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Abstract

Today’s High Performance Computing (HPC) systems contain thousand of
nodes which work together to provide performance in the order of petaflops.
The performance of these systems depends on various components like proces-
sors, memory, and interconnect. Among all, interconnect plays a major role
as it glues together all the hardware components in an HPC system. A slow
interconnect can impact a scientific application running on multiple processes
severely as they rely on fast network messages to communicate and synchro-
nize frequently. Unfortunately, the HPC community lacks a study that explores
different interconnect errors, congestion events and applications characteristics
on a large-scale HPC system. In our previous work, we process and analyze
interconnect data of the Titan supercomputer to develop a thorough under-
standing of interconnects faults, errors, and congestion events. In this work, we
first show how congestion events can impact application performance. We then
investigate application characteristics interaction with interconnect errors and
network congestion to predict applications encountering congestion with more
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than 90% accuracy.
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1. Introduction

High Performance Computing (HPC) systems consist of tens of thousand
nodes that have multiple Central Processing Unit (CPU) and Graphical Pro-
cessing Unit (GPU), shared or distributed memory, and back-end storage. All
these components utilize an advance interconnect network to communicate with
each other for running scientific parallel applications at petaflops speed. An ad-
vance interconnect supports minimum system latency and maximum throughput
and scalability.

A scientific parallel application runs on multiple processors on different nodes
that communicate continuously to share data with each other. A slow speed
interconnect can significantly increase an application execution time as it can
cause a processor to sit idle and wait for data from other processors. A low
resilient interconnect can cause an application to crash due to interconnect
errors. Therefore, interconnect can play a major role in application performance.
Performance of an interconnect depends on network topology, routing methods,
flow-control algorithm, resilience mechanism, congestion reaction mechanism,
and communication pattern of applications.

Unfortunately, the HPC community lacks a study that details different in-
terconnect errors, congestion events, and applications characteristics on a large-
scale HPC system. In previous work [1], we study the interconnect resilience,
congestion events and application characteristics on Titan, one of the fastest
open-science supercomputer in the world. We used daemon services on Titan to
collect useful interconnect resilience, congestion events and applications char-
acteristics data for over a year. We process and examine this data to develop
a thorough understanding of interconnect faults, errors, congestion events, and
application characteristics. In this work, we further explore the application char-
acteristics and their interaction with interconnect errors and network congestion
events. Our analysis addresses the following concerns:

• How network congestion impacts application performance?

• What are the major interconnect faults and errors?

• What are the key characteristics of different interconnect errors and net-
work congestion events?

• What is the interaction between interconnect errors, network congestion,
and application characteristics?

• What are the application characteristics for congestion causing and
bandwidth-heavy applications?
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• Can network and application characteristics predict the applications en-
countering network congestion events?

This study exploits various daemons, such as netwatch and Network Link
Recovery Daemon (nlrd) that use Memory Mode Register (MMR), for collecting
and logging interconnect related events. However, analysis of this data presents
several challenges. First, the collected data is highly noisy and hence, needs to
be filtered discreetly for accurate analysis. The noise is in form of redundant,
missing, and disorder values. Second, the log patterns differ for the same type of
events across different logging mechanisms as different daemons have different
logging formats. This requires the development of unified format types for
different events. Finally, as data is distributed across several nodes and storage
locations, it requires performing multi-source analytics to ensure consistency
and accuracy. The following are the highlights of our analysis:

• Application Performance: We compare multiple executions of appli-
cations with and without network congestion. Network congestion results
in high application execution time.

• Interconnect Errors: The magnitude of interconnect errors is very high.
These errors are distributed unevenly across different types of links within
and across cabinets.

• Spatial Correlation: Some interconnect errors have a strong spatial
correlation among them. On the other hand, some errors show counter-
intuitive patterns.

• Congestion Events: Network congestion events are highly frequent and
bursty. These events are not homogeneously distributed across blades.

• Application Characteristics: We analyze application characteristics of
the top five bandwidth applications. Same application runs show different
processes per node count, CPUs count, execution time and user id.

• Throttle Prediction: We extract network and application events which
has a relation to network congestion or throttling. Using these events, we
predict whether an application will encounter network congestion events
with more than 90% accuracy.

In the following sections, we provide our previous and new analysis of the
interconnect, network congestion and application data to explore the above
and previous insights in detail. Given the lack of field data and analysis on
interconnects, we believe our study addresses an important topic and would be
useful for current and future HPC systems.

2. Background

This study primarily studies data from the Titan supercomputer; however,
it’s insights are applicable to other supercomputers as well. Titan is a 27.1
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Figure 1: ASIC block diagram

Figure 2: Practical folded torus-implementation of 3D-torus network topology.

petaflop supercomputer consisting of 18,688 compute nodes, each with a 16-
Core AMD Opteron CPU and an NVIDIA Tesla K20x GPU. It has a total
system memory of 710 TB. The supercomputer is divided into 200 cabinets in
25 rows and 8 columns. Each cabinet consists of three cages and each cage
has eight blades. Each blade consists of two application specific integrated
circuits (ASICs). Each ASIC has two network interface controllers (NICs) and
a 48-port router. Each NIC within an ASIC is attached to one node using a
HyperTransportTM 3 link [2].

The block diagram of an ASIC is shown in Fig. 1. The Netlink block con-
nects the two NICs to the Router. The Netlink distributes the traffic and han-
dles changes in the bandwidth between the two NICs and the Router [2]. The
supervisor block connects ASIC to an embedded control processor(L0) which
is connected to the System Management Workstation(SMW) through the Cray
Hardware Supervisory System(HSS) network.

Figure 3: Link connections in X, Y, and Z direction.
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2.1. Titan Network Architecture

Titan follows a 3D torus topology using the Cray Gemini Interconnect in
which each ASIC is connected to six of its nearest neighbors in X+, X-, Y+, Y-,
Z+, and Z- dimensions. The X, Y, and Z dimensions track the rows, columns,
and blades, respectively [3]. Nodes that are close physically may not be close
topologically as Cray follows a “folded torus” architecture to minimize the max-
imum cable length (as shown in Fig. 2). In the X and Y directions, every other
cabinet is directly connected together with “loopback” cables. In the Z dimen-
sion, the uppermost chassis is connected to the lowermost chassis (Fig. 3).

