plan exists that lists the predetermined
actions to be performed for creating a new experiment plan
based on prior experiment results.

• An initial experiment plan exists that lists the predetermined
actions to be performed while running the experiment.

• A local experiment planner exists that creates the new ex-
periment plan based on prior experiment results.
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• A local experiment controller exists that executes the prede-
termined actions to be performed while running the experi-
ment.

• A local experiment analyzer exists that orients the observed
information for the experiment planner.

• Sensors exist to allow for measuring experiment results.
• Actuators may exist to allow for moving or controlling some-
thing before, during and/or after running the experiment.

• Additional sensors may exist to allow for measuring some-
thing before, during and/or after running the experiment.

• Instruments may exist that contain sensors and potentially
actuators.

• Robots may exist that contain actuators and potentially sen-
sors and that execute predetermined actions from the exper-
iment plan in an automated or autonomous fashion.

• A component may exist that post-processes raw experiment
data, such as to identify features.

Problem: Certain predetermined actions need to be performed
to run a set of similar experiments with different experiment plan
parameters, depending on experiment results. Experiment results
are analyzed and judged locally. There are no remote components
that could incur a significant communication delay.

Forces: Only pre- and post-experiment conditions are consid-
ered in performing the predetermined actions to run a set of simi-
lar experiments with different experiment plan parameters. Only
safety-related conditions during the experiment may be considered.
Other changing conditions during the experiments are not consid-
ered, unless the Experiment Steering strategic pattern is being used
in conjunction with this architectural pattern, such as by using
the Local Experiment Steering or Distributed Experiment Steering
architectural patterns.

Experiment results are analyzed and judged without significant
communication delay to remote components. Proper computational
analysis and decision making capability must be present locally to
be able to respond within a certain amount of time.

Solution: The is pattern implements the Design of Experiments
strategic pattern using an OODA loop control. All components
of the OODA loop control are local, i.e., physically located and
connected in a way that does not incur a significant communication
delay between the components.

As in the Design of Experiments strategic pattern, an experi-
ment controller executes each experiment using a predetermined
experiment plan (Figure 8). The plan’s execution is automated,
performed in an open loop control and may involve human interac-
tion. The controller may monitor the experiment for safety reasons.
The experiment plan contains a complete description of the pre-
determined actions to be performed for running the experiment,
including any safety-related responses. An experiment planner cre-
ates the experiment plan, based on an experiment design plan and
prior experiment results (if any). The experiment plan change is
autonomous, performed in a closed loop control and may involve
human interaction. The experiment design plan contains an ini-
tial experiment plan and a plan for creating new experiment plans
based on experiment results, including how to analyze and judge

experiment results and change the plan accordingly. Raw experi-
ment data may be post-processed by an optional component, such
as to identify features.
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Figure 8: Local Design of Experiments architectural pattern
components and control/data flow

The OODA loop control is formed by sensors that observe the
experiment, an analyzer that orients the observed information, an
experiment planner that decides on appropriate actions, and an
experiment controller and actuators that perform the appropriate
actions. As all components of the OODA loop control are local,
a shared storage device may be used between them for sensor,
analyzer, planner and controller data. Control messages between
these components orchestrate the control flow.

This pattern offers an open loop control with safety-related feed-
back on the experiment and a separate closed OODA loop control
with feedback on experiment results. Experiment plan execution
is automated within the open loop control, i.e., its list of actions
is performed without external or human intervention that can un-
necessarily hold up execution. Experiment design plan execution
is autonomous, i.e., it creates a new experiment plan after each
experiment based on experiment results and is performed without
external or human intervention that can unnecessarily hold up exe-
cution. A set of similar experiments with different experiment plan
parameters is controlled. There is no significant communication
delay to remote components in the open loop control, as the experi-
ment controller is local. There is also no significant communication
delay to remote components in the closed OODA loop control, as
the experiment result analysis and experiment planner are local as
well.

