Surviving OS Failures
in Persistent Memory

David Fiala, Frank Mueller, Kurt Ferreira,
Christian Engelmann
North Carolina State University
Sandia National Laboratories
Oak Ridge National Laboratory

o JOAK
NC STATE UNIVERSITY @ Notioe
Department of Computer Science I_aborat()"es

RIDGE

National Laboratory

Why Things Can Go Wrong

e Trend in Micro-Architecture: |

— Miniaturization increased chip density (fabs) |

— Increases sensitivity to bit upsets / faults

— On a PC: ~50 years MTTF = not a problem
-MMTF: mean time to failure

(Source AMD)
o Data Center / Cloud / High-performance computing:

— Increasing number of storage / nodes / cores > more faults
— Power management more critical
-Lower voltages to reduce power (but also Turbo boost)
-Higher likelihood of single event upsets (bit flip)

> MTTF decreases as cores, power, and density grows

Case Study: Resilience in HPC

e HPC: 10k-100k nodes
— Some component failure likely

— System MTBF becomes shorter
— Processor/memory/IO failures

e Currently FT exists, but...

— Not scalable
— Mostly reactive: process checkpoint/restart
— Restart entire job > inefficient if only one/few node(s) fail

System # CPUs MTBF

ASCI White | 8,192 5/40 hrs
Google 1,5000 20 reboots/day
ASC BD/L 212,992 | 7 hrs

Jaguar 300,000 5/52 hrs

work

ckpnt

work

ckpnt

rework

work |ckpnt

work

k=

0

Silent Data Corruption

e Silent Data Corruption (SDC) = bit flips in
— Storage or CPU cores
— Some not detectable / correctable
— Undetected - invalid results, app doesn't stop
— Severe problem for today's large-scale simulations

e Memory bit flips correctable by ECC
— Each ECC algorithm may have an upper limit of bit flips
— Uncorrectable for an instant reboot > or becomes SDC

Undetectable errors are expected to occur once or twice per day on
ORNL’s Jaguar Supercomputer [Geist, Monster in Closet]

SDC Protection

e Hardware: ECC (error correcting/checking codes)
— SECDED: Single error correct, double error detect
-3+ errors undefined!!
— 8% of DIMMs experience uncorrectable errors [Schroeder]
— Triple bit error frequency not entirely understood

e Software:
— Algorithm-based FT (i.e., matrix protection [Huang])

— Duplicated instructions, registers, memory, etc. [Rebaudeng]
[Oh][Reis]

— Control flow checking [Oh]

— Background scrubbing [Shirvani]

Generalized Protection is Desirable

e Redundancy: message passing applications only
— Requires 2x or 3x resources, but effectively 100% coverage

1 redundancy becomes baseline
comparison for 100% detection and/or correction.

e Algorithmic Fault Tolerance - non-triviall
— Often difficult to develop
— Even so, not comprehensive (i.e., some memory unprotected)

e Our motivation: provide SDC protection to any HPC class of
application and operating system

- allow developers to focus on efficient algorithms, not
resilience

Application Runtime Dependencies

e Compiled application:
— Its own code
— Its own data
— Libraries (static or shared)

e In HPC: MPI library is unique - handles interface between
application and OS's network interface to provide communication
with peers

e Operating System (OS)

-OS abstracts all devices, memory management, etc.

— Why protect OS? - Any failure causes "panic”, loss of all
unsaved computation. OS remains the last unprotected piece

The state-of-the-art OS crash recovery is to simply reboot.

Mini-Ckpts: Contributions

e Objective: Let app survive if OS fails
e Design of Mini-Ckpts:
— Identify minimal process state @ failure

— Identify common instrumentation points in OS to save state
— Warm reboot OS on failure, preserve app and continue exec.

e Implementation:
— Process protection from kernel failures at syscalls
— App lives in persistent memory

e Evaluation:
— cost of mini-ckpts and warm-rebooting a failed OS
— application survival for injected kernel faults
-with OpenMP (multithreaded applications)
-with MPI (message passing applications)

Mini-ckpts Overview

e Requires specialized kernel

e Protection
— Checkpoint (serialize) structures describing a process
— Migrate memory to persistent region (survives warm reboot)
— continue execution...

