
GPU Lifetimes on Titan Supercomputer:
Survival Analysis and Reliability
George Ostrouchov

Computer Science and Mathematics Division
Oak Ridge National Laboratory

Oak Ridge, TN, USA
ostrouchovg@ornl.gov

Don Maxwell
National Center for Computational Sciences

Oak Ridge National Laboratory
Oak Ridge, TN, USA
maxwellde@ornl.gov

Rizwan A. Ashraf
Computer Science and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN, USA

ashrafra@ornl.gov

Christian Engelmann
Computer Science and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN, USA
engelmannc@ornl.gov

Mallikarjun Shankar
National Center for Computational Sciences

Oak Ridge National Laboratory
Oak Ridge, TN, USA
shankarm@ornl.gov

James H. Rogers
National Center for Computational Sciences

Oak Ridge National Laboratory
Oak Ridge, TN, USA

jrogers@ornl.gov

Abstract—
The Cray XK7 Titan was the top supercomputer system in

the world for a long time and remained critically important
throughout its nearly seven year life. It was an interesting
machine from a reliability viewpoint as most of its power came
from 18,688 GPUs whose operation was forced to execute three
rework cycles, two on the GPU mechanical assembly and one
on the GPU circuitboards. We write about the last rework cycle
and a reliability analysis of over 100,000 years of GPU lifetimes
during Titan’s 6-year-long productive period. Using time between
failures analysis and statistical survival analysis techniques, we
find that GPU reliability is dependent on heat dissipation to
an extent that strongly correlates with detailed nuances of the
cooling architecture and job scheduling. We describe the history,
data collection, cleaning, and analysis and give recommendations
for future supercomputing systems. We make the data and our
analysis codes publicly available.

Index Terms—GPU, reliability, supercomputer, NVIDIA, Cray,
large-scale systems, log analysis, MTBF, Kaplan-Meier survival,
Cox regression, GPU failure data set

I. INTRODUCTION

The Cray XK7 Titan supercomputer [23] was the #1 system
in the world for a long time [18], and has remained a critically

This work was sponsored by the U.S. Department of Energy’s Office of
Advanced Scientific Computing Research. This manuscript has been authored
by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the
U.S. Department of Energy. The United States Government retains and
the publisher, by accepting the article for publication, acknowledges that
the United States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for United States Government purposes.
The Department of Energy will provide public access to these results of
federally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

important computer system through the end of its life in
the Summer of 2019. It defied scale with 18,688 individual
NVIDIA GPU accelerated compute nodes and delivered tens
of billions of computing hours to the U.S. Department of
Energy mission-critical programs for nearly 7 years.

From a reliability perspective, Titan was a very interesting
machine. Its operation was forced to execute three very
significant rework cycles, two on the mechanical assembly
affecting the PCIe connector from the GPU daughtercard to the
motherboard, and one to replace about 11,000 GPU assemblies
because of a failing resistor on their printed circuit board. We
write primarily about the GPU operation epoch that includes
this last rework cycle. This epoch of nearly 6 years includes
Titan’s most stable and failure free period and contains the
most reliable data on GPU operation.

Figure 1 illustrates the chronology of the rework cycles and
stable periods as indicated by the number of GPU changes at
periodic inventories. The first two rework cycles before 2014
involving blade mechanical assemblies can be characterized as
a break-in period on a new system that is first of its kind and
pushes many technological boundaries. This early period in-
cluded extensive field engineering and experimentation, down
times, as well as temporal and completeness gaps in inventory
runs due to down times. We include the early swap data in this
figure only for completeness and to underscore the massive
amount of hardware work required to field a world’s largest
supercomputer. However, as we focus on GPU operation after
the second rework cycle we exclude this early period from
further analysis. Late 2013 begins a very long period of high
reliability and stable operation with very few issues until about