Resulting Context: An experiment is executed autonomously
with different experiment plan parameters using a predetermined
experiment plan, with the plan’s parameters changing autonomously
between experiments based on experiment results. Experiment
results are analyzed and judged locally, i.e., without significant
communication delay to remote components.

Related Patterns: This architectural pattern implements the De-
sign of Experiments strategic pattern. It relies on the Experiment
Control strategic pattern for automatically executing a predeter-
mined experiment plan. This architectural pattern can be extended
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using the Experiment Steering strategic pattern (instead of the
Experiment Control strategic pattern) for autonomously execut-
ing a predetermined experiment plan, with the plan’s parameters
changing autonomously during experiments based on experiment
progress. Such extension may involve the Local Experiment Steer-
ing or Distributed Experiment Steering architectural patterns.

In contrast to this architectural pattern, the Distributed Design
of Experiments architectural pattern analyzes and potentially also
judges experiment results remotely, i.e., with significant communi-
cation delay to remote components.

Examples: The ACL science use case (Figure 1) implements the
Local Design of Experiments architectural pattern, as all compo-
nents (planner, controller(s), robot, synthesis station(s), and char-
acterization station(s)) are local, i.e., in close physical and logical
proximity with no significant latency (for communication or sample
movement) to remote components.

The experiment is a complex sequence of steps involving mul-
tiple instruments, actuators, sensors, etc. Thus, the experiment
itself could be considered a Local Multi-Experiment Workflow ar-
chitectural pattern using a sequence of Local Experiment Control
architectural patterns. Examples of steps that constitute the Multi-
Experiment Workflow architecture include the synthesis step and
each of the individual characterization steps, such as the gas chro-
matography, high performance liquid chromatography, and X-ray
microscopy. Some of these steps could potentially be performed
in parallel if the sample were broken down into pieces such that
the pieces could be analyzed be the characterization instruments
in parallel. There is a significant overlap of the different compo-
nents of the patterns, as the same shared storage is being used, for
example.

Known Uses: This architectural pattern is used in every exper-
iment, where feedback of experiment results is being used to au-
tonomously change the parameters of the next experiment(s) using
components that are all local, i.e., in close physical and logical prox-
imity with no significant latency (for communication or sample
movement) to remote components. Known uses range from having
simple linear or random parameter scan to complex probabilistic
approaches (e.g., Bayesian design of experiments) or domain sci-
ence informed AI (e.g., physics-informed design of experiments) in
the feedback loop.

8 BUILDING SOLUTIONS
Building a complete solution from an existing science use case
requires dissecting the science use case by the open or closed loop
control problem or problems it contains. Section 8.1 describes the
involved steps and discusses the individual decision parameters in
more detail. Section 8.2 discusses additional considerations when
composing different design patterns, such as due to multiple loop
control problems.

8.1 A STEP-BY-STEP GUIDE
Each loop control problem needs to be identified, including its
properties and hardware/software architectural features. A step-
by-step decomposition process would work as follows:

(1) Clearly define the experiment or experiments that are being
performed.

(2) Identify the loop control problem or problems that exist for
each experiment.

(3) Classify each loop control problem by a strategic pattern.
(4) Identify the individual components of each loop control prob-

lem and associated strategic pattern.
(5) Classify each loop control problem by an architectural pat-

tern that matches its strategic pattern.
(6) Match the identified components with the components of

the architectural patterns.
(7) Design the hardware/software architecture of the solution

based on the architectural patterns and the corresponding
matched components, using the pattern properties as design
guidelines.

What is the experiment?: It is important to clearly define the
experiment or experiments, as the wrong definition ultimately leads
the designer down the wrong path. It is often easier to think of an
experiment as a concrete test process that demonstrates a specific
known truth, examines the validity of a specific hypothesis, or
determines specific properties of something. Clearly identifying
the experiment devices, such as sensors, actuators, instruments and
robots, is part of that definition as well. It is quite possible that one
experiment in a laboratory tries to accomplish multiple objectives,
in which case a single multi-objective experiment could be split up
into multiple experiments, especially if it involves a workflow or
completely separated loop control problems. There is no hard rule
on this and any such split would be on a case-by-case basis.

