Detection and Correction of Silent Data
Corruption for Large-Scale High-
Performance Computin

David Fiala, Frank Mueller, Christian Engelmann,
Rolf Riesen, Kurt Ferreira, Ron Brightwell

NC STATE UNIVERSITY @ sanda

Laboratories

OAK
= RIDGE

National Laboratory

.||I

Resilience in HPC

e HPC: 10k-100k nodes

)) System # CPUs MTBF
— Some component failure likely
ASCI White | 8,192 5/40 hrs
— System MTBF becomes shorter
Google 1,5000 20 reboots/day

— processor/memory/IO failures
ASCBD/L |212,992 |7hrs

Jaguar 300,000 5/52 hrs

e Currently FT exists but...
— not scalable
— mostly reactive: process checkpoint/restart
— restart entire job > inefficient if only one/few node(s) fail

— overhead: re-execute some of prior work
Fault

work ‘ckpnt| work ‘ckpnt| work‘t;;;;;;gg_tg;g;;;;;j rework‘ work ‘ckpnt‘ work

ket——— =

Checkpoint/Restart Overhead

e Apps reqd to support C/R paradigm
— As we add cores cores:
-C/R overhead grows exponentially
-Inc. probability of failure

e Sandia study: 168-HOUR JOB, 5 YEAR MTBF

Nodes work checkpt recomp. restart

100 96% 1% 3% 0%
1,000 92% 1% 1% 0%

10.000 % ¢
100,000 @

Exascale Resilience

System attributes 2010 “2015” “2018”
e 1Dbill ion cores System peak FLOPS 2 Peta 200 Peta 1Exa
TR Power 6 MW ~15 MW ~20 MW
e ~ 1 million components
System memory 0.3PB 5PB 32-64PB

o MTB F/ nOde 50 yr's Node performance 125 GF 0.5TFor 7 TF 1TFor 10x

(5 2 h rs f or J aguqr') Node memory BW 25GB/s 0.1TB/s or 10x 0.4TB/s or 10x
Node concurrency 12 0(100) O(1k) or 10x
TotalNode Interconn BW 1.5 GB/s 20 GB/s or 10x 200GB/s or 10x
e Goal: MTBF ~ 1 day System size (nodes) 18,700 50,000 or 1/10x Mr 1/10 x
MTTI days 0O(1day) 0O(1 day)

e 10x-100x > components
e Reliability ~ # components

> need 10x-100x reliability improvement
— Hardware: 10x (or less = smaller fabs)
— Software: 10x (or more = focus of this talk)

e How can this be achieved?

Silent Data Corruption

e Silent Data Corruption (SDC) faults - bit flips in
— storage or CPU cores
— Some not detectable / correctable
— Undetected = invalid results, app doesn't stop

— Severe problem for today's large-scale simulations

e Memory bit flips correctable by ECC
— Each ECC algorithm may have an upper limit of bit flips
— Uncorrectable for an instant reboot

Undetectable errors are expected to occur once or twice per day
on ORNL’s Jaguar Supercomputer [Geist, Monster in Closet]

Contributions

e Design & impl. of novel mechanisms for FT in HPC
— Propose efficient protocols for SDC protection
— Investigate cost of different levels of redundancy

e Demonstrate capabilities of SDC protection at comm. layer
— Assess cost of redundancy
— Fault injection > study failures on native cluster
— SDC Propagation Study

Design

e Create clones of MPI processes
— Clones run same app, deterministically
— Clones always send same msgs when no corruption

e Double modular r'edundancy{(Zx processes - one "shadow")]
— Clones perform online (live) message verification

e Triple modular r'edundancy[(3x processes - two “shadows")]

— Clones perform verification and correction

No Dual Triple Redundancy
Redundancy Redundancy

Live SDC)4 No v VYes v~ VYes

Detection

Live SDC 9 No 9 No ¥~ Yes (via voting)

Correction

Message comparison: Point-to-point

e Instrument send op (MPI_Isend)
— Each message now becomes one message per replica

e Instrument replicas’ receiver op (MPI_Irecv)

— receive 1 message from each sender replica
(instead of just 1 message total)

e Receiver responsible for verification
— general case = msgq is correct: msgs from replicas match

receivers may verify/correct message
sender continues immediately after transmission

Design Assumptions

e Transport layer reliable (TCP Ethernet / Infiniband)
— Already covered by checksums / correction codes on fabrics

e Not protected: app instructions / control-flow

e 56 MPT functions supported, incl.
— pt-2-pt, collectives, wildcards...