0

2500

5000

7500

10000

12500

2012−01−01 2013−01−01 2014−01−01 2015−01−01 2016−01−01 2017−01−01 2018−01−01 2019−01−01 2020−01−01

co
un

t

Fig. 1. Volume of GPU swaps detected on Titan at individual inventories (narrow blue) and yearly sum totals for 2014 and later (wide gray) over its entire
lifetime. High swap volumes prior to 2014 reflect two major rework cycles on mechanical assembly issues at PCIe connectors that can be characterized as a
break-in period. Our analysis in this paper excludes the break-in period and is focused on units in place by the end of 2013 or swapped in during the years
that follow.

mid 2016, when GPU failures begin to rise. This results in
the final rework cycle, replacing 11,000 GPUs from late 2016
through much of 2017.

Finding the root cause for the 2016 failures took a great
deal of testing and the involvement of materials science and
microscopy researchers. The failures were traced to a resistor
on the GPU circuit board (not the GPU chip itself) due to
silver sulfide corrosion. Growth of such corrosion products in
ambient air on microelectronics parts is described in [35] and
is consistent with failures starting only after a critical amount
of corrosion builds up, a situation that matches the experience
on Titan.

Throughout this paper, when we refer to replacing the GPU,
we refer to the entire circuit board along with its GPU chip.
Our analysis focuses on GPU boards that were installed in the
second rework cycle and later, essentially units installed near
the beginning of 2014 and later. A more precise definition of
this analysis cohort is in Sec. IV. Figure 1 is the only one
involving data on units removed prior to 2014.

Our data processing and analysis is performed with R [26]
and Python [34], and a number of their packages. We make
the data as well as our R codes and Python codes to reproduce
the analyses and graphics in this paper publicly available (see,
[24]). Due to the size of Titan, the data represents over 100,000
collective years of GPU operation, which may be the largest
publicly available GPU reliability data set. We include the
full original 2012-2019 data set as well as two more data
sets resulting from our processing described in Sec. IV of this
paper. The analysis codes also contain further minor details
and additional analyses. Our hope is that others will use
the data for reliability and survival analysis research and go
beyond the results presented here.

We begin by describing related work in Sec. II. Our data
collection is described in Sec. III and the data cleaning,
checking, and GPU lifetime addition process in Sec. IV. Here
we develop novel visualizations of GPU lifetimes and errors
that were needed to understand the data and to verify our

data processing decisions. A time between failures (TBF)
analysis is given in Sec. V. Survival analysis (SA) based on
Kaplan-Meier modeling (KM) and Cox regression modeling
(CR) of relative hazard rates in various locations are in
Sec. VI. The data requirements and goals of a TBF analysis
and of SA are different: TBF analysis studies error log data
to show how GPU reliability affects the machine, whereas
SA methods study lifetime data of the GPUs to show how
the machine affects their reliability. The application of SA
methods is novel in the HPC reliability context. It has roots
in biostatistics and epidemiology, where it is used to discover
causes of disease. Finally, we discuss our main conclusions
and recommendations in Sec. VII.

II. RELATED WORK

Being the largest machine with the most GPUs in the world
attracts a lot of attention so particularly during Titan’s first
few years of operation, many studies were published about
different aspects of its reliability. However, none of the studies
investigate the atypical failure mode discussed in this paper
nor do they consider data over the full lifetime of the system
through its decommissioning.

Tiwari et al. [30], [33] analyze types of GPU errors on Titan
and on a GPU cluster at Los Alamos National Laboratory. This
includes neutron beam experiments at the Los Alamos Neutron
Science Center and at Rutherford Appleton Laboratories to
further understand GPU soft errors caused by neutron radiation
triggered upsets (bit flips and timing errors). Tiwari et al. [32]
further analyze several types of GPU errors on Titan, including
software/firmware related errors and failures, ECC double-bit
errors, as well as GPU “off the bus” and ECC page retirement
events. This work observes an ECC double-bit mean-time
between errors (MTBE) of about 160 hours, or about one per
week, with 86% occurring in GPU memory and the rest in
the GPU register file. Their GPU “off the bus” events were
caused by a system integration issue that was fixed and not an
inherent GPU or GPU memory architecture flaw. Both [33] and

[32] report temperatures observed on some Titan components,
which we use in Sec. VI to confirm our interpretation of
airflow effects on temperature.

