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Resilience in HPC 
  HPC: 10k-100k nodes 

—  Some component failure likely 
—  System MTBF becomes shorter 
—  processor/memory/IO failures 

  Currently FT exists but… 
—  not scalable 
—  mostly reactive: process checkpoint/restart 
—  restart entire job  inefficient if only one/few node(s) fail 
—  overhead: re-execute some of prior work 

System # CPUs MTBF 

ASCI White 8,192 5/40 hrs 

Google 1,5000 20 reboots/day 

ASC BD/L 212,992 7 hrs 

Jaguar 300,000 5/52 hrs 
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Checkpoint/Restart Overhead 

  Apps req’d to support C/R paradigm 
— As we add cores cores: 

– C/R overhead grows exponentially 
– Inc.  probability of failure 

  Sandia study: 
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Exascale Resilience 

  1 billion cores  
  ~ 1 million components 
  MTBF/node 50 yrs 

(52 hrs for Jaguar) 

  Goal: MTBF ~ 1 day 
  10x-100x > components 
  Reliability ~ # components 
  need 10x-100x reliability improvement 

— Hardware: 10x (or less  smaller fabs) 
—  Software: 10x (or more  focus of this talk) 

  How can this be achieved? 

System	
  a)ributes	
   2010	
   “2015”	
   “2018”	
  

System	
  peak	
  FLOPS	
   2	
  Peta	
   200	
  Peta	
   1	
  Exa	
  

Power	
   6	
  MW	
   ~15	
  MW	
   ~20	
  MW	
  

System	
  memory	
   0.3PB	
   5	
  PB	
   32-­‐64PB	
  

Node	
  performance	
   125	
  GF	
   0.5TF	
  or	
  7	
  TF	
   1	
  TF	
  or	
  10x	
  

Node	
  memory	
  BW	
   25GB/s	
   0.1TB/s	
  or	
  10x	
   0.4TB/s	
  or	
  10x	
  

Node	
  concurrency	
   12	
   O(100)	
   O(1k)	
  or	
  10x	
  

TotalNode	
  Interconn	
  BW	
   1.5	
  GB/s	
   20	
  GB/s	
  or	
  10x	
   	
  200GB/s	
  or	
  10x	
  

System	
  size	
  (nodes)	
  	
  	
  	
  	
   18,700	
   50,000	
  or	
  1/10x	
   	
  O(100,000)	
  or	
  1/10	
  x	
  

MTTI	
  	
  	
  	
   days	
   O(1day)	
   	
  O(1	
  day)	
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Silent Data Corruption 

  Silent Data Corruption (SDC) faults  bit flips in 
—  storage or CPU cores 
—  Some not detectable / correctable 
— Undetected  invalid results, app doesn’t stop 

—  Severe problem for today’s large-scale simulations 
  Memory bit flips correctable by ECC 

—  Each ECC algorithm may have an upper limit of bit flips 
— Uncorrectable for an instant reboot 

Undetectable errors are expected to occur once or twice per day 
on ORNL’s Jaguar Supercomputer [Geist, Monster in Closet] 
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Contributions 

  Design & impl. of novel mechanisms for FT in HPC 
—  Propose efficient protocols for SDC protection 
—  Investigate cost of different levels of redundancy 

  Demonstrate capabilities of SDC protection at comm. layer 
— Assess cost of redundancy 
—  Fault injection  study failures on native cluster 
—  SDC Propagation Study 
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Design 

  Create clones of MPI  processes 
—  Clones run same app, deterministically 
—  Clones always send same msgs when no corruption 

  Double modular redundancy (2x processes – one “shadow”) 
—  Clones perform online (live) message verification 

  Triple modular redundancy (3x processes – two “shadows”) 
—  Clones perform verification and correction 

No 
Redundancy 

Dual 
Redundancy 

Triple Redundancy 

Live SDC 
Detection 

      No      Yes       Yes 

Live SDC 
Correction 

      No      No       Yes (via voting) 



