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Why Things Can Go Wrong 

!  Trend in Micro-Architecture: 
— Miniaturization increased chip density (fabs) 
—  Increases sensitivity to bit upsets / faults 
— On a PC: ~50 years MTTF " not a problem 

– MMTF: mean time to failure 

!  Data Center / Cloud / High-performance computing: 
—  Increasing number of storage / nodes / cores " more faults 
—  Power management more critical 

– Lower voltages to reduce power (but also Turbo boost) 
– Higher likelihood of single event upsets (bit flip) 

! MTTF decreases as cores, power, and density grows 

Istanbul Opteron die 
(Source AMD) 
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Case Study: Resilience in HPC 

!  HPC: 10k-100k nodes 
—  Some component failure likely 
—  System MTBF becomes shorter 
—  Processor/memory/IO failures 

!  Currently FT exists, but… 
— Not scalable 
— Mostly reactive: process checkpoint/restart 
—  Restart entire job " inefficient if only one/few node(s) fail 

System # CPUs MTBF 

ASCI White 8,192 5/40 hrs 

Google 1,5000 20 reboots/day 

ASC BD/L 212,992 7 hrs 

Jaguar 300,000 5/52 hrs 
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Silent Data Corruption 

!  Silent Data Corruption (SDC) " bit flips in 
—  Storage or CPU cores 
—  Some not detectable / correctable 
— Undetected " invalid results, app doesn’t stop 
—  Severe problem for today’s large-scale simulations 

!  Memory bit flips correctable by ECC 
—  Each ECC algorithm may have an upper limit of bit flips 
— Uncorrectable for an instant reboot " or becomes SDC 

Undetectable errors are expected to occur once or twice per day on 
ORNL’s Jaguar Supercomputer [Geist, Monster in Closet] 
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SDC Protection 

!  Hardware: ECC (error correcting/checking codes) 
—  SECDED: Single error correct, double error detect 

– 3+ errors undefined!! 
—  8% of DIMMs experience uncorrectable errors [Schroeder] 
—  Triple bit error frequency not entirely understood 

!  Software: 
— Algorithm-based FT (i.e., matrix protection [Huang]) 
— Duplicated instructions, registers, memory, etc. [Rebaudeng]

[Oh][Reis] 
—  Control flow checking [Oh] 
—  Background scrubbing [Shirvani] 
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Generalized Protection is Desirable 

!  Redundancy: message passing applications only 
—  Requires 2x or 3x resources, but effectively 100% coverage 

  redundancy becomes baseline    
 comparison for 100% detection and/or correction. 

!  Algorithmic Fault Tolerance " non-trivial! 
— Often difficult to develop 
—  Even so, not comprehensive (i.e., some memory unprotected) 

!  Our motivation: provide SDC protection to any HPC class of 
application and operating system 
" allow developers to focus on efficient algorithms, not 
resilience 
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Application Runtime Dependencies 

!  Compiled application: 
—  Its own code 
—  Its own data 
—  Libraries (static or shared) 

!  In HPC: MPI library is unique " handles interface between 
application and OS’s network interface to provide communication 
with peers 

!  Operating System (OS) 
– OS abstracts all devices, memory management, etc. 

— Why protect OS? " Any failure causes “panic”, loss of all 
unsaved computation. OS remains the last unprotected piece 

   The state-of-the-art OS crash recovery is to simply reboot. 
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Mini-Ckpts: Contributions 

!  Objective: Let app survive if OS fails 
!  Design of Mini-Ckpts: 

—  Identify minimal process state @ failure 
—  Identify common instrumentation points in OS to save state 
— Warm reboot OS on failure, preserve app and continue exec. 

!  Implementation: 
—  Process protection from kernel failures at syscalls 
— App lives in persistent memory 

!  Evaluation:  
—  cost of mini-ckpts and warm-rebooting a failed OS 
—  application survival for injected kernel faults 

– with OpenMP (multithreaded applications) 
– with MPI (message passing applications) 
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Mini-ckpts Overview 

!  Requires specialized kernel 

!  Protection 
—  Checkpoint (serialize) structures describing a process 
— Migrate memory to persistent region (survives warm reboot) 
—  continue execution… 

– During interruption (syscall, interrupt IRQ, interrupt NMI) 
record state of thread(s) registers 

No 

Yes 

OS 
Crash? 