-During interruption (syscall, interrupt IRQ, interrupt NMTI)
record state of thread(s) registers l

(G (e No

|

g o [[

Supported Features

Feature Status
Single Threaded Processes yes
Multi-Threaded Processes yes
Mutex/Conditions Variables yes
Process 1D yes
Process UID & GID yes
Regular Files yes; but file seek position requires new checkpoint
Unflushed File Buffers no; Rio File Cache could provide this
Signal Handlers & Masks yes
Pending Signals no; any pending are not tracked
Stdin/Out/Err yes
mmap’d Files yes
mprotect yes
FPU State yes
CPU Registers yes
Network Connections no; applications must support restarting connections
Process Credentials yes
Block Devices partial; /dev/null, /dev/zero allowed
Special FD’s no; (no signalfd, no eventfd)

Persistent Memory File System

Anonymous memory stored in page

cache € lost on reboot

Memory mapped I/O may buffer in

kernel

PRAMFS (Persistent RAM FS)
— Direct map & execute in place
— Saved across reboots

00400000—-00401000
00600000 —-00601000
7T7Tbeef00000 —-77beef01000
77642000 =7ffff764c000
THf764c000 =7ffff784c000
THEE784c000 =7ffff784d000
TEHEE784d000 —7ffff784e000
TEEf784e000 —=7ff££79d0000

r—xp
rw—p
r—xp
r—xp
—P
r—p
rw—p

r—xp

/hello
/hello

[anonymous]*

/libdl.so
/libdl.so
/libdl.so
/libdl.so
/libe .so

—

S N

=]

Memory Type

Executable

BSS Section(s)

Data Section(s)

Heap

Stack

ves (plus each thread’s)

Shared Libraries

yes™*

Shared Library BSS & Data

yes

vdso & vsyscall

yes, provided by kernel

anonymous mmap’d regions

yes

file-based mmap’d regions

yes*

*Original mapping is migrated to PRAMF'S.

00400000—-00401000
00600000—-00601000
77beef00000 -=77beef01000
Tiff764a000 =7ffff764c000
THff764c000 =7ffff784c000
THf7T84c000 =Tffff784d000
THE784d000 =Tffff784e000
THff7T84e000 =Tfff£f79d0000

r—xs /pramfs/temp001
rw—s /pramfs/temp002
r—xs /pramfs/temp003
r—xs /pramfs/temp004

s /pramfs/temp005

r—s /pramfs/temp006
rw—s /pramfs/temp007
r—xs /pramfs/temp008

e A PRAMFS snapshot at any point in time is similar to a core dump

Processor State Saving During Crash

e 3 Interruption types require instrumentation in kernel
— Syscall
- Failure must return EINTR; preserve most registers
— Interrupt (IRQ)
— Non-maskable Interrupt (NMI)
-IRQ and NMTI both preserve all registers

e During kernel "panic” - Registers previously saved

— To panic, 1 thread must be in kernel. Any entry point to
kernel (above) has already preserved an application.

— Other threads may be outside kernel > force NMI, save
regs

e Panic shutdown protocol: NMTI signals = failing core transfers
control to core O

— Emergency shutdown routines, unpack new kernel, fresh page
tables, transfer control to new kernel (like a bootloader)

12

Application Restoration

e Freshly loaded kernel boots

— Re-mounts preserved PRAMFS

— Loads new copy of kernel back in memory

— Loads services

— Creates new skeleton process - restore app after crash
-Memory map cleared out
-Old memory from PRAMFS mapped in identically
-Same number of threads recreated
-Kernel schedules threads to run, restores register state

— Any system call in progress at failure now returns EINTR
(Error Interrupted)

-Restart syscall, and/or rebuild network connections if lost

13

Case Study HPC: MPI Support

e librimpi:
— Reliable: handles lost messages (hetwork or kernel buffer)
— libeRaL: tolerates network failures at any point

e Depends on poll, readv, writev syscalls: Detects mini-ckpt restart
— Reestablishes lost TCP connections
— Recovery protocol rolls back in-progress lost messages

e Supports: C, Fortran, MPI peer-to-peer, MPI collectives

14

Experimental Framework

e 4x AMD Opteron 6128

e 1x Intel Xeon E5-2650

e QEMU/KVM Virtual machine environment on AMD and Intel
e Up to 4GB of memory reserved for PRAMFS

e OpenMP: NAS Parallel Benchmarks v3.3 with 8 threads

Benchmark | BT | CG | EP | FT | IS | LU | MG | SP | UA
Class A B BB |C| A B Al A

e MPI: 4 Processes (interconnected with Gigabit Ethernet between
AMD nodes)

Benchmark | CG | EP | IS | LU
Class C C | C

Panic Injection

e Kernel module support to trigger faults
— Provides ioct/ syscall taking an argument specifying injection
— Dereference null pointer
— Overwrite task_struct members:
-fs, signal handlers, parent, files
— Directly call panic

1. Automatic:
— Shared library providing API to call ioctl
— MPI: passes rank and iteration number. Environment variables
predetermine failure points for specific ranks & times.
2. Manual:
— Trigger application calls ioctl from command line

16

Warm Reboot

e Time from kernel panic until
— (a) kernel is loaded, and
— (b) software stack initialized from PRAMFS