In a 3D torus design, each ASIC is connected to the network using 10 torus
connections, two each in X+, X-, Z+, Z-, and one each in Y+ and Y- [2].
Each torus connection has four links where each link is composed of 3 lanes.
Therefore, each connection consists of 12 lanes, providing 24 lanes in the X and
Z dimensions, and 12 lanes in the Y dimension. A lane provides bi-directional
communication between two ports.

2.2. Interconnect Resilience

The Gemini Interconnect is tolerant to various types of failures and errors [3].
It supports 16-bit packet Cycle Redundancy Checks (CDCs) to protect packets
at each ASIC it passes through before reaching the final ASIC, packets on
the receiving ASIC and packets transitioning from the router to the NIC. Link
control Blocks (LCBs) on ASICs implement a sliding window protocol to provide
reliable delivery of packets. Memory on each ASIC is protected using Error-
Correcting Codes (ECCs). ASICs can withstand lane failures as long as there is
at least one functional lane in a link. Whenever a lane fails, it is deactivated and
the traffic is balanced over the remaining lanes. In such situations, the network
operates in a degraded mode. The interconnect tries to reinstate the failed lane
to restore the full bandwidth within a user-specified time limit.

The lanemask value determines the current state of the lanes in a link. It is
a three-bit number corresponding to the three lanes in a link. A lanemask value
of 7 means that all lanes are working. A lanemask value of 3, 5 and 6 means that
one lane has failed. A lanemask value of 1, 2 or 4 means that two lanes have
failed. A lanemask value of 0 means that all lanes have failed. When all three
lanes in a link fail and the lanes are not recovered in the configured number
of attempts, the link is marked as inactive and the link failover or warm swap
protocol (Replace or remove faulty components without turning the system off)
is triggered [4]. When these protocols are executed, the Cray nlrd on the SMW
quiesces the network traffic, computes new routing tables, and assigns them to
each ASIC.

2.3. Network Congestion

A network becomes congested when there is more data in the network than
it can accommodate for. The HSS software manages the network congestion
into the network whenever necessary. Two daemons: one on the SMW (xtnlrd),
and one on the blade controller (bcbwtd), can handle network congestion by
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Table 1: Summary of Netwatch events

Events Count Percent

All 9367031.0 100.0

Mode Exchanges 5065536.0 54.08

RX 2146693.0 22.91

TX 2144221.0 22.89

Link Inactive 7280.0 0.08

Bad Send EOP Error 2548.0 0.03

Send Packet Length Error 366.0 0.004

Routing Table Corruption Error 200.0 0.002

HSN ASIC LCB lane(s) reinit failed Error 187.0 0.002

limiting the aggregate injection bandwidth across all compute nodes to less
than the ejection bandwidth of a single node (also known as throttling).

2.4. Dataset

The collected dataset consists of the network logs from January 2014 to
January 2015. The interconnect metadata is collected by two daemons: xtnet-
watch and xtnlrd. The xtnetwatch daemon logs the system High-Speed Network
(HSN) faults for LCBs and router errors. These logs include details about the
transmitting packets, receiving packets, mode exchanges, lanemask, link inac-
tive and different interconnect failures data for particular nodes, along with a
timestamp. The xtnetwatch data is summarized in Table 1. Events detail are
presented during analysis in the later sections.

When the percentage of time that traffic tries to enter the network is stalled
more than a high water mark threshold, the xtnlrd daemon produces log files
that include various collection information. It also collects a list of the top 10
applications sorted by the aggregate ejection bandwidth whenever a congestion
protection event occurs. Moreover, it estimates the top 10 most congested nodes
sorted by ejection flit counts whenever a congestion protection event occurs.
In both cases, it includes the job characteristics of the applications running on
those nodes, including APID, number of nodes, the user ID, and the application
name.

We also gathered application data to extract different application character-
istics. This data include application start time, stop time, application id, user
id, node list, and number of CPUs.

3. Impact of Network Congestion

One can argue the impact of congestion events on application execution time.
We conduct a study to find out how congestion events can impact application
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Figure 4: Applications execution times while encountering and not encountering congestion
events.

execution events. We start by finding applications that were executed on the
same nodes. For each application running on specific nodes, we check the nodes
for congestion events for the execution time of the application. We then filter
out those applications that encounter congestion events. Finally, we compare
the execution time of the applications which encounter and don’t encounter
congestion events in Fig. 4. The x-axis denotes the different executions of the
same application. The y-axis denotes the scale-normalized execution time of
different executions in percentage. The application names are denoted using
numbers as they can be business-sensitive. The red color shows the application
execution time when the applications encounter congestion events. The green
color shows the application execution time without any congestion events. The
application execution time for App 8 while encountering congestion events were
up to 99 times more than the normal execution. This shows that the congestion
events can have a significant impact on an application execution time while
running on a large-scale HPC system. There is a possibility that other factors
can affect the execution time as congestion events can be the result of hardware
or software errors. A more in-depth study considering other factors can provide
more insights into how congestion affects application execution time.

Takeaway 1: Congestion events have significant impact on application ex-
ecution time.

4. Analysis of Interconnect Errors

In this Section, we characterize and analyze different types of interconnect
faults and errors. First, we quantify and characterize lane degrade events. A
lane degrade event is triggered when any one of the three lanes in a link goes
down. This has a negative impact on the application performance and may
cause network congestion. Unfortunately, these events occur with a very high
frequency. We observed that one lane degrade event take place at a high rate
of one event per minute. Despite the high frequency and negative consequences
of these events, the characterization of these events in an HPC system is not
available to researchers, users, and system operators.

Fig. 5a shows the frequency of different types of lane degrades. We observe
that in more than 90% cases only one lane in a link is degraded. Two lanes
are degraded in less than 10% of the cases. Three lanes are degraded relatively
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Figure 5: Frequency distribution of lane degrade (a) and lanemask values (b) over one year.

less frequently (<1%). When all three lanes are in a degraded state, the link
is declared inactive (or failed), and an alternate route is computed for packets.
While link inactive or failed events happen relatively less frequently, they do
occur about 28 times per day on average, and cause more disruption than single
or double lane degrades.

Takeaway 2: Even when three lane degrades happened very infrequently as
compared to one lane degrade, link inactive occurs 28 times per day on average.