Continue 

Shutdown 
all cores 

Warm 
Reboot 

Rebuild App. 
Restart Threads 
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Supported Features 
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Persistent Memory File System 

!  Anonymous memory stored in page 
cache # lost on reboot 

!  Memory mapped I/O may buffer in 
kernel 

!  PRAMFS (Persistent RAM FS) 
— Direct map & execute in place 
—  Saved across reboots 

!  A PRAMFS snapshot at any point in time is similar to a core dump 
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Processor State Saving During Crash 
!  3 Interruption types require instrumentation in kernel 

—  Syscall 
–  Failure must return EINTR; preserve most registers 

—  Interrupt (IRQ) 
— Non-maskable Interrupt (NMI) 

– IRQ and NMI both preserve all registers 
!  During kernel “panic” " Registers previously saved 

—  To panic, 1 thread must be in kernel. Any entry point to 
kernel (above) has already preserved an application. 

— Other threads may be outside kernel " force NMI, save 
regs 

!  Panic shutdown protocol: NMI signals " failing core transfers 
control to core 0 

—  Emergency shutdown routines, unpack new kernel, fresh page 
tables, transfer control to new kernel (like a bootloader) 
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Application Restoration 

!  Freshly loaded kernel boots 
—  Re-mounts preserved PRAMFS 
—  Loads new copy of kernel back in memory 
—  Loads services 
—  Creates new skeleton process " restore app after crash 

– Memory map cleared out 
– Old memory from PRAMFS mapped in identically 
– Same number of threads recreated 
– Kernel schedules threads to run, restores register state 

— Any system call in progress at failure now returns EINTR 
(Error Interrupted) 
– Restart syscall, and/or rebuild network connections if lost 
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Case Study HPC: MPI Support 

!  librlmpi: 
—  ReLiable: handles lost messages (network or kernel buffer) 
—  libeRaL: tolerates network failures at any point 

!  Depends on poll, readv, writev syscalls: Detects mini-ckpt restart 
—  Reestablishes lost TCP connections 
—  Recovery protocol rolls back in-progress lost messages 

!  Supports: C, Fortran, MPI peer-to-peer, MPI collectives 
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Experimental Framework 

!  4x AMD Opteron 6128 
!  1x Intel Xeon E5-2650 
!  QEMU/KVM Virtual machine environment on AMD and Intel 
!  Up to 4GB of memory reserved for PRAMFS 

!  OpenMP: NAS Parallel Benchmarks v3.3 with 8 threads 

!  MPI: 4 Processes (interconnected with Gigabit Ethernet between 
AMD nodes) 
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Panic Injection 

!  Kernel module support to trigger faults 
—  Provides ioctl syscall taking an argument specifying injection 
— Dereference null pointer 
— Overwrite task_struct members: 

– fs , signal handlers, parent, files 
— Directly call panic 

1.  Automatic: 
—  Shared library providing API to call ioctl 
— MPI: passes rank and iteration number. Environment variables 

predetermine failure points for specific ranks & times. 
2.  Manual: 

—  Trigger application calls ioctl from command line 
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Warm Reboot 

!  Time from kernel panic until 
—  (a) kernel is loaded, and 
—  (b) software stack initialized from PRAMFS 

– Single largest kernel boot cost: network initialization 
!  Warm Reboot Total " time at which app may be restored/resumes 
!  Virtual machines (VMs) do not require initializing physical h/w 

—  i.e., network cards 
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Recovery Testing 

!  CPU register stress test 
— Modify all registers in deterministic pattern; verify pattern 
—  Repeat 100x injections 

!  FPU stress test 
—  Perform floating point add/subtract/multiply/divide 
—  Ensure results stay within 10-5 of expected value. 
—  Repeat 100x injections 

!  Simple terminal applications 
—  vi*, python, sh shell    *terminal must be reset manually 

!  Regardless of injection type, if it resulted in a kernel panic, then 
all applications continued execution successfully. 
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OpenMP Experiments (No Pinning) 

AMD bare metal 26% 

AMD VM 1% (runtime 40%) 

Intel bare metal 25% 

Intel VM 3.4% (11%) 
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Source of Mini-ckpts Overheads 