Nie et al. [19]–[21] characterize the soft error behavior of
Titan’s GPUs in relation to temperature and power consump-
tion to predict its increased occurrence by correlating data in
temporal and spatial domains with machine learning models.
The work focuses primarily on correctable single-bit errors.
Using Titan data from June 2013 to February 2015, Tiwari
et al. and Nie et al. do not address the atypical failure mode
discussed in this paper, as it did not surface until mid 2016.

Zimmer et al. [36] develop a new job scheduling strategy
for Titan to counter the GPU failures that we discuss and
to improve system utilization and productivity. The solution
uses reordering of the compute nodes for resource allocation,
scheduling larger jobs on more reliable nodes and smaller jobs
on less reliable nodes.

Ezell [6] creates a general understanding of Titan’s inter-
connect failures using an application to stress test its Gemini
interconnect. The work by Kumar et al. [15] analyzes Titan’s
interconnect faults, errors and congestion events to improve
resilience of the interconnects and their congestion resolution
methods. The results show that the magnitude of interconnect
errors is very high with an uneven distribution across differ-
ent types of links. They also show that congestion is very
frequent and bursty. Gupta et al. [9] investigate the spatial and
temporal properties of failures on Titan and their impact on
resilience mechanisms with implications for efficient system
operation. Gupta et al. [10] also perform a study covering five
supercomputers at Oak Ridge National Laboratory, including
Titan. The study concentrates on developing an understanding
of errors and failure frequencies over multiple generations of
supercomputers and over their years of operation. This work
resulted in many lessons learned, including that the mean-
time between failures (MTBF) can change drastically and
non-monotonically over time. Meneses et al. [17] analyze
the interplay and workload on Titan using failure and job
submission logs. The results indicate that failures depend
heavily on workload.

Bautista-Gomez et al. [1] use failure data from Titan to dy-
namically adapt checkpoint frequency to the current reliability
of the system. Tiwari et al. [31] also use failure data from Titan
to exploit temporal locality in errors. Temporal clustering of
errors allows lazy checkpointing when given error-free time
thresholds are reached. Both approaches, Bautista-Gomez et
al. and Tiwari et al., aim at dealing with the drastically and
non-monotonically changing MTBF of Titan to match current
system reliability with an efficient recovery strategy.

Other work in characterizing supercomputer faults, errors,
and failures focuses on various other systems deployed in
the United States, primarily at Department of Energy labo-
ratories, and around the world. Di et al. [5] develop an in-
depth understanding of failure characteristics of the IBM Blue
Gene/Q Mira system at Argonne National Laboratory. This
work shows that 99.4% of job failures are due to user behavior,
such as errors in the code or misconfiguration. Martino et

al. [16] characterize the errors and failures on the Blue Waters
Cray XE6/XK7 system located at the National Center for
Supercomputing Applications of the University of Illinois at
Urbana-Champaign. The results show that 74.4% of system-
wide outages in Blue Waters were caused by software. No-
tably, Blue Waters’s XK7 partition had the same architecture
as Titan, but did not experience the same GPU failure mode
detailed in this paper.

III. DATA COLLECTION AND PREPROCESSING

Data on Titan GPU lifetimes is constructed from two
sources: inventory runs and failure event log records. Two
types of failure events were collected for this study: Double
Bit Error (DBE) and Off the Bus (OTB). DBE is an error
correcting code (ECC) detection in GPU memory, which can
correct a single bit flip and detect but not correct a double
bit flip. OTB is the loss of host CPU connection to the GPU.
While other types of errors were recorded in log files, as is
reported in [9], [30], OTB and DBE became dominant in 2016
and were found to be the “signature” event of the GPU board
failing resistor and a trigger for GPU replacement.