Fig. 5b shows the frequency of lanemask values for every instance of lane
degrade events. We note that a lanemask bit value of 0 indicates that the cor-
responding lane is degraded. For example, a lanemask value of 5 (binary value
101) indicates that the middle lane is degraded. We observe that the frequency
of lanemask values indicates that even single lane failures vary significantly.
Lanemask value 110 is two times more frequent than lanemask values 101 and
011. Interestingly, for two lane failures, the corner lanes failing together (010)
is more likely than adjacent lanes failing together (001 and 100).

In the absence of per-lane and per-link based utilization data, we hypothesize
that lane failure location indicates the utilization and load pattern on links.
Given this, our results indicate that the load among lanes within a link may
vary significantly. This finding should encourage designers to balance the load
more homogeneously and not overload the rightmost lane. This insight could
also be exploited for power optimization in interconnect links where rightmost
lanes need not to be switched-on at all times.

Takeaway 3: Load among lanes within a link is not homogeneous.
Next, we plot the relative frequency distribution of lane degrades over time

in Fig. 6. We make two important observations. First, lane degrades are not
limited to a specific time period, instead they happen continuously over time.
Second, one may expect that the high single-lane degrade events will lead to
an increase in the count of two-lane degrades and link failures. However, our
field data suggests that this hypothesis is not necessarily true. For example,
peaks in two-lane degrades are not necessarily during the high intensity of one-
lane degrades. Later, we also investigate deeper to understand the correlation
between network congestion and the period of high intensity of lane degrades.

Takeaway 4: Lane degrades happened continuously temporally where dif-
ferent lane degrades doesn’t impact each other.
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Figure 6: Frequency of different types of lane degrades over one year.

When a lane goes down, the network resiliency mechanism attempts to bring
the lane back up via multiple repair events, called mode exchanges. Fig. 7a
shows the frequency of mode exchange events over time and Fig. 7b shows the
number of mode exchange attempts before a lane is brought up successfully. As
expected, the frequency of mode exchange events over time is similar to that of
lane degrades. System operators of Titan have set the threshold for the number
of attempts allowed to restart a lane to 256. Interestingly, our result shows
that more than 85% of the lanes can be restored in three or fewer attempts.
Furthermore, more than 99% of the lanes can be restored within 10 attempts.

Takeaway 5: Temporal frequency of mode exchanges is similar to that of
lane degrades.

Next, we attempt to understand how lane degrade and link inactive/failed
events are distributed across the system spatially. Fig. 8 shows the lane degrade
events count for links in and across cabinets. First, we observe that several hot
spots exist for lane degrade events in the system. We conduct the Kolmogorov-
Smirnov test (K-S test) to test whether our sample of spatial distribution of lane
degrades per cabinet has a uniform distribution [5]. The test results show D-
statistic = 1, p-value = 2.2e-16. For our sample size of 200 cabinets, the critical
D-value for a 0.05 level of significance is 0.0960, and therefore the null hypothesis
(i.e., the sample is taken from a uniform distribution) can be rejected. This
shows that the spatial distribution of lane degrades per cabinet is significantly
different than uniform. This behavior can be a combination of factors like
HW instance variation, external transient effects, overloading of links, uneven
usage, and complex interaction between applications and interconnect network,
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Figure 8: Spatial distribution of lane degrades count inside and across cabinets over one year.
Due to the folded 3D-torus design, cross-cabinet links connect to alternate cabinets.

although accurate root-cause analysis is not possible.
Takeaway 6: Spatial distribution of lane degrade events is not uniform.
Interestingly, we note that the hot spots for links contained within the cab-

inet are not the same as the hot spots for links crossing cabinet boundaries.
Second, when we compare lane degrade hot spots with the hot spots of link
inactive errors (Fig. 8 vs. Fig. 9), we find that they do not necessarily match.
This also explains why their high intensity periods do not match (Fig. 6). This
indicates that it is not possible to determine the location of link inactive/failed
errors by only observing the time and location of lane degrade events.

Takeaway 7: Spatial and temporal distribution hot spots of link inactive/
failed and lane degrades events are not same.

Next, we investigate other interconnect errors: Bad Send EOP error, Send
Packet Length error, Routing Table Corruption error, and HSN ASIC LCB lane
reinit failed error.

Bad Send EOP error: Each packet in Gemini Interconnect has a single
phit end-of-packet that contains the status bits for error handling [2]. If a packet
is corrupted, the end-of-packet is marked as bad and the packet will be discarded
at its destination.
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  Per−cabinet distribution of link inactive errors count
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Figure 9: Spatial distribution of link inactive errors count inside and across cabinets over one
year. Due to the folded 3D-torus design, cross-cabinet links connect to alternate cabinets.
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Figure 10: Spatial distribution of Bad Send EOP errors count inside and across cabinets over
one year.

Send Packet Length error: Send Packet Length error occurs when the
length of a packet does not match with the expected length value at destination.

Routing Table Corruption error: A routing table is a data table stored
in a router that contains the information necessary to forward a packet along
the best path toward its destination. When a packet is received, a network
device examines the packet and matches it to the routing table entry providing
the match for its destination. The table then helps in guiding the packet to the
next hop on its route across the network. A routing table corruption results
in link failure and eventually causes network congestion [4]. Each packet in
Gemini Interconnect contains information about the originating node and the
destination node. Each packet uses a 18-bit address to uniquely identify a node
in Titan. This 18-bit address has 16-bit ASIC identifier and 2-bit for specifying
NICs and node.

HSN ASIC LCB lanes reinit failed error: This error occurs when all
the 256 attempts to bring up a downgraded lane are exhausted.

Fig. 10-13 show the frequency distribution of these errors in- and across-
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Per−cabinet distribution of Send Packet Length errors count
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Figure 11: Spatial distribution of Send Packet Length errors count inside and across cabinets
over one year.

Per−cabinet distribution of Routing Table Corruption errors count
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Figure 12: Spatial distribution of Routing Table Corruption errors count inside the cabinets
over one year.

cabinets. First, we observe that these errors also show hot spots in- and across-
cabinets, although we found that the magnitude of these errors is relatively
small. For example, Routing Table Corruption error occurs only 200 times while
HSN ASIC LCB lane(s) reinit failed error happens only 187 times throughout
the entire observation period.