Implementation of RedMPI

e Implemented MPTI instrumentation lib: RedMPI
— provides transparent protection to MPI processes

— interposes MPT functionality via PMPT (MPT profiling layer)

— extra processes created when MPI applications are launched
- extra processes become replicas

— MPT job w/ 128 tasks now becomes
-256 tasks for 2x redundancy
-384 tasks for 3x redundancy

10

Redundant MPI Ranks

e Each MPI task/process is a rank

e RedMPT transparently creates r replicas per normal MPT rank

e Virtual rank: as seen by app.

Virtual Rank: 0 Native Rank: 0 Replica Rank: 0

e Native rank: as seen by MPT

Virtual Rank: 0 Native Rank: 1 Replica Rank: 1
o Replica rank: O...r-1 idenTifies Virtual Rank: 0 Native Rank: 2 Replica Rank: 2

'I'he r‘eplica Virtual Rank: 1 Native Rank: 3 Replica Rank: 0
Virtual Rank: 1 Native Rank: 4 Replica Rank: 1
Virtual Rank: 1 Native Rank: 5 Replica Rank: 2

mplrun -np <nativesize> Virtual Rank: 2 Native Rank: 6 Replica Rank: 0
Virtual Rank: 2 Native Rank: 7 Replica Rank: 1

virtualRank == MPI Comm rank ()
o - Virtual Rank: 2 Native Rank: 8 Replica Rank: 2

1

SDC Method 1: All-to-all

e rreplicas 2 each sender xmits full copy of msg to each receiver

e Requires:
— r receive buffers
— r? messages

e Simple, ndive approach
— r-way comparison
— for >2 buffers,
compare & replace
mismatch

Sender

Replica: 0 Send Buffer

Sender

Replica: 1 Send Buffer

Sender
Replica: 2 Send Buffer

Recv Buffer O

Recv Buffer 1

Recv Buffer 2

Recv Buffer O

Recv Buffer 1

Recv Buffer 2

Recv Buffer O

Recv Buffer 1

Recv Buffer 2

Receiver
Replica: 0

Receiver
Replica: 1

Receiver
Replica: 2

12

SDC Method 2: MsgPlusHash

e An optimization for the general case
— Most messages are not corrupt

e r messages + r small hash messages (instead of r¢)

(rda‘ra"'r‘hash)

Recv Buffer O .
Receiver

Hash Buffer 2 Replica: 0

e More efficient, '
Send.er Send Buffer & Recv Buffer 1 Receiver
but requires sepliear L .
q Hash Buffer O Replica: 1
corruption
) Sender ’ X
dlSCOVQf‘Y Replica: 2 Send Buffer Recv Buffer 2 Receiver
Replica: 2
Pr'OTOCOI —— Full Message (Solid) Hash Buffer 1

Hash Only (Dashed)

13

Dealing with Non-Determinism

e SomeMPT ops are non-deterministic
— RedMPT's control-flow between replicas must be identical

e MPI_Wftime returns current time
— Almost guaranteed to be divergent between replicas

e MPI_Iprobe checks if a message has already arrived
(without making an actual request)

e MPI_Probe - blocking equivalent of MPI_Iprobe

e Wildcard operations: MPI_ANY_TAG, MPT_ANY_SOURCE

14

Extending coverage: Collectives

e MPI implementations employee collectives
— broadcast, reduce, etc.

e MPI library determines underlying communication pattern
— Pt-to-pt ops not visible to the app /profiling layer

e Collectives are blocking - impossible to overlap

e RedMPI implements own linear collectives
— not necessarily performant for large jobs

— Aforementioned pt-to-pt protection is used

15

Interposing collectives

e RedMPI exploits topology-aware algorithms

— Redirects MPI's low-level pt-to-pt comm back through
RedMPI's communication layer

— Uses optimal comm. from MPT implementation

Application l

Application

MPI l
Collective: Collective: | Collective:
¥ ' ¢ Hier ¢ —lTuned

Point-to-point communication

Point-to-point communication
Byte Transfer Layer (Ethernet)