An inventory of GPU serial numbers and their locations
was recorded each time the system boots, typically for soft-
ware updates and patches but sometimes for hardware swaps,
although warm swaps of blades were usually possible. Boots
typically occurred once every few days but sometimes even a
few times per day. A single inventory takes about a minute
and is recorded in a separate file. It can be incomplete if a
node response times out but such occurrences were relatively
rare. Figure 2 shows that during 2014 and 2015, inventories
were far apart, even 56 days once in 2014. We note this to
illustrate that exact times for GPU removal from service are
not known, the are “censored,” and we only get the inventory
time information. We discuss the notion of censoring and its
implications in Sec. VI.

Initial processing of inventory files checks the Serial Num-
ber (SN) and Location of each GPU and creates or updates a
separate record for each contiguously observed SN-Location
combination. Resulting GPU data records are of the form
shown in Fig. 3, where records for three are shown. Each
record starts with a serial number and locations are coded
with ccol-rowccagesslotnnode. The location references are

0

50

100

150

200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55
days

co
un

t

year

2013

2014

2015

2016

2017

2018

2019

Fig. 2. Inter-inventory times, taken as time intervals between unique GPU
insert and remove dates in the data and removing those less than a day.

0323812007945 | c17-4c1s3n1 | 09/28/2012 10:29:48 | 02/02/2013 11:32:29
| c20-6c1s5n2 | 07/23/2019 11:25:33 | 01/20/2020 18:51:10
| c13-1c1s3n3 | 01/21/2014 10:28:50 | 07/11/2017 18:04:25
| c0-1c1s3n3 | 10/11/2013 15:57:33 | 10/12/2013 22:09:31
| c21-1c2s5n0 | 03/19/2013 15:48:11 | 05/29/2013 11:54:11
0325216047736 | c18-4c1s5n1 | 04/09/2017 21:36:19 | 01/20/2020 18:51:10
0323812008856 | c5-4c0s7n0 | 09/30/2012 12:20:00 | 01/25/2013 15:29:58
| c0-6c1s7n2 | 10/21/2013 14:28:19 | 10/28/2013 17:52:44
| c3-3c1s5n0 | 05/29/2013 11:54:11 | 05/29/2013 11:54:11
| c23-6c1s7n2 | 01/21/2014 10:28:50 | 11/02/2018 14:42:34
| | DBE | 11/02/2018 14:42:34

Fig. 3. A few records of raw data produced from inventories and log files
that is processed further in our analysis. Note that dates are a mix of EST
and EDT.

Fig. 4. Titan cabinet (front view and left side view with air flow) and single
blade layout (bottom left with node numbers) and floor layout (bottom right
with col and row numbers). Cooling airflow is bottom to top within a cabinet,
taking ambient air in mostly at the foot and releasing it back out at the top.
Cooling fluid is passed through heat exchange evaporators, below Cage 0 and
above Cage 2. Ambient air in the room is conditioned at nominal 75◦ F. The
room air system has a dozen intakes near the ceiling and dumps cool air under
the floor in several locations. A number of floor tiles are perforated. Yellow
dot marks GPU location c17-4c1s3n1.

cabinet column (0-24), row (0-7), cage (0-2), slot (0-7), and
node (0-3) with respect to the layout shown in Fig. 4. Note that
there is an extra empty column of cabinets between columns
10 and 11 to accommodate a few ceiling supports. To aid
orientation in the figure, we mark the first location in Fig. 3
c17-4c1s3n1 with a yellow dot in each view of Fig. 4.