On deeper investigation, we found that most of these errors are highly cor-
related with link inactive/failed errors. Table 2 shows the correlation of these
interconnect errors with link inactive errors. This indicates that link inactive
errors can be used to predict other interconnect errors. We also found that more
than 80% of link failed errors lead to Bad Send EOP, Send Packet Length, and
Routing Table Corruption errors. We also found that HSN ASIC LCB lane(s)
reinit failed error has a weak correlation with link failed errors. This can be

Per−cabinet distribution of ASIC errors count
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Figure 13: Spatial distribution of ASIC errors count inside the cabinets over one year.
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Table 2: Correlation factor between link inactive and other interconnect errors.

Errors Link Inactive

Bad Send EOP Error 0.99

Send Packet Length Error 0.96

Routing Table Corruption Error 0.84

ASIC Error 0.04

explained by our previous findings where it showed that lane degrades and link
failed errors are not correlated and ASIC errors are an outcome of failed repair
attempts of lane degrades.

Takeaway 8: Interconnect errors shows a high correlation with link inac-
tive/failed events.

5. Analysis of Network Congestion

Understanding network congestion in conjunction with interconnect errors
is important since it is likely that one may cause the other. A daemon on
the compute cluster monitors the percentage of time that network tiles [3] are
stalled due to increased traffic or other reasons. When these values cross a set
threshold, the daemon communicates this data (network throttle events) to the
xtnlrd daemon running on the SMW. After the congestion subsides, the daemon
again passes this information to the SMW.
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Figure 14: Count of network throttle events (a), and relative frequency of throttle events (b)
over one year.

In this section, we first attempt to understand the characteristics of network
throttle events. Fig. 14a plots the network throttle events over time. We note
that a large fraction of throttle events occur in a short period of time. We also
note that each throttle event is typically 20-30 seconds, but it can also last up
to a few minutes depending on the magnitude of the congestion observed. As
shown in Fig. 14b, network throttle events can be quite bursty. An applica-
tion that is causing network congestion can induce multiple throttles in a very
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Figure 15: Network throttle events with 1-hour filtering (a), and relative frequency of throttle
events with 1-hour filter (b) over one year.

short amount of time (< 20 mins). Fig. 15 shows the network throttle events
over time, counting only one event at maximum per hour. We experimented
with multiple time windows and found that a 1-hour time window removes the
skewness. However, this type of time window filtering cannot completely re-
move the skewness since a long-running communication-intensive application
may cause multiple throttle events over multiple hours. For example, Fig. 16
shows that without 1-hour filtering the mean time between throttle events is
less then 1 minute, with 90% of the events occurring within the first hour of the
preceding throttle event. Even when we apply 1-hour filtering, the meantime
between throttle events is approximately 22 hours. Therefore, to better under-
stand the characteristics of network throttle events we analyze our subsequent
results without any time window based filtering and with 1-hour time window
based filtering. We try to find out whether the number of jobs running per day
have any correlation to throttle events. However, as we can see in Fig. 17, the
throttle events relative frequency Fig. 14b is not correlated to the number of
jobs running per day relative frequency. The Spearman correlation coefficient
was found to be very weak (-0.01). In the second half of the year, we see bursts
in the number of jobs which may be a result of users running the same applica-
tions multiple times to achieve the best performance in ACM Gordon Bell prize
[6].

Takeaway 9: Network throttle events are very bursty and are not dependent
on number of jobs running at a specific day.

From nlrd data, we calculated mean time between link recovery and warm
swap (Fig. 18). It indicates that link recovery and warm swap procedures
take place at a high rate. Naturally, one may hypothesize that the lane de-
grades/failures may induce the network throttle events or vice versa. Therefore,
we investigate the possibility of temporal correlation between the time series
of throttle events and interconnect errors, in particular lane degrades and link
failed events. We found the Spearman correlation coefficient to be very weak
(0.03). This result indicates that lane degrades/failures alone cannot be used
to predict throttling events. While lane degrades/failures can cause the perfor-
mance degradation and variability, lane degrades/failures do not always imme-
diately cause significantly high network congestion to trigger network throttling.
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Figure 16: Mean time between network throttling events without filter (a) and with 1-hr filter
(b) over one year.
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Figure 17: Number of jobs running per day relative frequency over one year.

Takeaway 10: Temporally, lane degrades and link failed events shows very
low correlation with throttle events.

Next, we plot the heatmap of compute blades that were throttled due to
these network throttle events. Fig. 19 shows the heatmap without any filtering
and Fig. 20 shows the same heatmap with 1-hour filtering. As expected, we
observe that not all blades are throttled equally over the period of observation.
Interestingly, hot spots remain similar even after applying filter. We again
conduct the K-S test to test whether our sample of the spatial distribution of
blades throttle events per cabinet without and with one hour filter has a uniform
distribution. The test results show D-statistic = 1, p-value = 2.2e-16 in both
cases. For our sample size of 200 cabinets, the critical D-value for a 0.05 level
of significance is 0.0960, and therefore the null hypothesis (i.e., the sample is
taken from a uniform distribution) can be rejected. This shows that the spatial
distribution of blade throttled events per cabinet is significantly different than
uniform. As a next step in our analysis, we want to investigate the role that
congestion information at the node and application levels can play in improving
our understanding of congestion behavior at the blade-level.

Takeaway 11: Spatial distribution of blade throttle events per cabinet is not
uniform.

Node-level congestion data provides information about the nodes which are
heavily congested at the time of throttling. It lists the top 10 heavily conges-
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Figure 18: Mean time between link recovery (a) and warm swap (b) over one year.
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Figure 19: Spatial distribution of throttled blades count without filter over one year.

tion node based on ejection bandwidth rate for every throttle event. Along with
node ID, several other information is included such as the application running
on that node, user ID of the application, number of nodes allocated to the ap-
plication, ejection bandwidth at the node level. Fig. 21 and 22 show the spatial
distribution of congested nodes in the Titan supercomputer for the no filter and
1-hour filter cases, respectively. We make two observations. First, some nodes
are much more congested than others as shown by the uneven distribution of
congested nodes. This is because the applications creating significant network
traffic may be repeatedly getting scheduled on the same nodes. Second, apply-

 Cabinet distribution of blades throttled events count − filter one hour
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Figure 20: Spatial distribution of throttled blades count with 1-hr filter over one year.
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Cabinet distribution of top 10 congested nodes count
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Figure 21: Spatial distribution of congested nodes count without filter over one year. Note
that the top 10 congested nodes are calculated for each throttle event. This plot is aggregated
over all throttle events.