 8 

Message comparison: Point-to-point 

  Instrument send op (MPI_Isend) 
—  Each message now becomes one message per replica 

  Instrument replicas’ receiver op (MPI_Irecv) 
—  receive 1 message from each sender replica  

(instead of just 1 message total) 

  Receiver responsible for verification 
—  general case  msg is correct: msgs from replicas match 

receivers may verify/correct message 
sender continues immediately after transmission 
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Design Assumptions 

  Transport layer reliable (TCP Ethernet / Infiniband) 
— Already covered by checksums / correction codes on fabrics 

  Not protected: app instructions / control-flow 

  56 MPI functions supported, incl. 
—  pt-2-pt, collectives, wildcards… 
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Implementation of RedMPI 

  Implemented MPI instrumentation lib: RedMPI 
—  provides transparent protection to MPI processes 

—  interposes MPI functionality via PMPI (MPI profiling layer) 

—  extra processes created when MPI applications are launched 
–  extra processes become replicas 

— MPI job w/ 128 tasks now becomes  
– 256 tasks for 2x redundancy 
– 384 tasks for 3x redundancy 
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Redundant MPI Ranks 

  Each MPI task/process is a rank 

  RedMPI transparently creates r replicas per normal MPI rank 

  Virtual rank: as seen by app. 
  Native rank: as seen by MPI 
  Replica rank: 0…r-1 identifies 

   the replica 

mpirun –np <nativesize> 

virtualRank == MPI_Comm_rank() 
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SDC Method 1: All-to-all 

  r replicas  each sender xmits full copy of msg to each receiver 

  Requires: 
—  r  receive buffers 
—  r 2  messages 

  Simple, naïve approach 
—  r-way comparison 
—  for >2 buffers, 

 compare & replace 
 mismatch 
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SDC Method 2: MsgPlusHash 

  An optimization for the general case 
— Most messages are not corrupt 

  r  messages + r  small hash messages (instead of r 2 )  
 (rdata+rhash) 

  More efficient, 
 but requires 
 corruption 
 discovery 
 protocol 
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Dealing with Non-Determinism 

  SomeMPI ops are non-deterministic 
—  RedMPI’s control-flow between replicas must be identical 

  MPI_Wtime returns current time 
— Almost guaranteed to be divergent between replicas 

  MPI_Iprobe checks if a message has already arrived  
(without making an actual request) 

  MPI_Probe – blocking equivalent of MPI_Iprobe 

  Wildcard operations: MPI_ANY_TAG, MPI_ANY_SOURCE 
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Extending coverage: Collectives 

  MPI implementations employee collectives 
—  broadcast, reduce, etc. 

  MPI library determines underlying communication pattern 
—  Pt-to-pt  ops not visible to the app  /profiling layer 

  Collectives are blocking - impossible to overlap 

  RedMPI implements own linear collectives 
—  not necessarily performant for large jobs 

— Aforementioned pt-to-pt protection is used 
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  RedMPI exploits topology-aware algorithms 
—  Redirects MPI’s low-level pt-to-pt comm back through 

RedMPI’s communication layer 

— Uses optimal comm. from MPI implementation 

Interposing collectives 
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Experimental Framework 

  RedMPI run on ARC cluster at NCSU 
—  108 compute nodes, 1700+ cores 

– 32GB DRAM/node 
– 2-way SMPs with AMD Opteron 6128 processors with 8 
cores per socket 
– 16 cores per node 

— Open MPI 1.5 
– Evaluated with RedMPI’s collectives module 

—  40Gbit/sec Infiniband interconnect 

—  Evaluated with up to 1536 processes per job 
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Results: Benchmarks (Weak Scaling) 