The first GPU record in Fig. 3 shows installation in
locations c17-4c1s3n1, c21-1c2s5n0, c0-1c1s3n3,
c13-1c1s3n3, with periods off the system, and finally in
c20-6c1s5n2, where it stays until the last inventory file
processing run on January 20, 2020. Note that subsequent
processing for life spans takes into account that records are
not in chronological order and adjusts the last processing
run time to “lights out” on Titan on August 1, 2019. The

second GPU is installed in location c18-4c1s5n1, where
it stays until “lights out”. The third GPU is first installed in
locations c5-4c0s7n0, c3-3c1s5n0, c0-6c1s7n2, and
c23-6c1s7n2, where a “DBE” is observed on November
2, 2018, and it is not seen again. This is the data set
titan.gpu.history.txt we make publicly available.

IV. VIEWING AND CLEANING THE DATA

As we need to recover durations of GPU operation from
this data, correct processing involves time adjustments for
switching between daylight saving time and standard time and
leap years. We perform this by setting a reference time zone
(Eastern time) and converting all date-times from strings into
POSIX date-time variables with the R lubridate package [8],
which enables appropriate date arithmetic and sensible date
constructs for graphs.

As most analysis software relies on rectangular table-like
data, we fill the needed repeats of values missing in the raw
data (see Fig. 3). To focus our analysis on data after the first
two rework cycles in the break-in period, we first reduce the
data to the GPUs that were installed near the start of 2014.
This was done by removing data for any units with a remove
date before 2014. After this reduction, there were still six
older units remaining, which we also removed to have a clean
set of units for the analysis. We do some further processing
to handle time overlaps in a tiny fraction (under 0.0007 in
GPU life and 0.0002 in location life) of recorded life in the
raw records by simply dropping the overlapping lifetimes. A
detailed followup of a few of these overlaps found that they
are caused by incomplete inventories, where for a moved GPU
a node query times out, creating the appearance that a unit is
in two locations.

Next, we aggregate into one record per serial number with a
total lifetime, the first insert time, the last remove time, and a
number of other quantities such as location where the longest
time is spent, the proportion of time at the longest location,
and the number of DBE or OTB events.

To get some intuition for the GPU lifetimes on Titan,
we give two views of 90 randomly selected GPUs and 90
randomly selected locations in Fig. 5. The GPU view visually
documents the life of each GPU unit: when it was installed
and removed at various locations, its DBE and OTB events,
and the last time it was seen. The location view documents
the life of a location: when different GPUs were installed and
removed, their OTB and DBE events, and whether a removal
was the last time the unit was seen on the system. These views
were critical to understanding the data and to verifying various
data processing decisions.

The third rework cycle was used to label GPUs as old batch
and new batch. The two batches are clearly identifiable in the
SN view of Fig. 5 as those first appearing near the 2017 time
frame. The new batch is formally defined as those with first
insert date of 2016 or later. More frequent OTB and DBE
events are apparent in the old batch. It is also clear from this
view that practically all new GPUs stayed at their initial install
location whereas the old GPUs were occasionally reinstalled

]

]
]

]

]

]

]

]

]

]

]

]

]

]

]
]

]

]

]

]

]

]

]

]

]

]
]

]

]

]

]

]

]

]

]

]

]

]

0320317054649
0320617015443
0320617016057
0320617016078
0320617016119
0320617016304
0321916042037
0322417002666
0323217094446
0323217094720
0323512026145
0323612015663
0323612016044
0323612016059
0323612016067
0323712006759
0323712007747
0323712008376
0323712008449
0323712021620
0323712022194
0323712022224
0323712022413
0323712023519
0323712024102
0323712027491
0323712027660
0323712027669
0323712028556
0323712028591
0323712028630
0323712028897
0323712042698
0323712042709
0323712042711
0323712042876
0323712044080
0323712044440
0323712044448
0323712044457
0323712044677
0323712045094
0323812005773
0323812005879
0323812006066
0323812006076
0323812006934
0323812006988
0323812007225
0323812008588
0323812009060
0323812009525
0323812009555
0323812009629
0323812023667
0323812023674
0323812023688
0323812023716
0323812023759
0323812024555
0323812025087
0323812025306
0323812025692
0323812025768
0323812025971
0323812026114
0323812026150
0323812026248
0323812026585
0323812055790
0323812055860
0323812055870
0323812056549
0323812056782
0323812068615
0323817095841
0324316302749
0324816009480
0324816009616
0324816010102
0324816010536
0324816010990
0324816011072
0324816011109
0324816011315
0324917127714
0325016204654
0325016204856
0325216047204
0325216047771