Cabinet distribution of top 10 congested nodes count − filter one hour
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Figure 22: Spatial distribution of congested nodes count with 1-hr filter over one year.

ing 1-hour filtering shows that the spatial distribution evens out compared to
Fig. 21. However, interestingly it continues to show uneven distribution; skewed
toward the left part of the supercomputer. This indicates that communication-
intensive applications are not scheduled evenly across the cabinet. Applications
scheduled on the left part are likely to see more performance impact due to
network congestion. Therefore, applications whose performance is sensitive to
interconnect-latency could potentially benefit from getting scheduled on the
right part of the cluster.

Takeaway 12: Spatial distribution of congested nodes shows skewness to-
ward the left part of the supercomputer.

We also calculated the correlation coefficient between the spatial distribu-
tion of congested nodes and lane degrades/failures. The Spearman correlation
coefficient was close to zero (0.01); the nodes with high ejection bandwidth are
not strongly correlated with the interconnect errors. This result was expected
since we found the correlation between throttle events and interconnect errors
were not high. However, surprisingly, there is a low correlation between the
heatmap of congested nodes and throttled blades (Spearman correlation 0.01).
This is because congested node information is collected after the throttle com-
mand has been issued, so it may not capture the nodes which actually caused
the congestion and induced throttling. This also indicates that the aggregate
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Figure 23: Cumulative distribution of unique applications over congested node events without
filter (a), and with 1-hr filter (b) over one year.
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Figure 24: Fraction of top 5 congestion-causing and other applications without filter (a), and
with 1-hour filter (b) over one year.

network traffic at the blade can be potentially different than individual node-
level traffic. Future network performance tools should focus on building more
accurate and fine-grained tools that can detect the root cause in real time.

Takeaway 13: Spatially, lane degrades events shows very low correlation
with throttle events.

Next, we analyze the characteristics of applications running on all congested
nodes. First, we plot the frequency of unique applications that were running on
congested nodes when the throttling events occurred. Fig. 23 shows that only a
few applications tend to dominate. We refer to these applications as congestion-
causing applications in our discussion; however, we note that these applications
may not be necessarily responsible for increasing the congestion that eventu-
ally resulted in the network throttling event. For example, 5 applications alone
appear in more than 70% of congested node reporting events (Fig 24), while
more than 250 unique applications are logged in total across all congested node
reporting events. Interestingly, when 1-hour filtering is applied, the number of
unique applications decreases significantly. The top 5 most frequently occurring
applications appear only in approx. 50% of congested node reporting events
(Fig 24). Total number of unique applications go down from 250 to 90. Reduc-
tion in the number of unique applications clearly indicates that when multiple
throttle events occur in the small time period, they are not because of the same
application. In fact, it turns out that within a 1-hour time window, multiple
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unique applications can cause nodes to be highly congested. We also see the
same results on a per-user basis with and without filtering (Fig. 25). These
results confirm that applications and users can work as proxies for each other.

C
D

F

50%

60%

70%

80%

90%

100%

0 100 200
Number of unique users

(a)

C
D

F

40%

60%

80%

100%

0 50 100
Number of unique users

(b)

Figure 25: Cumulative distribution of unique users over congested node reporting events
without filtering (a), and 1-hour filtering (b) over one year.

Takeaway 14: Same applications and users don’t cause multiple throttle
events over a small time period.

Next, we analyze the job size of these applications. We limit our discussion to
the top 10 most frequent congestion-causing applications. As application names
can be business-sensitive, we identify them with English letters. Fig. 26 shows
the job size distribution of top 10 applications that appear most frequently on
congested nodes. We make several interesting observations. First, most of the
applications tend to run on the same number of nodes every time they appear
in the congested node reporting events. For example, applications A, B, and C
run on 4000, 2, and 45 nodes, respectively, for more than 90% of the time that
they appear in the congested node reporting events.

Moreover, counter-intuitively, the job sizes of these applications are relatively
small. For instance, 7 out of the 10 applications most frequently have a job size
of less than 512 nodes. In fact, 5 applications have the most frequent job
size of less than 128 nodes. In such cases, the many-to-few communication
pattern can be responsible for congesting the nodes (high ejection bandwidth).
Therefore, only focusing on large scale jobs for identifying culprit applications
is an ineffective strategy. Our results show that node congestion is caused by
small-scale applications in real-world scenarios.

Takeaway 15: Congestion causing applications run on same number of
nodes and are generally small in job size.

Next, we want to extend our understanding of communication-intensive ap-
plications and their job size distributions. On every throttle event, the nlrd
daemon collects the bandwidth data of all applications running on the system
and lists the top 10 of these application sorted by their network bandwidth con-
sumption (total flits/s aggregated over all nodes). Note that these bandwidth-
heavy applications are different than the ones running on the top 10 heavily
congested nodes.

Fig. 27 shows that a few applications tend to be heavy-hitters. For exam-
ple, 5 applications alone appear in approximately 57% of the top bandwidth
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Figure 26: Job size distribution of top 10 congestion-causing applications over one year. X-axis
denotes different job size. Y-axis denotes relative frequency of different job size.
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Figure 27: Cumulative distribution of unique applications over top bandwidth-heavy applica-
tion events without filter (a), and with 1-hr filter (b) over one year.

application reporting events (Fig. 28), while more than 200 unique applications
show up in total across all top bandwidth application reporting events. Inter-
estingly, when 1-hour filtering is applied, the number of unique applications
decreases significantly. However, the top 5 most frequently occurring applica-
tions constitute 50% of top bandwidth application reporting events (Fig. 28).
The total number of unique applications reduces dramatically to 60. These re-
sults indicate that focusing on the top 5-10 applications can cover 50% of the
communication-intensive applications space. We also observe the same results
on a per-user basis with and without filtering (Fig. 29). These results again
confirm that application and user can work as a proxy for each other, even for
top bandwidth application reporting events.

Takeaway 16: Same applications and users don’t cause communication
intensive operations.

Next, we want to answer two questions: (1) are these top bandwidth applica-
tions the same as the top congestion-causing applications running on congested
nodes?, and (2) is the job size distribution of the top bandwidth applications
different than that of the top congestion-causing applications?

