
David Fiala, Frank Mueller, Christian Engelmann,
Rolf Riesen, Kurt Ferreira, Ron Brightwell

Detection and Correction of Silent Data
Corruption for Large-Scale High-

Performance Computing

 2

Resilience in HPC
  HPC: 10k-100k nodes

—  Some component failure likely
—  System MTBF becomes shorter
—  processor/memory/IO failures

  Currently FT exists but…
—  not scalable
—  mostly reactive: process checkpoint/restart
—  restart entire job  inefficient if only one/few node(s) fail
—  overhead: re-execute some of prior work

System # CPUs MTBF

ASCI White 8,192 5/40 hrs

Google 1,5000 20 reboots/day

ASC BD/L 212,992 7 hrs

Jaguar 300,000 5/52 hrs

 3

Checkpoint/Restart Overhead

  Apps req’d to support C/R paradigm
— As we add cores cores:

– C/R overhead grows exponentially
– Inc. probability of failure

  Sandia study:

 4

Exascale Resilience

  1 billion cores
  ~ 1 million components
  MTBF/node 50 yrs

(52 hrs for Jaguar)

  Goal: MTBF ~ 1 day
  10x-100x > components
  Reliability ~ # components
  need 10x-100x reliability improvement

— Hardware: 10x (or less  smaller fabs)
—  Software: 10x (or more  focus of this talk)

  How can this be achieved?

System	
 a)ributes	
 2010	
 “2015”	
 “2018”	

System	
 peak	
 FLOPS	
 2	
 Peta	
 200	
 Peta	
 1	
 Exa	

Power	
 6	
 MW	
 ~15	
 MW	
 ~20	
 MW	

System	
 memory	
 0.3PB	
 5	
 PB	
 32-­‐64PB	

Node	
 performance	
 125	
 GF	
 0.5TF	
 or	
 7	
 TF	
 1	
 TF	
 or	
 10x	

Node	
 memory	
 BW	
 25GB/s	
 0.1TB/s	
 or	
 10x	
 0.4TB/s	
 or	
 10x	

Node	
 concurrency	
 12	
 O(100)	
 O(1k)	
 or	
 10x	

TotalNode	
 Interconn	
 BW	
 1.5	
 GB/s	
 20	
 GB/s	
 or	
 10x	
 	
 200GB/s	
 or	
 10x	

System	
 size	
 (nodes)	
 	
 	
 	
 	
 18,700	
 50,000	
 or	
 1/10x	
 	
 O(100,000)	
 or	
 1/10	
 x	

MTTI	
 	
 	
 	
 days	
 O(1day)	
 	
 O(1	
 day)	

 5

Silent Data Corruption

  Silent Data Corruption (SDC) faults  bit flips in
—  storage or CPU cores
—  Some not detectable / correctable
— Undetected  invalid results, app doesn’t stop

—  Severe problem for today’s large-scale simulations
  Memory bit flips correctable by ECC

—  Each ECC algorithm may have an upper limit of bit flips
— Uncorrectable for an instant reboot

Undetectable errors are expected to occur once or twice per day
on ORNL’s Jaguar Supercomputer [Geist, Monster in Closet]

 6

Contributions

  Design & impl. of novel mechanisms for FT in HPC
—  Propose efficient protocols for SDC protection
—  Investigate cost of different levels of redundancy

  Demonstrate capabilities of SDC protection at comm. layer
— Assess cost of redundancy
—  Fault injection  study failures on native cluster
—  SDC Propagation Study

 7

Design

  Create clones of MPI processes
—  Clones run same app, deterministically
—  Clones always send same msgs when no corruption

  Double modular redundancy (2x processes – one “shadow”)
—  Clones perform online (live) message verification

  Triple modular redundancy (3x processes – two “shadows”)
—  Clones perform verification and correction

No
Redundancy

Dual
Redundancy

Triple Redundancy

Live SDC
Detection

 No Yes Yes

Live SDC
Correction

 No No Yes (via voting)

 8

Message comparison: Point-to-point

  Instrument send op (MPI_Isend)
—  Each message now becomes one message per replica

  Instrument replicas’ receiver op (MPI_Irecv)
—  receive 1 message from each sender replica

(instead of just 1 message total)

  Receiver responsible for verification
—  general case  msg is correct: msgs from replicas match

receivers may verify/correct message
sender continues immediately after transmission

 9

Design Assumptions

  Transport layer reliable (TCP Ethernet / Infiniband)
— Already covered by checksums / correction codes on fabrics

  Not protected: app instructions / control-flow

  56 MPI functions supported, incl.
—  pt-2-pt, collectives, wildcards…

 10

Implementation of RedMPI

  Implemented MPI instrumentation lib: RedMPI
—  provides transparent protection to MPI processes

—  interposes MPI functionality via PMPI (MPI profiling layer)

—  extra processes created when MPI applications are launched
–  extra processes become replicas

— MPI job w/ 128 tasks now becomes
– 256 tasks for 2x redundancy
– 384 tasks for 3x redundancy