-Single largest kernel boot cost: network initialization

e Warm Reboot Total > time at which app may be restored/resumes

e Virtual machines (VMs) do not require initializing physical h/w
— i.e., network cards

/N

(measured BIOS Kernel Network Driver & Kernel Software Cold Total Warm
in seconds) Boot Time |/ Boot Totak NFS-Root Mounting Misc Stack Total w/ BIOS / Reboot Total
AMD Bare Metal 37.4 53 1.5 4.8 0.7 50.3 6.0
Intel Bare Metal 50.8 6.7 3.0 3.7 0.7 73.0 7.4
AMD VM — 0.8 <02 < 0.6 3.0 —_ 3.8 }
Intel VM —_ 0.7 < 0.2 < 0.5 1.3 — \ 1.9 /

/

17

Recovery Testing

e CPU register stress test
— Modify all registers in deterministic pattern; verify pattern
— Repeat 100x injections

e FPU stress test
— Perform floating point add/subtract/multiply/divide
— Ensure results stay within 10> of expected value.
— Repeat 100x injections

e Simple terminal applications
— vi*, python, sh shell *terminal must be reset manually

e Regardless of injection type, if it resulted in a kernel panic, then
all applications continued execution successfully.

18

OpenMP Experiments (No Pinning)

AM[)8 balrel me’lrall 26%

A

Runtime in Seconds

M

Runtime in Seconds

0
Baséline'm
70 Mini-ckpts Enabled 7
60 |- -
50 -
40 -
30 -
20 | .
10 =
o K5 o' %! 15 b}
BT CG EP FT IS LU MG SP UA
(a) Bars Metal AMD Optcron 6128
o
DSOVM 1 ° (r'UﬂTlme 40 /o)
70 L Basellne m

Mini-ckpts Enabled 7

BT CG EP FT

IS LU MG SP UA

(c) KVM Hypervisor on AMD Opteron 6128 Host

Runtime in Seconds

Runtime in Seconds

,Intel bare metal 25%

70
60
50
40
30

80
70
60
50

I I I I
Baseline ==2zzzm
Mini-ckpts Enabled 7]

BT CG EP FT IS LU MG SP UA

(b) Bare Metal Intel E5-2650

Intel VM 3.4% (11%)

Basellne m
Mini-ckpts Enabled 7]

BT CG EP FT

IS LU MG SP UA

(d) KVM Hypervisor on Intel E5-2650 Host

19

Source of Mini-ckpts Overheads

e Mini-ckpts affects applications in two ways:
— PRAMFS Mappings
— Instrumented System Calls (investigated second)

e PRAMFS maintains constant physical memory location
— NUMA architectures experience different latencies by
memory controller

e Experiment 1) Microbenchma}.\\/\/m’re 6GB of data to 64MB

PRAMFS mmap Cores \a-7 [811 | 12-16
AMD 1 S E i
AMD VM 32-34
Tntel 090/ | 12
Intel VM [__/ 095

All Times in Seconds

e Experiment 2) Run benchmarks with PRAMFS mappings only (no
mini-ckpts enabled)

OpenMP Experiments (Optimal Pinning)

VM
hypervisor
rescheduled
cores
regardless
of pinning

Runtime in Seconds

Runtime in Seconds

80
70
60
50
40
30
20
10

0

80
70

1 I 1 1 I 1 T I
Baseline ===zzzm
Mini-ckpts Enabled “

- AMD 26% =2 7% -
N

N

BT CG EP FT IS LU MG SP UA

(a) Bare Metal AMD Opteron 6128

l I ' l ' IBaséline ' ml
Mini-ckpts Enabled ‘

BT CG EP FT IS LU MG SP UA

(c) KVM Hypervisor on AMD Opteron 6128 Host

Runtime in Seconds

Runtime in Seconds

80
70
60

50 |

40
30
20
10

0

80
70
60
50
40
30
20
10

T T T T T LV T
Baseline =22

Intel 25% =2 6%

NN K ——
BT CG EP FT IS LU MG SP UA

(b) Bare Metal Intel E5-2650

Mini-ckpts Enabled 7]

I I I 1 I I LI I I
Baseline =522

Mini-ckpts Enabled 7

IS LU MG SP UA

(d) KVM Hypervisor on Intel E5-2650 Host
21

Extreme Thread Scaling with Syscalls

e Scale NPB CG from 8 threads to 512 threads
— 32x overcommit of threads to physical cores
— Predominately calls futex syscall during execution

10000

1000

c
A=
S 100
g
— Inject panics at highest thread count = 10
-Recovered successfully o 1
£
= (8 Threads)
#SYSCALL 12129
11RQ 304

e How does mini-ckpts performance scale? =nwi 17

22

Extreme Scaling = Linear Slowdown

50

45 mBaseline Vanilla Kernel A Mini-ckpts Enabled ¢ Percent Runtime Overhead

40
£35 X
52 2
o '
€25 | A &
[
g20 ® A & [
= A A 1 X
215 a0 =g S = [

[
10 o> o
5 | o°
0 64 128 192 256 320 384
Number of Threads (Base System Has 8 Threads)

