
David Fiala, Frank Mueller, Kurt Ferreira,
Christian Engelmann

North Carolina State University
Sandia National Laboratories

Oak Ridge National Laboratory

Surviving OS Failures
in Persistent Memory

 2

Why Things Can Go Wrong

!  Trend in Micro-Architecture:
— Miniaturization increased chip density (fabs)
—  Increases sensitivity to bit upsets / faults
— On a PC: ~50 years MTTF " not a problem

– MMTF: mean time to failure

!  Data Center / Cloud / High-performance computing:
—  Increasing number of storage / nodes / cores " more faults
—  Power management more critical

– Lower voltages to reduce power (but also Turbo boost)
– Higher likelihood of single event upsets (bit flip)

! MTTF decreases as cores, power, and density grows

Istanbul Opteron die
(Source AMD)

 3

Case Study: Resilience in HPC

!  HPC: 10k-100k nodes
—  Some component failure likely
—  System MTBF becomes shorter
—  Processor/memory/IO failures

!  Currently FT exists, but…
— Not scalable
— Mostly reactive: process checkpoint/restart
—  Restart entire job " inefficient if only one/few node(s) fail

System # CPUs MTBF

ASCI White 8,192 5/40 hrs

Google 1,5000 20 reboots/day

ASC BD/L 212,992 7 hrs

Jaguar 300,000 5/52 hrs

 4

Silent Data Corruption

!  Silent Data Corruption (SDC) " bit flips in
—  Storage or CPU cores
—  Some not detectable / correctable
— Undetected " invalid results, app doesn’t stop
—  Severe problem for today’s large-scale simulations

!  Memory bit flips correctable by ECC
—  Each ECC algorithm may have an upper limit of bit flips
— Uncorrectable for an instant reboot " or becomes SDC

Undetectable errors are expected to occur once or twice per day on
ORNL’s Jaguar Supercomputer [Geist, Monster in Closet]

 5

SDC Protection

!  Hardware: ECC (error correcting/checking codes)
—  SECDED: Single error correct, double error detect

– 3+ errors undefined!!
—  8% of DIMMs experience uncorrectable errors [Schroeder]
—  Triple bit error frequency not entirely understood

!  Software:
— Algorithm-based FT (i.e., matrix protection [Huang])
— Duplicated instructions, registers, memory, etc. [Rebaudeng]

[Oh][Reis]
—  Control flow checking [Oh]
—  Background scrubbing [Shirvani]

 6

Generalized Protection is Desirable

!  Redundancy: message passing applications only
—  Requires 2x or 3x resources, but effectively 100% coverage

 redundancy becomes baseline
 comparison for 100% detection and/or correction.

!  Algorithmic Fault Tolerance " non-trivial!
— Often difficult to develop
—  Even so, not comprehensive (i.e., some memory unprotected)

!  Our motivation: provide SDC protection to any HPC class of
application and operating system
" allow developers to focus on efficient algorithms, not
resilience

 7

Application Runtime Dependencies

!  Compiled application:
—  Its own code
—  Its own data
—  Libraries (static or shared)

!  In HPC: MPI library is unique " handles interface between
application and OS’s network interface to provide communication
with peers

!  Operating System (OS)
– OS abstracts all devices, memory management, etc.

— Why protect OS? " Any failure causes “panic”, loss of all
unsaved computation. OS remains the last unprotected piece

 The state-of-the-art OS crash recovery is to simply reboot.

 8

Mini-Ckpts: Contributions

!  Objective: Let app survive if OS fails
!  Design of Mini-Ckpts:

—  Identify minimal process state @ failure
—  Identify common instrumentation points in OS to save state
— Warm reboot OS on failure, preserve app and continue exec.

!  Implementation:
—  Process protection from kernel failures at syscalls
— App lives in persistent memory

!  Evaluation:
—  cost of mini-ckpts and warm-rebooting a failed OS
—  application survival for injected kernel faults

– with OpenMP (multithreaded applications)
– with MPI (message passing applications)

 9

Mini-ckpts Overview

!  Requires specialized kernel

!  Protection
—  Checkpoint (serialize) structures describing a process
— Migrate memory to persistent region (survives warm reboot)
—  continue execution…

– During interruption (syscall, interrupt IRQ, interrupt NMI)
record state of thread(s) registers

No

Yes

OS
Crash?