2014−01−01 2015−01−01 2016−01−01 2017−01−01 2018−01−01 2019−01−01

S
N (a)

]
]

]
]

]
]

]
]
]

]
]

]
]

]
]

]]]
]
]

]
]]

]
]
]

]]]
]

]

]
]

]
]

]
]

]
]

]
]

]
]
]
]

]]]
]

]

]]
]

]

]
]

]
]

]

]
]

]]
]

c0−2c1s0n0
c0−3c2s6n2
c0−5c1s3n3
c1−0c0s5n0
c1−5c0s2n0
c1−5c0s7n1
c2−4c0s6n3
c3−0c0s0n2
c3−2c0s5n1
c4−0c1s5n3
c4−1c2s5n3
c4−4c1s2n2
c4−4c1s3n2
c5−3c1s4n0
c5−4c0s4n2
c5−4c1s0n2
c5−5c0s0n0
c5−5c0s7n3
c5−6c0s1n3
c5−7c2s1n0
c5−7c2s3n2
c6−0c0s7n3
c6−3c0s3n1
c6−6c0s6n1
c6−6c2s2n2
c6−7c2s4n2
c7−1c2s3n1
c7−1c2s4n2
c7−3c0s4n1
c7−4c2s7n3
c7−7c0s0n3
c8−1c0s2n2
c8−3c2s6n0
c8−7c0s7n1
c9−0c1s0n0
c9−3c2s7n2
c9−5c1s3n2
c9−6c2s5n1

c10−2c2s0n2
c10−4c2s4n1
c10−7c0s1n0
c11−1c0s6n3
c12−1c0s2n2
c12−2c0s4n0
c12−2c2s6n3
c12−6c2s7n0
c12−7c0s4n2
c13−0c0s2n2
c13−6c1s2n3
c14−1c2s0n1
c14−3c2s3n0
c14−3c2s7n0
c14−7c2s0n3
c16−1c0s0n3
c16−4c0s2n1
c17−0c1s6n0
c17−1c2s0n1
c17−2c0s2n3
c17−2c1s0n1
c17−2c1s5n3
c17−2c1s6n1
c17−4c1s5n2
c17−5c2s5n1
c17−6c2s2n1
c17−7c0s4n3
c17−7c1s7n2
c18−0c2s6n1
c18−2c2s7n0
c18−7c1s2n1
c19−2c1s5n2
c19−3c1s5n2
c19−4c2s1n3
c20−1c0s6n0
c20−4c0s6n1
c21−6c0s0n3
c21−6c1s5n1
c21−7c2s6n0
c22−0c1s5n1
c22−0c2s7n1
c22−1c1s7n0
c22−3c1s0n2
c22−3c2s0n1
c22−5c0s2n3
c22−7c1s1n0
c23−0c2s2n0
c23−5c1s7n0
c24−0c1s3n2
c24−1c1s2n2
c24−2c1s5n1
c24−7c2s5n0

2014−01−01 2015−01−01 2016−01−01 2017−01−01 2018−01−01 2019−01−01

lo
ca

tio
n

(b)

Fig. 5. Serial number view (a) and location view (b) of GPU life and failures. Both SN and locations are randomly selected. Black dots are installs, black
lines are lifetimes at installed location, blue squares are OTB events, red triangles are DBE events, and black] are “last seen” events. Such views were critical
to understanding the data and to verifying various data processing decisions.

at new locations. Nevertheless, a separate analysis determined
that the vast majority of time of the vast majority of units is
spent at one location by both the new and the old units.