HPCCG – wildcard receives present 

Size 1x [sec] 2x [sec] 3x [sec] 2x OV 3x OV 

128 99.8 99.8 125.8 0.0% 26.0% 
256 99.6 128.8 131.0 29.3% 31.5% 
512 126.4 146.2 152.3 15.7% 20.5% 

No Redundancy Dual Redundancy Triple Redundancy 

0 

200 

400 

600 

Size: 128 Size: 256 Size: 512 
0 

50 

100 

150 

Size: 128 Size: 256 Size: 512 
0 

50 
100 
150 
200 

Size: 128 Size: 256 Size: 512 

LAMMPS – CHUTE.SCALED SWEEP3D HPCCG 

• Increased job size  Comm/Comp  ratio same 

• Negligible overhead for weak scaled apps 
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Results: Benchmarks (Strong Scaling) 
No Redundancy Dual Redundancy Triple Redundancy 

0 
50 

100 
150 
200 
250 

Size: 128 Size: 256 Size: 512 
0 

200 
400 
600 
800 

Size: 128 Size: 256 Size: 512 
0 

50 
100 
150 
200 
250 

Size: 128 Size: 256 Size: 512 

NPB-CG NPB-EP NPB-FT 

0-20% overhead <1% overhead 0-5% overhead 

• Increased job size  Comm/Comp  ratio increases 

• High communication gives greater impact 
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Fault injector 

  Sender side:  1/x messages randomly receive 1 random bit flip 
—  Internal, per-process seeded RNG 

bit is permanently flipped in sender’s 
buffer   passed to receivers 

Receivers  detect corruption  

Retains only correct msg 
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Fault Injection Experiments (TMR) 

  High injection rates  good stress test 
  Experiment #1: 

—  Injection rate: 1 bit flip / 5 million messages 
—  9/10 runs  1 corrected message 
—  1 run  6,242 bad messages 

– Likely due to data reuse in corrupted send buffer 
— All runs pass benchmark’s built-in verification 

  Experiment #2: 1 bit flip / 2.5 million messages 
—  avg. ~2.5 injections / run & 1000s bad msgs 
—  8/10 runs passed verification 
—  2/10 runs failed  2+ clones sent corrupt msgs simultaneously 
—  RedMPI forced corrupted job to fail 
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Propogation Study Classification 

  Progressive 

  Explosion 

  Localized 
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Fault Injection: SDC Propagation 

  Experiment #3: Inject 1 bit flip  
  Error correction intentionally turned off 
  Tainted buffer reuse, propagates 
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Conclusions 

  Devised 2 SDC consistency methods 
—  Efficient method: MsgPlusHash 

overheads: 0%-30% for dual / triple redundancy 
— Weak scaling apps  particularly good candidates 

  Error propagation study:  
—  w/o detection mechanisms, SDC spreads across boundaries 

  SDC coverage effective: All injected faults detected 
—  If uncorrectable  RedMPI forces a stop 

  Cost of double & triple redundancy high 
—  implementing redundancy is not  avoids reruns of C/R 

For applications experiencing high SDC rates, redundancy 
may be worth the cost to protect and ensure correct output 
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Extra Slides 
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Related Works 

  Software redundancy: 
—  PLR, DDMR (Multicore redundancy) 

  MPI: 
—  rMPI – K. Ferreira (Sandia Labs) 

– Built using MPICH source, handles node failures 
— MRMPI – C. Engelmann (Oak Ridge Labs) 

– MPI Interpositioning layer only 
– Provides redundancy 
– RedMPI borrows its linear collectives 
– Redundant IO 

—  VolpexMPI 
– Provides polled-communication to handle node failures 
– Performant for smaller jobs, FT written in the comm. layer 



 28 

Collectives Module Performance 

  Switching to RedMPI’s enhanced collectives module integrated in 
to Open MPI provided key performance enhancements over the 
fallback linear collectives 

  Average overheads of select benchmarks using linear fallback: 

  Average overheads using RedMPI’s enhanced collectives: 