Continue

Shutdown
all cores

Warm
Reboot

Rebuild App.
Restart Threads

 10

Supported Features

 11

Persistent Memory File System

!  Anonymous memory stored in page
cache # lost on reboot

!  Memory mapped I/O may buffer in
kernel

!  PRAMFS (Persistent RAM FS)
— Direct map & execute in place
—  Saved across reboots

!  A PRAMFS snapshot at any point in time is similar to a core dump

 12

Processor State Saving During Crash
!  3 Interruption types require instrumentation in kernel

—  Syscall
–  Failure must return EINTR; preserve most registers

—  Interrupt (IRQ)
— Non-maskable Interrupt (NMI)

– IRQ and NMI both preserve all registers
!  During kernel “panic” " Registers previously saved

—  To panic, 1 thread must be in kernel. Any entry point to
kernel (above) has already preserved an application.

— Other threads may be outside kernel " force NMI, save
regs

!  Panic shutdown protocol: NMI signals " failing core transfers
control to core 0

—  Emergency shutdown routines, unpack new kernel, fresh page
tables, transfer control to new kernel (like a bootloader)

 13

Application Restoration

!  Freshly loaded kernel boots
—  Re-mounts preserved PRAMFS
—  Loads new copy of kernel back in memory
—  Loads services
—  Creates new skeleton process " restore app after crash

– Memory map cleared out
– Old memory from PRAMFS mapped in identically
– Same number of threads recreated
– Kernel schedules threads to run, restores register state

— Any system call in progress at failure now returns EINTR
(Error Interrupted)
– Restart syscall, and/or rebuild network connections if lost

 14

Case Study HPC: MPI Support

!  librlmpi:
—  ReLiable: handles lost messages (network or kernel buffer)
—  libeRaL: tolerates network failures at any point

!  Depends on poll, readv, writev syscalls: Detects mini-ckpt restart
—  Reestablishes lost TCP connections
—  Recovery protocol rolls back in-progress lost messages

!  Supports: C, Fortran, MPI peer-to-peer, MPI collectives

 15

Experimental Framework

!  4x AMD Opteron 6128
!  1x Intel Xeon E5-2650
!  QEMU/KVM Virtual machine environment on AMD and Intel
!  Up to 4GB of memory reserved for PRAMFS

!  OpenMP: NAS Parallel Benchmarks v3.3 with 8 threads

!  MPI: 4 Processes (interconnected with Gigabit Ethernet between
AMD nodes)

 16

Panic Injection

!  Kernel module support to trigger faults
—  Provides ioctl syscall taking an argument specifying injection
— Dereference null pointer
— Overwrite task_struct members:

– fs , signal handlers, parent, files
— Directly call panic

1.  Automatic:
—  Shared library providing API to call ioctl
— MPI: passes rank and iteration number. Environment variables

predetermine failure points for specific ranks & times.
2.  Manual:

—  Trigger application calls ioctl from command line

 17

Warm Reboot

!  Time from kernel panic until
—  (a) kernel is loaded, and
—  (b) software stack initialized from PRAMFS

– Single largest kernel boot cost: network initialization
!  Warm Reboot Total " time at which app may be restored/resumes
!  Virtual machines (VMs) do not require initializing physical h/w

—  i.e., network cards

 18

Recovery Testing

!  CPU register stress test
— Modify all registers in deterministic pattern; verify pattern
—  Repeat 100x injections

!  FPU stress test
—  Perform floating point add/subtract/multiply/divide
—  Ensure results stay within 10-5 of expected value.
—  Repeat 100x injections

!  Simple terminal applications
—  vi*, python, sh shell *terminal must be reset manually

!  Regardless of injection type, if it resulted in a kernel panic, then
all applications continued execution successfully.