RedMPI
II MPI l
06| Slei\/=H Collective: | Collective:| Collective:
JEG YR Lineard" 1 Hier ¢ 7 Tuned

Byte Transfer Layer (Ethernet)

16

Experimental Framework

e RedMPI run on ARC cluster at NCSU

— 108 compute nodes, 1700+ cores
-32GB DRAM/node

-2-way SMPs with AMD Opteron 6128 processors with 8
cores per socket

-16 cores per node

P
4
v/

— Open MPT 1.5
-Evaluated with RedMPI's collectives module

-\
‘\‘\\ NN

— 406bit/sec Infiniband interconnect

&4
Q;)) 7
C

&
o)
offi
gt
S
aib-

— Evaluated with up to 1536 processes per job

2g

17

Results: Benchmarks (Weak Scaling)

® No Redundancy ® Dual Redundancy © Triple Redundancy

LAMMPS - CHUTE.SCALED SWEEP3D HPCCG
150 600 200
100 - — 400 - — 150 -
100 - —
g <IN :ud
O I T T 1 O n T T 1 O n T T 1
Size: 128 Size: 256 Size: 512 Size: 128 Size: 2566 Size: b12 Size: 128 Size: 256 Size: 512
HPCCG -

Size 1x [sec] 2x [sec] 3x [sec] 2x OV 3x OV

128 99.8 99.8 125.8 0.0% 26.0%

256 99.6 128.8 1310 29.3% 31.5%

b12 126 .4 146.2 152.3 15.7% 20.5%

Increased job size & Comm/Comp ratio same

@igible overhead for weak scaled cD

Results: Benchmarks (Strong Scaling)

® No Redundancy ® Dual Redundancy © Triple Redundancy

NPB-CG NPB-EP NPB-FT
250 800 250
200 - 600 200 -
150 - 150 —
%0 | - B = -
O 7 T T O '__ T T 1 O n 1
Size: 128 Size: 256 Size: 512 Size: 128 Size: 256 Size: 512 Size: 128 Size: 256 Size: 512
0-20% overhead <1% overhead 0-5% overhead

Increased job size & Comm/Comp ratio increases

@ communication gives greater imD

Fault injector

e Sender side: 1/x messages randomly receive 1 random bit flip
— Internal, per-process seeded RNG

011010
0110 Receiver
Replica: 0
Receiver
Replica: 0
Send.er o11d Receiver Receiver
Replica: 1 Replica: 1 Replica: 1
Receiver
Replica: 2

Receivers detect corruption

Sender

Replica: 0 01101101

Replica; 2 01101101

Receiver
Replica: 2

bit is permanently flipped in sender’s

buffer = passed to receivers Retains only correct msg

20

Fault Injection Experiments (TMR)

e High injection rates - good stress test

e Experiment #1.
— Injection rate: 1 bit flip / 5 million messages
— 9/10 runs = 1 corrected message
— 1 run = 6,242 bad messages
-Likelv Aue +2 datg rcuse in corrunted send buffer
-— All runs pass benchmark's built-in vemflca’rlon
e Experiment #2: 1 bit thip / 2.5 million messages
— avg. ~2.5 injections / run & 1000s bad msgs
— 8/10 runs passed verification
— 2/10 rune failed & 24 rlane< sent corrupt msgs simultaneously
— RedMPT forced corrupted job to fail

21

Propogation Study Classification

35000 T T T T
| 60
. 30000
e Progressive 50
£ 25000 »
3 [
o 40 T
S 20000 S
[
°
§ 15000 30 9
a £
[
= 10000 20 @
5000 10
0 0
0 50 100 150 200 250
L Timestep
. 18000 60
e Explosion o)
2 14000 [50 o,
> | [
3 12000 0 3
> 10000 =
2 8000 [30 3
8 6000 20 £
= 4000 - e
2000 |- 10
0 HHHHH 0
0 10 20 30 40 50 60 70
1 Timestep
e Localized
€ 2
3 3
o o
g =
2]
2 S
2 8

0 5 10 15 20
Timestep

Fault Injection: SDC Propagation

e Experiment #3: Inject 1 bit flip
e Error correction intentionally turned of f

e Tainted buffer reuse, propagates

corrupt messages (left axis) + lu C 64 mrmpi 10000 0 - Timestamp 29 of 250
Indirectly Tainted Nodes (right axis)