Which loop control problems exist?: Separating out what is being
controlled and how is the key to identifying the loop control prob-
lem or problems that exist for each experiment. In pretty much all
cases, there is some type of simple open loop control, as described
in the Experiment Control strategic pattern. Additional loop control
problems may exist that may extend the simple open loop control,
such as to the Experiment Steering strategic pattern, or uses/relies
on the simple open loop control, such as with the Design of Experi-
ments strategic pattern. There also may be multiple loop control
problems for the same experiment, such as a combination of the the
Experiment Steering and Design of Experiments strategic patterns.
Similarly, a multi-objective experiment may have multiple loop
control problems for different parts of the experiment, potentially
requiring it to be split up into multiple experiment. Obviously, a
multi-experiment workflow may have loop control problems for
each experiment in the workflow. Pattern combinations that solve
such issues are discussed in Section 8.2.

Who is in control?: The science use case design patterns have one
controller component and some have an additional planner compo-
nent. These are not necessarily physical standalone components.
Instead, an analyzer may already contain the decision-making logic
and also act as a controller or planner. Similarly, the controller
or planner may require human input or may be a human itself.
While the goal is to reduce human-in-the-loop requirements with
machine-in-the-loop capabilities, this may be a process that requires
a transition and some human-in-the-loop requirements may not
necessarily completely eliminated.
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Which strategic pattern?: The key differences in features be-
tween the 4 strategic patterns are (1) no feedback, (2) feedback for
the same experiment, (3) feedback for the next experiment, and (4)
workflow of multiple experiments. If there is no feedback, then Ex-
periment Control is the right strategic pattern. If there is feedback
for the same experiment, such as changing a parameter based on a
measurement to observe how that or another measurement changes,
then Experiment Steering is the right strategic pattern. If there is
feedback for the next experiment, such as to change the parameters
and re-run the experiment, then Design of Experiments is the right
strategic pattern. There are experiments, where the experiment
plan constantly evolves as the experiment is performed, based on
measurements. In this case, either Experiment Steering or Design
of Experiments may be used, whichever is closer. In this case, using
Design of Experiments splits the experiment into multiple separate
experiments with different experiment plans. Multi-Experiment
Workflow is used whenever there are multiple experiments without
feedback. There could be a greater feedback loop over multiple
experiments in a workflow. In this case, a separate strategic pattern
is employed (see Section 8.2).

What is local? What is remote?: The architectural science use
case design patterns distinguish between local and remote compo-
nents based on communication delay. Any potentially significant
communication delay to a component makes it a remote compo-
nent. The term “significant communication delay” is purposely not
clearly defined to give designers room for interpretation. There may
be other reasons for defining a component as remote, such as when
a component is physically located at an entirely different location
that does not necessarily incur a significant communication delay
but requires a special way of communication. A human that acts as
a planner and communicates with the rest of the system via e-mail
or a GUI would likely also be considered a remote component.

8.2 PATTERN COMPOSITIONS
A solution may require the composition of science use case design
patterns. A simple example from the pattern catalog is the Design
of Experiments strategic pattern that already uses the Experiment
Control strategic pattern, but could use the Experiment Steering
strategic pattern instead. Similarly, the Multi-Experiment Workflow
strategic pattern already uses the Experiment Control strategic pat-
tern, but could use the Experiment Steering strategic pattern, the
Design of Experiments strategic patterns, or a combination of Ex-
periment Control, Experiment Steering and Design of Experiments
strategic patterns instead. This composition of strategic patterns is
then also reflected in composition of architectural patterns.

The decision to compose a solution from multiple science use
case design patterns depends on the actual properties of the solution.
The most significant indicator is the need for multiple, different con-
trol loops. Another indicator is the existence of a Multi-Experiment
Workflow with different experiments that have different control
loops. The number and properties of the control loops typically
define the composition of science use case design patterns, from
strategic to architectural. Note that there may be more than one con-
trol loop implementing the same strategic and even architectural
pattern, but with different properties. For example, there may be

multiple Local Experiment Steering control loops that are indepen-
dent from each other. They may operate with different timing re-
quirements, perform analysis on different computational resources
and modify different parameters independent from each other.