Fig. 30 shows the job size distribution and anonymized application names
of the top 10 bandwidth-heavy applications that appear most frequently in the
top bandwidth application reporting events. We observe that most of the ap-
plications tend to run on the same number of nodes every time they appear in
the top bandwidth application reporting events. However, interestingly, these
applications are not the same as the top congestion-causing applications run-
ning on congested nodes. Only three applications are common between these
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Figure 28: Fraction of top 5 bandwidth-heavy and other applications without filter (a), and
with 1-hour filter (b) over one year.
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Figure 29: Cumulative distribution of unique users over top bandwidth application reporting
events without filtering (a), and 1-hour filtering (b) over one year.

two sets (Fig. 30 vs. Fig. 26). They are situated at positions 1, 4, and 7, in the
figures. This indicates that bandwidth-heavy applications are not necessarily
the ones that cause congestion or run on congested nodes. These bandwidth-
heavy applications are producing a significant amount of traffic, and are likely
to be spread over a large number of nodes or have a many-to-many communi-
cation pattern. We notice that only 3 applications have a job size larger than
4000 nodes, indicating that even bandwidth-heavy applications are not neces-
sarily large in size. The communication pattern seems to be playing a critical
role. As an example, App K which runs mostly on 32 and 128 nodes appears
second in the bandwidth-heavy applications list, but does not appear in the
congestion-heavy applications list. This could be because this particular ap-
plication does not intensively exhibit a many-to-one communication pattern.
Many-to-few and many-to-one communication patterns can result in high con-
gestion due to the concentration of messages over a few nodes. Many-to-few
or many-to-one communication patterns results in over subscription of outgo-
ing link of specific nodes. This over subscription results in network congestion
[7, 8, 9]. In summary, bandwidth-heavy applications’ job sizes are similar to that
of congestion-causing applications’, but there is no significant overlap between
these two sets and they may differ in their communication patterns.

Takeaway 17: Top bandwidth-heavy applications are not same as top
congestion-causing applications.
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Figure 30: Job size distribution of top 10 bandwidth-heavy applications over one year. X-axis
denotes different job size. Y-axis denotes different job size relative frequency.

1 2 4 5 6 8 10 13 15 16

App : A 

0%

30%

60%

1 2 4 5 7 8 9 10 11 12 13 14 15 16

App : K 

0%

40%

80%

1

App : L 

0%

50%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

App : B 

0%

40%

80%

1 2 4 5 8 10 14 15 16

App : M 

0%

30%

60%

Figure 31: Processes per node count relative frequency of top 5 bandwidth-heavy applications
over one year. X-axis denotes different processes per node count. Y-axis denotes different
processes per node count relative frequency.

As network congestion can significantly affect an application execution, we
next explored different application characteristics for the top five bandwidth-
heavy applications: (1) processes per node count (2) CPUs count, (3) execution
time, and (4) users. Fig. 31-34 show the frequency distribution of these appli-
cation characteristics. Most of the applications run have a higher processes per
node, CPUs and users count. For the third application, as there are less number
of users, processes per node and CPU count have lower variation, however, the
execution time doesn’t show the same pattern. For all applications, different
execution time and skewness toward shorter execution time can be a result of
congestion. To confirm it, we compared the number of runs encountering con-
gestion events with the total number of runs for the top five bandwidth-heavy
applications. As expected, all the applications encounter the congestion events
multiple times (Fig. 35).

Takeaway 18:Top-bandwidth applications have multiple processes per node,
CPUs and users.
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Figure 32: CPUs count relative frequency of top 5 bandwidth-heavy applications over one year.
X-axis denotes different CPU count. Y-axis denotes different CPU count relative frequency.
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Figure 33: Execution time (s) relative frequency of top 5 bandwidth-heavy applications over
one year. X-axis denotes different execution times in seconds. Y-axis denotes the relative
frequency of different execution times.

Takeaway 19:Top-bandwidth applications show skewness in execution time
as they observe congestion continuously over time.
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Figure 34: Users id count of top 5 bandwidth-heavy applications over one year. X-axis denotes
the different users id. Y-axis denotes the relative frequency of different users.
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Figure 35: Congestion count for top 5 bandwidth-heavy applications over one year. X-axis
denotes the time over one year. Y-axis denotes the congestion event count.

6. Throttle prediction

Network congestion shows weaker correlation with lane degrade, and link
failed events in the previous section. However, we have different application
characteristics and network events that we can leverage to predict whether an
application is going to encounter throttling (congestion results in throttling)
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or not. The goal is to find a high accuracy machine learning model that can
predict the applications encountering network congestion based on the available
features. This model will be a proof-of-concept and requires rigorous testing be-
fore using in a real-world scenario. The users can use such a prediction model to
determine the congestion causing applications without even looking at throttle
events. A prediction model will not only be helpful for the applications found
in our study but also for new applications as the application set running on the
Titan changes over time. Even for the same applications, such a model will be
beneficial as an application can result in different characteristics over time. The
users can run this model before the application execution or during the appli-
cation execution to take pro-active and dynamic actions for congestion causing
applications. Pro-active actions include detecting congestion causing applica-
tions and not scheduling them simultaneously (temporally or locally). Dynamic
actions include detecting an application experiencing congestion and applying
resilience techniques like restructure of interconnect to avoid congestion. These
pro-active and dynamic actions will improve both the congestion causing ap-
plications performance and network reliability. The process of finding such a
model involves three steps:

1: Feature selection. Explore and finalize the features for the machine
learning model.

2: Model selection. Evaluate different machine learning models to find
the best model for the selected features.

3: Model analysis. Analyze all the models on a temporal dataset to
determine the best model. Find out the best features set and prediction quality
for the best model.