6000000
w 5000000 EE B B |] | u u | |
©
(9]
g 4000000 .
[
I .
& 3000000
s *
£ 2000000 .
£
= *
< 1000000 - -

.
0 ’20 o * < Total Systems Calls Made mTotal System Calls / Per Thread
0 64 128 192 256 320 384

Number of Threads (Base System Has 8 Threads)

448

448

120%

% 100%

51

512

80%

60%

40%

20%

0%

2

12000

10000

8000

6000

4000

2000

e Mini-ckpts scales linearly wrt. # syscalls & threads

e Supports 512+ threads

Runtime Overhead of Mini-ckpts

System Calls/Thread

Red left axis:
Baseline Runtime

Green left axis:
Mini-ckpts Runtime

Right axis:
Percent Overhead

Red left axis:
Syscalls per thread

Green right axis:
Cumulative syscalls

Case Study HPC: MPI Performance

e Failure free evaluation of
— Open MPT vs. librimpi
-Only to demonstrate our prototype is comparable
— librlmpi vs. librimpi+mini-ckpts enabled

e NPB MPI Benchmarks
— C6and IS: (vs. librimpi standalone)
-5% overhead

_ LU 200 -] l C;;I)_%nIMP!]m 7
.) librimpi S
-MPI_Allreduce 5 150 ! /(wit?;?g;f;fgj L
Q :E: "N 7‘
-25% overhead p % §?4
q-) 100 | EEE &/; -
-0% overhead 3 S0f §E§ -
2 NN
0 N\ B

,_
c
m
o
n

Case Study HPC: MPI Failure Injection

e Injections target same node (1,1,1,1), or alternating (1,2,3,4)
— X-axis: humber of injections, y-axis: additional runtime

50 T T U
v
©
& 40|
v
(V]
("]
k=
Q 30 =
£
1=
>
< 20F : Same Target CG +—+— |
e Alternating Target CG
S Same Target IS %
T 10 Alternating Target IS +-£3--1]
< Same Target LU
0 '_f_/f_/,. 1 . Alternating Tafget W --e--
0 1 2 3 4
Number of Kernel Panic Injections
Number of Kernel Panics 1 2 3 4
Avg. Time Increase 12.53 11.89 10.76 10.14

All Times in Seconds
e Linear slowdown relative to injection rate
— Injection target does not affect outcome

Additional Kernel Failure Cases

e Memory Allocation Failure
— Exhausted kernel memory
-Mini-ckpts ensures emergency shutdown does no allocations
— Hard hangs
-NMI Watchdog - Hangs while interrupts are of f
— Soft hangs
-Watchdog timers are being reset, but no progress is made

-Depends on sanity checking (mini-ckpts cannot protect
from these unless the kernel subsystem detects a problem)

26

Related Work

e MVS
— OS requires recovery routines for services (50% success)

e NOOKS
— Wrappers around drivers - isolation for the core of OS

e Rio File Cache
— Worite-back file cache in memory (survives a warm reboot)

e Otherworld

— Specialized crash kernel > warm reboot and "parse” old
kernel data structures to recover applications.

-Corruption in kernel data yields technique ineffective

27

Conclusion

e Today's OS's not designed with fault tolerance in mind
— Mini-ckpts provides resilience to appliations if kernel fails
— Rejuvenates kernel, apps survives in persistent memory (PRAMFS)

e Ckpt/restart is expensive for HPC apps
— mitigating an OS crash allows forward progress w/o restart

e Mini-ckpts identifies key OS changes & structures req'd for resilience

e Warm reboots complete in ~6 seconds, overheads between 5%-8%
— Both threaded and MPI applications recoverable
— Scalable in # threads

1s* ever transp. OS fault tolerance w/o loss of state

Apps could outlive OS > even if OS instable

28

Acknowledgement

Supp. in part by DOE/NFS grants, Humboldt fellowship

DOE DE-FGO02-05ER25664, DE-FG02-08ER25837, DE-AC05-000R22725, NFS 0237570, 0410203, 0429653, 1058779, 0958311, 0937908
DOE DE-AC04-94AL85000 (SNL) , DOE DE-AC05-000R22725 (ORNL) , LBL-6871849 (LBL)

sponsored by the U.S. Department of Energy's Office of Advanced
Scientific Computing Research

eNCSU: David Fiala, Frank Mueller
eORNL: Christian Engelmann
eSNL: Kurt Ferreira

OAK
RIDGE

National Laboratory

NC STATE UNIVERSITY Nt
Department of Computer Science laboratorles