The following example illustrates the composition of science use
case design patterns. In this solution, there is a control loop for
Experiment Steering to change parameters based on observation as
the experiment is progressing. There is also a second control loop
for Design of Experiments to change the Experiment Plan based
on the prior experiment result after each experiment. Figure 9 il-
lustrates the involved components and control/data flow of the
Experiment Steering and the Design of Experiments strategic pat-
tern composition. The Experiment Design Plan and the Experiment
Planner are exclusive parts of the Design of Experiments strategic
pattern, while the other components are part of the Experiment
Steering strategic pattern that the Design of Experiments strategic
pattern is using as its experiment to control from an Experiment
Plan perspective.

Design of Experiments
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Experiment
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Experiment
Planner

Experiment
Controller

Safety-/Progress-
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Test

Result-Related Feedback
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Figure 9: Example: Components and control/data flow of
Experiment Steering and Design of Experiments strategic
pattern composition

In the given science use case example, the Experiment Steering
utilizes a local shared storage device, such as a small network at-
tached storage (NAS), for all sensor data and its analysis results. It
also relies on a local computational resource, such as an NVIDIA
Jetson Nano, for analysis and decision making. The Design of Ex-
periments transfers the sensor data of the entire experiment from
the shared storage device to a remote analyzer, such as an NVIDIA
DGX system. Its analysis results are evaluated and a new experi-
ment plan is created by the Controller on a desktop system running
a GUI. The corresponding involved components and control/data
flow of the Local Experiment Steering and the Distributed Design
of Experiments architectural pattern composition is shown in Fig-
ure 10.

This is just an example of how a solution may require the com-
position of science use case design patterns. Different logical com-
ponents may utilize the same physical components, such as when
different control loops use the same storage device or the same
computational resource for analysis and/or control. For example,
separate controllers for different Experiment Steering control loops
may use exactly the same physical component, such as a Raspberry
Pi, for storing and analyzing sensor data and for issuing different,
non-conflicting control commands to a robot.

9 CONCLUSION
This paper introduced the science use case design patterns of the
INTERSECT Open Architecture Specification. Given the open na-
ture of the architecture, the specification itself has been published
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Figure 10: Example: Components and control/data flow of Local Experiment Steering and Distributed Design of Experiments
architectural pattern composition

in 3 reports: (1) a science use case design pattern catalog [15], (2)
the SoS architecture [32], and (3) the microservice architecture [5].

The basic template for a science use case design pattern is defined
in a loop control problem paradigm, as the problems to be solved by
the patterns have machine-in-the-loop requirements. Two classes of
science use case design patterns have been identified: strategic pat-
terns and architectural patterns. Strategic patterns define high-level
solution methods using experiment control architecture features
at a very coarse granularity. Architectural patterns define more
specific solution methods using hardware and software architecture
features at a finer granularity.

The current science use case design pattern catalog [15] defines
12 patterns (4 strategic and 8 architectural). The paper provides a
step-by-step guide for building solutions using these patterns and
details how solutions can be composed from multiple patterns. An
improved version of the science use case design pattern catalog
based on this paper is forthcoming.

Ongoing work focuses on refining the INTERSECT Open Ar-
chitecture and applying it to the following six initial science use
cases at ORNL: (1) automation for grid interconnected-laboratory
emulation, (2) autonomous additive manufacturing, (3) autonomous
continuous flow reactor synthesis, (4) autonomous microscopy, (5)
an autonomous robotic chemistry laboratory, and (6) an ion trap
quantum computing resource.

Future work seeks to clarify the relationships between the de-
sign patterns presented in this paper and execution patterns, scien-
tific workflow motifs and workflow execution patterns [20, 50, 51],
which are not design patterns but categorize behavioral commonal-
ities of workflows. These patterns and motifs may be included as
behavioral patterns in the science use case design pattern catalog.
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