6.1. Feature Selection

We have three different type of data which we can use to finalize the features:
xtnetwatch, xtnlrd, and application. xtnetwatch has transmitting packets, re-
ceiving packets, mode exchanges, lane mask, link inactive and different intercon-
nect failures data. xtnlrd has link failed, application encountering congestion,
and the job characteristics data of the applications running during congestion,
including APID, number of nodes, the user ID, and the application name. Appli-
cation data has application start time, stop time, application ID, user ID, node
list, and number of CPUs. We use xtnlrd and application data to determine
whether an application encounter congestion or not. From each of these data, we
extract features which can be extracted dynamically or known beforehand and
have a direct impact on throttle events. The features include application execu-
tion time, transmitted packets, received packets, mode exchanges, link inactive,
link failed, application encountering congestion, number of nodes and number
of CPUs. Even though mode exchanges, link inactive, and link failed shows
a low correlation to throttle events, they helped in achieving better accuracy
while running the prediction model.
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Table 3: Machine Learning Models Prediction Accuracy

Model
Up-Sample Down-Sample

Precision Recall Precision Recall

LR 82.60 93.91 81.57 95.38

SVM 98.66 99.54 80.95 96.58

SGD 81.04 96.95 81.26 96.39

DT 98.66 99.54 92.63 93.01

GBC 84.80 95.12 85.29 94.89

NB 81.61 97.69 82.20 95.54

KN 98.13 99.28 90.13 93.99

RF 83.46 87.07 82.61 86.85

Table 4: Training Time for Machine Learning Models

Model LR SVM SGD DT GBC NB KN RF

Time 31.98 s 71.40 s 31.41 s 31.60 s 32.50 s 34.92 s 31.43 s 31.82 s

6.2. Model Selection

We run various machine learning models for prediction to determine the best
model. The first step in this process is to collect the features data periodically.
Then we select 60% of this dataset randomly and used it to train the machine
learning model. After that, the remaining 40% dataset is used to predict the
accuracy of the machine learning model. One of the problems with the collected
dataset was that it was highly imbalanced. Only 1% of the application run
encounter throttle events. This type of dataset can be handled in two ways.
The first one is to up-sample the minority data. The second way is to down-
sample the majority data. For our case, we go with the second approach as we
want to know the best prediction accuracy in the worst case. We also normalize
the dataset as link failed and link inactive has a lot of zeros.

Next, we run our training dataset on various machine learning models like
Decision Tree (DT), Gradient Boosting Classifier (GBC), Stochastic Gradient
Descent Classifier (SGD), KNeighbours (KN), Logistic Regression (LR), Naive
Bayes (NB), Random Forest (RF) and Support Vector Machine (SVM). We
use Python module Scikit-learn [10] for the machine learning models. For each
model, we calculate the feature ranking. We remove the features with lower
feature ranking however it results in lower accuracy for each model. Therefore,
we include all the features for our experiments. In later subsection, we analyze
the features sets in more detail. Table 3 shows the prediction effectiveness
for all machine learning models. Precision indicates the percentage of correct
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Table 5: Machine Learning Models F1 Score for Each Month Down-Sampled Dataset

Model Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

LR 0.00 82.75 79.05 76.05 82.20 82.33 80.08 91.94 91.17 91.29 75.71 88.44

SVM 0.00 82.43 78.52 75.73 82.72 81.89 80.46 91.57 90.16 86.96 72.25 84.42

SGD 0.00 83.10 84.26 77.90 82.31 82.37 80.49 92.04 96.03 90.24 0.00 33.47

DT 0.00 91.48 90.26 87.73 92.44 95.45 91.82 97.24 95.33 96.89 94.12 93.95

GBC 0.00 90.93 91.38 85.26 86.99 91.95 90.71 96.91 96.34 96.92 92.11 94.71

NB 0.00 84.95 86.37 72.78 81.20 85.10 81.66 93.21 95.94 94.47 87.72 93.27

KN 0.00 89.68 89.69 86.48 92.24 94.47 90.53 96.25 95.51 92.24 79.75 91.13

RF 0.00 83.31 86.31 72.29 81.69 86.15 84.68 93.88 97.37 93.10 79.74 91.58

predictions in all predictions, defined as:

Precision =
True Positives

True Positives + False Positives
(1)

while recall reveals the ratio of identified samples to the ground truth, defined
as:

Recall =
True Positives

True Positives + False Negatives
(2)

Decision tree performs the best in both up-sampling and down-sampling.
As expected up-sampling results in better accuracy, however, we go with down-
sampling to handle the worst-case scenario. KNeighbours performs the second
best with a slighter higher recall and lower precision. It means KNeighbours
fetch higher relevant instances among the total relevant instances. We do further
analysis in the next subsection to determine which is the best model for diverse
datasets.

Training overhead can play a significant role in determining the best model
for prediction. Therefore, we evaluate the training time overhead for all the
models. We conduct all the experiments on Intel(R) Xeon(R) E3-1275 v5 server
with 32 GB memory. Table 4 shows the training time of all the machine learning
models. Stochastic Gradient Descent Classifier takes least amount of time,
followed by KNeighbours and Decision tree. However, the percent difference
among them is less than 1%, which means choosing KNeighbours and Decision
tree over Stochastic Gradient Descent Classifier will not affect the training time
much. SVM took the most amount of time, which was expected as the training
time taken is proportional to the third power of the size of the dataset.

6.3. Model Analysis

In this step, we evaluate the machine learning models on diverse datasets.
Before presenting the results, we explain the datasets and evaluation metrics.

27



Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

F
1 

sc
or

e
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

xtnetwatch xtnlrd application all

Figure 36: F1 Score of different feature set using Decision Tree.

6.3.1. Dataset Description and Evaluation Metrics

We first collect dataset over the entire sampling period (from January to
December, 2014). We then divide this data into twelve sub-datasets (each month
data). We then perform downsampling for each sub-dataset, normalize it and fed
it to machine learning models. We use F1 Score [11] to measure the prediction
accuracy as it conveys a balance between precision and recall. It is defined as
the harmonic average between precision and recall.

F1 Score =
2× Precision×Recall

Precision + Recall
(3)

6.3.2. Model comparison

We measure the F1 Score for each machine learning model for each sub-
datasets. Table 5 shows these F1 Scores. The scores for the January month is
zero as it represents the data for only last four days of the month and no throt-
tling event happen in that period. For the remaining eleven months, KNeigh-
bours perform slightly better than Decision Tree for only the month of Septem-
ber. Therefore, we conclude that the Decision Tree is the best model for throttle
events prediction.