Dual Redundancy Triple Redundancy 

NPB CG 44% 53% 
NPB LU 10% 19% 
SWEEP3D 18% 23% 

Dual Redundancy Triple Redundancy 

NPB CG 6% 11% 
NPB LU 8% 10% 
SWEEP3D 0% 1% 
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Adding determinism: Wildcards 

  MPI supports receiving messages from a previously unknown 
sender    –and/or    – a message with any “tag” 

— MPI_ANY_SOURCE   MPI_ANY_TAG 

  Only lowest ranked replica posts the wildcard receive 
— Others await an “envelope” message from the leader 
—  Problematic: All subsequent receive operations on the 

followers must be buffered until all wildcards are resolved 

– Slows performance: MPI’s Unexpected buffer 

  RedMPI handles both types of wildcards together or 
independently 
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Adding determinism: Lowest replica rank 
decides 

  Idea: The replica with replica rank 0 is responsible for deciding 
the result of MPI_Wtime 

  All replica ranks >0 await a control message from 0 

  Result: all replicas  return the same time for each call to 
MPI_Wtime 

  Very useful for applications that use random number generators 
—  Simply seed the RNG with MPI_Wtime 
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End Slide 
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SDC protection with redundancy 

  Potential ideas; 
—  Compare in-process memory during execution 

– Global synchronization,  high memory usage for verification 
– Not feasible to correct errors while running 

—  Frequent checkpoints & compare dumps 
– Checkpoints are huge, slow. Still needs rollback 

—  Compare MPI messages 
– Minimized search space 

– Correct communication is a necessary condition for output 
correctness   (but not sufficient) 
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Introduction 

  Faults are now the norm for High Performance Computing (HPC) 
—  Past reports attribute causes to hardware and software 

– I/O, memory, processor, power supply, switches 
– OS, runtime, unscheduled maintenance 

—  Recent work finds that 
– Servers have a 2-5% failure rate 
– DRAM errors are occurring in 2% of all DIMMs per year 

  Even small installations have a low MTBF (mean time between 
failure) 
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  Sandia’s study made an important finding: 
—  Redundancy in computing can significantly reduce this trend 

—  Redundancy scales: Adding processes reduces the 
probability of simultaneous failure 

Redundancy in HPC 



 35 

Adding determinism: Probes 

  Other MPI functions such as MPI_Iprobe may introduce non-
deterministic behaviors 

—  The arrival of a message depends on the network 
— While some replicas may have received a message, other may 

not have 

—  Similar to MPI_Wtime, have replica rank 0 decide 

—  This is safe: The arrival delayed arrival of any message that 
replica rank 0 has received will eventually arrive at other 
replicas 
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Benchmarks 

  Weak scaling 
—  Input size per process stays constant as we scale the number 

of total processes per job 

—  LAMMPS – Molecular Dynamics code   “chute” & “chain” inputs 
— ASCI Sweep3D – Neutron transport code 
— HPCCG – Finite elements app from Sandia Mantevo miniapps 

  Strong scaling 
—  Input size is invariant as we scale the number of processes 
— NAS Parallel Benchmarks: CG, EP, FT, LU, MG 

  Total 9 benchmarks selected – at 128, 256, & 512 ranks per 
benchmark for 27 experiments 
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Elliott et al – Partial Redundancy w Ckpt 

  Modeled Time to Completion with Redundancy 
  B: ½ node count Jaguar   A: 1/3 node count Jaguar  
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All-to-all function interposition 

  Each MPI request is converted in to r  requests internal to 
RedMPI 

  App sees 1 request 

  MPI_Test/MPI_Wait 
 both wait for all 
 messages to arrive 
 before verification 
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MsgPlusHash Discovery Protocol 

  If one sender becomes corrupt, two receivers will be affected 
—  Receiver with the same replica rank has an invalid message 
—  Receiver with [(replica rank + 1) % SIZE] has invalid hash 