Directly Tainted Nodes (right axis) mm T T T T T T
Injection Points and Count == 60 .
10000
lu C 64 mrmpi 10000 0 - Total Injections: 1 50 .
35000 . : : |
60 40 1000
30000 B .
€ 25000 o
s g 30 ¢ 18 100
O 20000 2
& <
@ 15000 2 20 | i
0 =
< 10000 - 10
5000 10 .
O ' 1 1 | 1 1 1
0 50 100 150 200 250 0 1
: Timestep 0 10 20 30 40 50 60

23

Conclusions

e Devised 2 SDC consistency methods

— Efficient method: MsgPlusHash
overheads: 0%-30% for dual / triple redundancy

— Weak scaling apps = particularly good candidates

e Error propagation study:
— w/o detection mechanisms, SDC spreads across boundaries

e SDC coverage effective: All injected faults detected
— If uncorrectable =& RedMPI forces a stop

e Cost of double & triple redundancy high
— implementing redundancy is not - avoids reruns of C/R

For applications experiencing high SDC rates, redundancy
may be worth the cost to protect and ensure correct output

24

Acknowledgements

e This work was supported in part by
— NSF grants CNS-1058779, CNS-0958311, DOE grant DE-FG02-08ER25837
— a subcontract from Sandia National Laboratory

— by the Laboratory Directed Research and Development Program of Oak
Ridge National Laboratory (ORNL), managed by UT-Battelle, LLC for the U.
S. Department of Energy under Contract No. De-AC05-000R22725.

25

Extra Slides

Related Works

e Software redundancy:
— PLR, DDMR (Multicore redundancy)

e MPI:

— rMPI - K. Ferreira (Sandia Labs)
-Built using MPICH source, handles node failures

— MRMPT - C. Engelmann (Oak Ridge Labs)
-MPT Interpositioning layer only
-Provides redundancy
-RedMPT borrows its linear collectives
-Redundant TO

— VolpexMPI
-Provides polled-communication to handle node failures
-Performant for smaller jobs, FT written in the comm. layer

27

Collectives Module Performance

e Switching fo RedMPI's enhanced collectives module integrated in
to Open MPI provided key performance enhancements over the
fallback linear collectives

e Average overheads of select benchmarks using linear fallback:
Dual Redundancy Triple Redundancy

NPB C6 44% 53%
NPB LU 10% 19%
SWEEP3D 18% 23%

e Average overheads using RedMPI's enhanced collectives:

Dual Redundancy Triple Redundancy

NPB C6 6% 11%
NPB LU 8% 10%
SWEEP3D 0% 1%

Adding determinism: Wildcards

e MPT supports receiving messages from a previously unknown
sender -and/or - amessage with any "tag"

— MPI_ANY_SOURCE MPI_ANY_TAG

e Only lowest ranked replica posts the wildcard receive
— Others await an "envelope” message from the leader

— Problematic: All subsequent receive operations on the
followers must be buffered until all wildcards are resolved

-Slows performance: MPI's Unexpected buffer

e RedMPI handles both types of wildcards together or
independently

29

Adding determinism: Lowest replica rank
decides

e Idea: The replica with replica rank O is responsible for deciding
the result of MPT_W+time

e All replica ranks >0 await a control message from O

e Result: all replicas return the same time for each call 1o
MPI_Wftime

e Very useful for applications that use random number generators
— Simply seed the RNG with MPI_W+time

30

End Slide

SDC protection with redundancy

e Potential ideas:;
— Compare in-process memory during execution
-Global synchronization, high memory usage for verification
-Not feasible to correct errors while running

— Frequent checkpoints & compare dumps
-Checkpoints are huge, slow. Still needs rollback

— Compare MPI messages
-Minimized search space

-Correct communication is a necessary condition for output
correctness (but not sufficient)

32

Introduction

e Faults are now the norm for High Performance Computing (HPC)
— Past reports attribute causes to hardware and software
-I/0, memory, processor, power supply, switches
-0S, runtime, unscheduled maintenance
— Recent work finds that
-Servers have a 2-5% failure rate
-DRAM errors are occurring in 2% of all DIMMs per year

e Even small installations have a low MTBF (mean time between

failure
) RELIABILITY OF HPC CLUSTERS

System # CPUs MTBF/I

ASCI Q 8,192 6.5 hrs
ASCI White 8,192 5/40 hrs (C01/°03)
PSC Lemieux 3,016 9.7 hrs

Google 15,000 20 reboots/day

ASC BG/L 212992 6.9 hrs (LLNL est.)