 11

Redundant MPI Ranks

  Each MPI task/process is a rank

  RedMPI transparently creates r replicas per normal MPI rank

  Virtual rank: as seen by app.
  Native rank: as seen by MPI
  Replica rank: 0…r-1 identifies

 the replica

mpirun –np <nativesize>

virtualRank == MPI_Comm_rank()

 12

SDC Method 1: All-to-all

  r replicas  each sender xmits full copy of msg to each receiver

  Requires:
—  r receive buffers
—  r 2 messages

  Simple, naïve approach
—  r-way comparison
—  for >2 buffers,

 compare & replace
 mismatch

 13

SDC Method 2: MsgPlusHash

  An optimization for the general case
— Most messages are not corrupt

  r messages + r small hash messages (instead of r 2)
 (rdata+rhash)

  More efficient,
 but requires
 corruption
 discovery
 protocol

 14

Dealing with Non-Determinism

  SomeMPI ops are non-deterministic
—  RedMPI’s control-flow between replicas must be identical

  MPI_Wtime returns current time
— Almost guaranteed to be divergent between replicas

  MPI_Iprobe checks if a message has already arrived
(without making an actual request)

  MPI_Probe – blocking equivalent of MPI_Iprobe

  Wildcard operations: MPI_ANY_TAG, MPI_ANY_SOURCE

 15

Extending coverage: Collectives

  MPI implementations employee collectives
—  broadcast, reduce, etc.

  MPI library determines underlying communication pattern
—  Pt-to-pt ops not visible to the app /profiling layer

  Collectives are blocking - impossible to overlap

  RedMPI implements own linear collectives
—  not necessarily performant for large jobs

— Aforementioned pt-to-pt protection is used

 16

  RedMPI exploits topology-aware algorithms
—  Redirects MPI’s low-level pt-to-pt comm back through

RedMPI’s communication layer

— Uses optimal comm. from MPI implementation

Interposing collectives

 17

Experimental Framework

  RedMPI run on ARC cluster at NCSU
—  108 compute nodes, 1700+ cores

– 32GB DRAM/node
– 2-way SMPs with AMD Opteron 6128 processors with 8
cores per socket
– 16 cores per node

— Open MPI 1.5
– Evaluated with RedMPI’s collectives module

—  40Gbit/sec Infiniband interconnect

—  Evaluated with up to 1536 processes per job

 18

Results: Benchmarks (Weak Scaling)

HPCCG – wildcard receives present

Size 1x [sec] 2x [sec] 3x [sec] 2x OV 3x OV

128 99.8 99.8 125.8 0.0% 26.0%
256 99.6 128.8 131.0 29.3% 31.5%
512 126.4 146.2 152.3 15.7% 20.5%

No Redundancy Dual Redundancy Triple Redundancy

0

200

400

600

Size: 128 Size: 256 Size: 512
0

50

100

150

Size: 128 Size: 256 Size: 512
0

50
100
150
200

Size: 128 Size: 256 Size: 512

LAMMPS – CHUTE.SCALED SWEEP3D HPCCG

• Increased job size  Comm/Comp ratio same

• Negligible overhead for weak scaled apps

 19

Results: Benchmarks (Strong Scaling)
No Redundancy Dual Redundancy Triple Redundancy

0
50

100
150
200
250

Size: 128 Size: 256 Size: 512
0

200
400
600
800

Size: 128 Size: 256 Size: 512
0

50
100
150
200
250

Size: 128 Size: 256 Size: 512

NPB-CG NPB-EP NPB-FT

0-20% overhead <1% overhead 0-5% overhead

• Increased job size  Comm/Comp ratio increases

• High communication gives greater impact

 20

Fault injector

  Sender side: 1/x messages randomly receive 1 random bit flip
—  Internal, per-process seeded RNG

bit is permanently flipped in sender’s
buffer  passed to receivers

Receivers detect corruption

Retains only correct msg

 21

Fault Injection Experiments (TMR)

  High injection rates  good stress test
  Experiment #1:

—  Injection rate: 1 bit flip / 5 million messages
—  9/10 runs  1 corrected message
—  1 run  6,242 bad messages

– Likely due to data reuse in corrupted send buffer
— All runs pass benchmark’s built-in verification

  Experiment #2: 1 bit flip / 2.5 million messages
—  avg. ~2.5 injections / run & 1000s bad msgs
—  8/10 runs passed verification
—  2/10 runs failed  2+ clones sent corrupt msgs simultaneously
—  RedMPI forced corrupted job to fail

 22

Propogation Study Classification

  Progressive

  Explosion

  Localized

 23

Fault Injection: SDC Propagation

  Experiment #3: Inject 1 bit flip
  Error correction intentionally turned off
  Tainted buffer reuse, propagates

 24

Conclusions

  Devised 2 SDC consistency methods
—  Efficient method: MsgPlusHash

overheads: 0%-30% for dual / triple redundancy
— Weak scaling apps  particularly good candidates

  Error propagation study:
—  w/o detection mechanisms, SDC spreads across boundaries

  SDC coverage effective: All injected faults detected
—  If uncorrectable  RedMPI forces a stop

  Cost of double & triple redundancy high
—  implementing redundancy is not  avoids reruns of C/R

For applications experiencing high SDC rates, redundancy
may be worth the cost to protect and ensure correct output

 25

Acknowledgements

  This work was supported in part by
—  NSF grants CNS-1058779, CNS-0958311, DOE grant DE-FG02-08ER25837
—  a subcontract from Sandia National Laboratory
—  by the Laboratory Directed Research and Development Program of Oak

Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the U.
S. Department of Energy under Contract No. De-AC05-00OR22725.