 19

OpenMP Experiments (No Pinning)

AMD bare metal 26%

AMD VM 1% (runtime 40%)

Intel bare metal 25%

Intel VM 3.4% (11%)

 20

Source of Mini-ckpts Overheads

!  Mini-ckpts affects applications in two ways:
—  PRAMFS Mappings
—  Instrumented System Calls (investigated second)

!  PRAMFS maintains constant physical memory location
— NUMA architectures experience different latencies by

memory controller
!  Experiment 1) Microbenchmark: Write 6GB of data to 64MB

PRAMFS mmap

!  Experiment 2) Run benchmarks with PRAMFS mappings only (no
mini-ckpts enabled)

 21

OpenMP Experiments (Optimal Pinning)

VM
hypervisor
rescheduled
cores
regardless
of pinning

AMD 26% " 7% Intel 25% " 6%

 22

Extreme Thread Scaling with Syscalls

!  Scale NPB CG from 8 threads to 512 threads
—  32x overcommit of threads to physical cores
—  Predominately calls futex syscall during execution

—  Inject panics at highest thread count
– Recovered successfully

!  How does mini-ckpts performance scale?

 23

Extreme Scaling ! Linear Slowdown

!  Mini-ckpts scales linearly wrt. # syscalls & threads
!  Supports 512+ threads

Red left axis:
Baseline Runtime

Green left axis:
Mini-ckpts Runtime

Right axis:
Percent Overhead

Red left axis:
Syscalls per thread

Green right axis:
Cumulative syscalls

 24

Case Study HPC: MPI Performance

!  Failure free evaluation of
— Open MPI vs. librlmpi

– Only to demonstrate our prototype is comparable
—  librlmpi vs. librlmpi+mini-ckpts enabled

!  NPB MPI Benchmarks
—  CG and IS: (vs. librlmpi standalone)

– 5% overhead
—  LU:

– MPI_Allreduce
– 25% overhead

—  EP:
– 0% overhead

 25

Case Study HPC: MPI Failure Injection

!  Injections target same node (1,1,1,1), or alternating (1,2,3,4)
— X-axis: number of injections, y-axis: additional runtime

!  Linear slowdown relative to injection rate
—  Injection target does not affect outcome

 26

Additional Kernel Failure Cases

!  Memory Allocation Failure
—  Exhausted kernel memory

– Mini-ckpts ensures emergency shutdown does no allocations
— Hard hangs

– NMI Watchdog " Hangs while interrupts are off
—  Soft hangs

– Watchdog timers are being reset, but no progress is made
– Depends on sanity checking (mini-ckpts cannot protect
from these unless the kernel subsystem detects a problem)

 27

Related Work

!  MVS
— OS requires recovery routines for services (50% success)

!  NOOKS
— Wrappers around drivers – isolation for the core of OS

!  Rio File Cache
— Write-back file cache in memory (survives a warm reboot)

!  Otherworld
—  Specialized crash kernel " warm reboot and “parse” old

kernel data structures to recover applications.
– Corruption in kernel data yields technique ineffective

 28

Conclusion

!  Today’s OS’s not designed with fault tolerance in mind
— Mini-ckpts provides resilience to appliations if kernel fails
—  Rejuvenates kernel, apps survives in persistent memory (PRAMFS)

!  Ckpt/restart is expensive for HPC apps
—  mitigating an OS crash allows forward progress w/o restart

!  Mini-ckpts identifies key OS changes & structures req’d for resilience
!  Warm reboots complete in ~6 seconds, overheads between 5%-8%

—  Both threaded and MPI applications recoverable
—  Scalable in # threads

1st ever transp. OS fault tolerance w/o loss of state

Apps could outlive OS ! even if OS instable

 29

Acknowledgement

Supp. in part by DOE/NFS grants, Humboldt fellowship
DOE DE-FG02-05ER25664, DE-FG02-08ER25837, DE-AC05-00OR22725, NFS 0237570, 0410203, 0429653, 1058779, 0958311, 0937908

DOE DE-AC04-94AL85000 (SNL) , DOE DE-AC05-00OR22725 (ORNL) , LBL-6871849 (LBL)

sponsored by the U.S. Department of Energy's Office of Advanced
Scientific Computing Research

! NCSU: David Fiala, Frank Mueller

! ORNL: Christian Engelmann

! SNL: Kurt Ferreira