!  Mini-ckpts affects applications in two ways: 
—  PRAMFS Mappings 
—  Instrumented System Calls (investigated second) 

!  PRAMFS maintains constant physical memory location 
— NUMA architectures experience different latencies by 

memory controller 
!  Experiment 1) Microbenchmark: Write 6GB of data to 64MB 

PRAMFS mmap 

!  Experiment 2) Run benchmarks with PRAMFS mappings only (no 
mini-ckpts enabled) 
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OpenMP Experiments (Optimal Pinning) 

VM 
hypervisor 
rescheduled 
cores 
regardless 
of pinning 

AMD 26% " 7% Intel 25% " 6% 
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Extreme Thread Scaling with Syscalls 

!  Scale NPB CG from 8 threads to 512 threads 
—  32x overcommit of threads to physical cores 
—  Predominately calls futex syscall during execution 

—  Inject panics at highest thread count 
– Recovered successfully 

!  How does mini-ckpts performance scale? 
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Extreme Scaling ! Linear Slowdown 

!  Mini-ckpts scales linearly wrt. # syscalls & threads 
!  Supports 512+ threads 

Red left axis: 
Baseline Runtime 

Green left axis: 
Mini-ckpts Runtime 

Right axis: 
Percent Overhead 

Red left axis: 
Syscalls per thread 

Green right axis: 
Cumulative syscalls 
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Case Study HPC: MPI Performance 

!  Failure free evaluation of 
— Open MPI vs. librlmpi 

– Only to demonstrate our prototype is comparable 
—  librlmpi vs. librlmpi+mini-ckpts enabled 

!  NPB MPI Benchmarks 
—  CG and IS:      (vs. librlmpi standalone) 

– 5% overhead 
—  LU: 

– MPI_Allreduce 
– 25% overhead 

—  EP: 
– 0% overhead 
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Case Study HPC: MPI Failure Injection 

!  Injections target same node (1,1,1,1), or alternating (1,2,3,4) 
— X-axis: number of injections, y-axis: additional runtime 

!  Linear slowdown relative to injection rate 
—  Injection target does not affect outcome 
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Additional Kernel Failure Cases 

!  Memory Allocation Failure 
—  Exhausted kernel memory 

– Mini-ckpts ensures emergency shutdown does no allocations 
— Hard hangs 

– NMI Watchdog " Hangs while interrupts are off 
—  Soft hangs 

– Watchdog timers are being reset, but no progress is made 
– Depends on sanity checking (mini-ckpts cannot protect 
from these unless the kernel subsystem detects a problem) 
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Related Work 

!  MVS 
— OS requires recovery routines for services (50% success) 

!  NOOKS 
— Wrappers around drivers – isolation for the core of OS 

!  Rio File Cache 
— Write-back file cache in memory (survives a warm reboot) 

!  Otherworld 
—  Specialized crash kernel " warm reboot and “parse” old 

kernel data structures to recover applications. 
– Corruption in kernel data yields technique ineffective 
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Conclusion 

!  Today’s OS’s not designed with fault tolerance in mind 
— Mini-ckpts provides resilience to appliations if kernel fails 
—  Rejuvenates kernel, apps survives in persistent memory (PRAMFS) 

!  Ckpt/restart is expensive for HPC apps 
—   mitigating an OS crash allows forward progress w/o restart 

!  Mini-ckpts identifies key OS changes & structures req’d for resilience 
!  Warm reboots complete in ~6 seconds, overheads between 5%-8% 

—  Both threaded and MPI applications recoverable 
—  Scalable in # threads 

1st ever transp. OS fault tolerance w/o loss of state 

Apps could outlive OS ! even if OS instable 



 29 

Acknowledgement 

Supp. in part by DOE/NFS grants, Humboldt fellowship 
DOE DE-FG02-05ER25664, DE-FG02-08ER25837, DE-AC05-00OR22725, NFS 0237570, 0410203, 0429653, 1058779, 0958311, 0937908  

DOE DE-AC04-94AL85000 (SNL) , DOE DE-AC05-00OR22725 (ORNL) , LBL-6871849 (LBL)  

sponsored by the U.S. Department of Energy's Office of Advanced 
Scientific Computing Research 

! NCSU: David Fiala, Frank Mueller 

! ORNL: Christian Engelmann 

! SNL: Kurt Ferreira 