 26

Extra Slides

 27

Related Works

  Software redundancy:
—  PLR, DDMR (Multicore redundancy)

  MPI:
—  rMPI – K. Ferreira (Sandia Labs)

– Built using MPICH source, handles node failures
— MRMPI – C. Engelmann (Oak Ridge Labs)

– MPI Interpositioning layer only
– Provides redundancy
– RedMPI borrows its linear collectives
– Redundant IO

—  VolpexMPI
– Provides polled-communication to handle node failures
– Performant for smaller jobs, FT written in the comm. layer

 28

Collectives Module Performance

  Switching to RedMPI’s enhanced collectives module integrated in
to Open MPI provided key performance enhancements over the
fallback linear collectives

  Average overheads of select benchmarks using linear fallback:

  Average overheads using RedMPI’s enhanced collectives:

Dual Redundancy Triple Redundancy

NPB CG 44% 53%
NPB LU 10% 19%
SWEEP3D 18% 23%

Dual Redundancy Triple Redundancy

NPB CG 6% 11%
NPB LU 8% 10%
SWEEP3D 0% 1%

 29

Adding determinism: Wildcards

  MPI supports receiving messages from a previously unknown
sender –and/or – a message with any “tag”

— MPI_ANY_SOURCE MPI_ANY_TAG

  Only lowest ranked replica posts the wildcard receive
— Others await an “envelope” message from the leader
—  Problematic: All subsequent receive operations on the

followers must be buffered until all wildcards are resolved

– Slows performance: MPI’s Unexpected buffer

  RedMPI handles both types of wildcards together or
independently

 30

Adding determinism: Lowest replica rank
decides

  Idea: The replica with replica rank 0 is responsible for deciding
the result of MPI_Wtime

  All replica ranks >0 await a control message from 0

  Result: all replicas return the same time for each call to
MPI_Wtime

  Very useful for applications that use random number generators
—  Simply seed the RNG with MPI_Wtime

 31

End Slide

 32

SDC protection with redundancy

  Potential ideas;
—  Compare in-process memory during execution

– Global synchronization, high memory usage for verification
– Not feasible to correct errors while running

—  Frequent checkpoints & compare dumps
– Checkpoints are huge, slow. Still needs rollback

—  Compare MPI messages
– Minimized search space

– Correct communication is a necessary condition for output
correctness (but not sufficient)

 33

Introduction

  Faults are now the norm for High Performance Computing (HPC)
—  Past reports attribute causes to hardware and software

– I/O, memory, processor, power supply, switches
– OS, runtime, unscheduled maintenance

—  Recent work finds that
– Servers have a 2-5% failure rate
– DRAM errors are occurring in 2% of all DIMMs per year

  Even small installations have a low MTBF (mean time between
failure)

 34

  Sandia’s study made an important finding:
—  Redundancy in computing can significantly reduce this trend

—  Redundancy scales: Adding processes reduces the
probability of simultaneous failure

Redundancy in HPC

 35

Adding determinism: Probes

  Other MPI functions such as MPI_Iprobe may introduce non-
deterministic behaviors

—  The arrival of a message depends on the network
— While some replicas may have received a message, other may

not have

—  Similar to MPI_Wtime, have replica rank 0 decide

—  This is safe: The arrival delayed arrival of any message that
replica rank 0 has received will eventually arrive at other
replicas

 36

Benchmarks

  Weak scaling
—  Input size per process stays constant as we scale the number

of total processes per job

—  LAMMPS – Molecular Dynamics code “chute” & “chain” inputs
— ASCI Sweep3D – Neutron transport code
— HPCCG – Finite elements app from Sandia Mantevo miniapps

  Strong scaling
—  Input size is invariant as we scale the number of processes
— NAS Parallel Benchmarks: CG, EP, FT, LU, MG

  Total 9 benchmarks selected – at 128, 256, & 512 ranks per
benchmark for 27 experiments

 37

Elliott et al – Partial Redundancy w Ckpt

  Modeled Time to Completion with Redundancy
  B: ½ node count Jaguar A: 1/3 node count Jaguar

 38

All-to-all function interposition

  Each MPI request is converted in to r requests internal to
RedMPI

  App sees 1 request

  MPI_Test/MPI_Wait
 both wait for all
 messages to arrive
 before verification

 39

MsgPlusHash Discovery Protocol

  If one sender becomes corrupt, two receivers will be affected
—  Receiver with the same replica rank has an invalid message
—  Receiver with [(replica rank + 1) % SIZE] has invalid hash