Redundancy in HPC

e Sandia’s study made an important finding:
— Redundancy in computing can significantly reduce this trend

T T . 0
10,000 720-hour job 100%
9,000 168-hour job - 90% @
8.000 24-hour job _'_’_ 80% ng
o 7,000 T 0% o
£ 6,000 > it 60% S
T 5,000 \\\ a7t 50% 2
(2] “r —'l -
S 4,000 ~_ _gzEEe-nT 40% ©
| 28=" C
“ 3,000 < 30% &
2,000 5227 20% N
’ --"':f' 0 =
1,000 P T 10% O
- ———= 0%
0{ 70} 90} 0’)0} 70} 6\0} 6‘0} 0} 6)0} 90} 7000

Level of Redundancy

— Redundancy scales: Adding processes reduces the
probability of simultaneous failure

Adding determinism: Probes

e Other MPT functions such as MPI_TIprobe may introduce non-
deterministic behaviors

— The arrival of a message depends on the network

— While some replicas may have received a message, other may
hot have

— Similar to MPI_Wtime, have replica rank O decide

— This is safe: The arrival delayed arrival of any message that
replica rank O has received will eventually arrive at other
replicas

35

Benchmarks

e Weak scaling

— Input size per process stays constant as we scale the number
of total processes per job

— LAMMPS - Molecular Dynamics code “chute” & "chain” inputs
— ASCT Sweep3D - Neutron transport code
— HPCCG - Finite elements app from Sandia Mantevo miniapps

e Strong scaling
— Input size is invariant as we scale the number of processes
— NAS Parallel Benchmarks: CG, EP, FT, LU, MG

e Total 9 benchmarks selected - at 128, 256, & 512 ranks per
benchmark for 27 experiments

36

Elliott ef al — Partial Redundancy w Ckpt

180 — S - B R

160 -

I\l
|
k

120

(e)] Qo
o o
I I

NN
o
I

Completion Time (T} y1q1)
o
o
|

Degree of Redundancy r

N
o
|

Ix ———-2x ~——- 3x
O | | | | | | | | | |
0 0.2 04 0.6 0.8 1 1.2 14 1.6 1.8 2
Number of Nodes (V) x 10°

e Modeled Time to Completion with Redundancy
e B: 3 node count Jaguar A: 1/3 node count Jaguar

All-to-all function interposition

e Each MPI request is converted in to r requests internal o
RedMPI

e App sees 1 request

. RedMPI Internals
MPI Application ;

Several
MPI_lsend(s)/
MPI_Irecv(s)

i Array of Reduced to a
MPI_lsend { MPI_Requests single

e MP I_T@ST/ MP I_W(]IT ! Cd)zsetrr?artfjrf? MPI_Request

' (Internal to visible to MPI
MPI_Irecv source replica
both wait for all

RedMPI) application

messages to arrive MPI Application ! RedMPI Internals
befor'e Ver'lf | CGTIOH MP| Test ' Match Test/wait each (Optional)
- ! ’ MPI_Request MPI_Request For receives:
to internal within internal Perform message
MPI_Wait ' requests array request array verification

38

MsgPlusHash Discovery Protocol

e If one sender becomes corrupt, fwo receivers will be affected
— Receiver with the same replica rank has an invalid message
— Receiver with [(replica rank + 1) % SIZE] has invalid hash

Sender Send Buffer &
Replica: O .

Sender gend Buffer -
Replica: 1

Sender sond Buffer &
Replica: 2

Full Message (Solid)
Hash Only (Dashed)

Recv Buffer 0

Hash Buffer 2

Recv Buffer 1

Hash Buffer O

Recv Buffer 2

) Hash Buffer 1

Receiver
Replica: O

Receiver
Replica: 1

Receiver
Replica: 2

A

(¢) Send probe to X-1

l (b) Listen for ACK from X-1

Receiver
Replica: X

T (a) Listen for probe from X+1

(d) Send ACK to X+1

39