6.3.3. Feature Analysis

Selection of feature can severely impact the accuracy of any machine learning
model. To find the best features set, we evaluate different features set for the
best machine learning model Decision Tree. We split the available features
into four categories: xtnetwatch, xtnlrd, application and all. Each category
is discussed in subsection 6.1. For xtnetwatch, we use transmitting packets,
receiving packets, mode exchanges, and link inactive data. For xtnlrd, we use
link failed data. For application, we use execution time, number of nodes, and
number of CPUs. All category combines all the features in xtnetwatch, xtnlrd,
and application. Fig 36 shows the F1 Score of Decision Tree model for different
features selection. As we can see, all features combination dataset perform
better than any other features set for each month. xtnlrd performs the worst
for two reasons: (1) it has only one feature linked failed, and (2) linked failed
has a lower correlation to network congestion.
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Table 6: Throttle Prediction for Short, Medium and Long Running Applications using Deci-
sion Tree

Application Precison Recall F1 Score

Short 0.00 0.00 0.00

Medium 92.71 95.70 94.18

Long 86.18 86.76 86.47

6.3.4. Prediction Analysis

In this section, we check how application execution time affects the prediction
quality of the best machine learning model Decision Tree. We categorize ap-
plications into three groups: short-running, medium-running and long-running.
Short-running are those applications which have a runtime that falls below 25
percentile. Long-running are those applications which have a runtime in top
25 percentile. Medium-running includes all the remaining applications. Ta-
ble 6 shows the prediction quality of Decision Tree model for each application
type. Short-running applications never encounter the throttle events. Medium
running applications encounter less than 1% of the total throttle events. Long-
running applications encounter more than 99% of the total throttle events. Both
medium and long-running applications show higher prediction quality.

Takeaway 20: Network and application events can predict congestion in an
application at a high accuracy.

7. Related Work

Interconnect networks have been a vital part of computer systems. With
thousands of nodes in HPC systems, execution time is more dependent on
communication time than the calculation time [12]. Various HPC intercon-
nect networks are proposed for improving HPC systems performance - Qs-
NET [13], SeaStar [14], Tofu [15], Blue Gene/Q [16], Aries [17], TH Express-
2 [18] and others - which use different types of topology like k-Ary n-
Cube, fat-tree/Clos, and dragonfly. Several studies are performed to un-
derstand [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 4, 30] and improve
[31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41] interconnect failures in HPC systems.

Interconnect studies in [19, 20, 22] describe and evaluate specific interconnect
networks in Cray T3E multiprocessor and BlueGene/L. Interconnect networks
detail and concepts like topology, routing, flow control, and router architecture
are discussed in [21, 23, 25, 28]. Blue Waters workload and error/failure logs are
investigated to determine system errors and failures impact on user applications
in [26]. The analysis in this work was limited to system errors and failures logs.
Blue Waters Gemini interconnect architecture is described in detail in [27, 4].
These studies focus on characterization of recovery mechanisms and intercon-
nect failures using raw systems logs. These studies are limited to interconnect
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failures like lane recovery, link failure, and warm swap only. Blue Waters Gem-
ini interconnect congestion events impact on two benchmark applications and
network congestion characteristics are presented in [29]. Our work provides a
better understanding of impact of congestion events as we analyze real-word
applications with focus on job characteristics. Fault injection tool is presented
in [30] to understand impact of failures on network links, nodes, and blades
in HPC systems. Data centers network failure analysis with focus on network
workload characteristics, failures of network links and devices, and effectiveness
of network redundancy in masking failures is presented in [24]. The limitation
of this work is that they only characterize link and device failures, instead of
focusing on all type of errors and failures in network logs.

Interconnect networks type like fat-trees and k-ary n-cube performance eval-
uation is presented in [31, 32, 33]. Methods for automatically routing faults,
recursive torus shifting, adaptive bubble router, fail-in place network, task map-
ping, and communication intensive applications optimizations for improving in-
terconnect performance is discussed in [34, 35, 36, 37, 38, 39]. A functional
network simulator, Damselfly, is presented in [40] to study the effects of job
placement, parallel workloads and network configurations on network health
of dragonfly-based supercomputers. A network fault influence domain analy-
sis tool, FIDA, is presented in [41] to study the impact of network faults on a
system.

Supervised learning algorithms such as forests of extremely randomized trees
and gradient boosted regression trees are used to ascertain the causes and mech-
anisms of network congestion in [42]. They created a regression model using
communication data and application execution time to predict the execution
time of communication heavy applications. In this study, they also determine
the hardware components that play a major role in network congestion. A
machine learning approach to predict total communication time of parallel ap-
plications is proposed in [43]. A machine learning framework to automatically
detect compute nodes with performance anomalies and to diagnose performance
anomalies is presented in [44]. This framework leverages easy-to-compute sta-
tistical approach to reduce data required for performance anomaly detection.

Titan is the successor of Cray X-series which use the XK7 system and 3D
Gemini interconnect. The Gemini system interconnect architecture is explained
in [2] and evaluated in [45, 3] using micro-benchmarks. Cray’s latest XC series
is implemented using the Aries interconnect which supports better bandwidth,
latency, message rate and scalability [46]. Our previous work [1] differs from all
these studies and evaluations as none of these works evaluate how different in-
terconnect errors and congestion events occur on a large-scale HPC system. Our
current work differs as none of the work above utilize interconnect errors, con-
gestion events and applications characteristics data to predict throttle events.
Our field data and analysis is unique and provides useful insights that can be
used by users, system architects, and operators to improve the overall efficiency
of HPC systems.
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8. Conclusion & Future work

Overall, we show how congestion events can impact application performance.
We discussed many interesting insights derived from our analysis. Interconnect
faults like lane degrades are continuous and vary significantly among lanes.
Link inactive errors do not have a temporal or a spatial correlation with
lane degrades, while interconnect errors have a high correlation with link
inactive/failed errors. We showed that these characteristics can be exploited for
different purposes. We also demonstrated that multiple applications can cause
multiple congestion events within a short period of time. Furthermore, these
applications can be, surprisingly, small in job size, not scheduled evenly across
the cabinet and have a many-to-few communication pattern. Our analysis can
be used in identifying such applications and users to minimize the performance
impact on other applications. In end, we evaluate different machine learning
models to predict applications encountering throttle events.

Given limited literature on field data and analysis on interconnects error, we
hope our study addresses an important topic and would be useful for current
and future systems. A real-world test of the model on a future HPC system and
looking into the impact of other system attributes on the model in the future
can further strengthen the model to detect network congestion. Furthermore,
the researchers can investigate system and application attributes to detect a
specific application causing congestion while multiple applications are running
at the same time in an HPC system.
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