The location view shows that each location was operational
almost all the time with small gaps when GPUs were changed
out. It is also notable that OTB and DBE events are associated
with a single GPU although four GPUs are together on a blade.
The proactive replacements in the rework cycle were done by
full blades. Events on single GPUs were usually first swapped
for a new blade, the failed GPU was replaced on the blade, and
the fixed blade then reused elsewhere. The survival analysis
of Sec. VI handles these nuances by appropriate censoring.

V. TIME BETWEEN FAILURES ANALYSIS

Using the cleaned data, we analyze the inter-arrival times
between the DBE and OTB events. This analysis is done at
the device level and at the system level. It provides important
insights into the reliability of large-scale machines, where the
failure rate of an individual device is significantly different
from the overall reliability of the machine.

A histogram of MTBFs measured across GPUs which had
at least one failure event is shown in Fig. 6. This is a practical
assessment of device reliabilities as opposed to those provided
in the device datasheet. The failures are tracked using the SN
of the GPUs even though a GPU might have been placed
at different locations in the machine during its lifetime. The
time to the first failure on a device is measured by taking
the insert time as the reference point, whereas, a simple
difference is taken for subsequent failures. It can be noticed
that MTBFs due to DBE and OTB failures of old GPUs are
clustered around 2.8 years. This corresponds to the lifetime
of most GPUs in the system after accounting for relocations
and replacements done in the machine. Almost all of the new
batch of GPUs lie below the average since most have a lifetime
close to 3 years. We point out that the new batch had a much
smaller number of failures (a total of 127 DBEs and OTBs)
than the old batch (a total of 5320 DBEs and OTBs). With this
high disproportionality, it is difficult to compare device-level

0 1 2 3 4 5 6
MTBF (years)

0

20

40

60

80

100

Co
un

t

Old GPUs: DBE data
Old GPUs: OTB data
New GPUs: DBE data
New GPUs: OTB data

Fig. 6. Distribution of device-level MTBFs due to failures across all GPUs
during the lifetime of the machine. The DBE and OTB events are separately
plotted to distinguish between the failure pattern of each event type. Data
includes both old and new batch of GPUs with the new GPUs having MTBFs
scattered between 0 and 3 years as highlighted by yellow highlights in the
plot. Each bin in the distribution represents almost 2 weeks.

MTBFs across the new and old batches. On the other hand, it
indicates better reliability of the new GPUs as highlighted in
the next section.

Apart from the center cluster, many GPUs also have a very
low MTBF. This failure characteristic is mainly an artifact
from troubleshooting a period of increasing failures in mid
to late 2016. After a GPU experienced an OTB or a DBE a
second reboot was attempted at the same or possibly different
location. Usually, but not always, a second OTB or DBE was
generated immediately or possibly after a short time. When
moved to a new location, this generates an artifact in our data
with an unusually short MTBF because we use the insert time
as a reference for the first failure on a relocated GPU. This
drawback is balanced by the advantage that this way we can
discount out of service times which were frequent particularly
during early 2017 as can be seen in the location view of Fig. 5.

On the other end of the spectrum, a noticeable portion of
GPUs have very high MTBFs and their failures are mostly
DBEs. These are the GPUs that see continuous operation in
the machine despite its various episodes and see a single DBE
event during their lifetime. Apart from this, the distribution
of MTBF due to DBE events looks very similar to that due
to OTB events. We also note in Fig. 6 that the number of
recorded DBE events is much higher than the OTB events.
This highlights the targeted replacement of GPUs with OTB
events causing a substantial decrease in OTB events.

Now we turn to a system-wide MTBF analysis. Most high-
performance computing applications, especially on leadership
computing systems such as Titan, use a large fraction of
the entire machine in parallel. In the following analysis,
failures occurring across all GPUs are consolidated and time
between failures is calculated. The old and new GPUs are all
considered. At any given time, only a fixed number of GPUs
are in the system so any variation in time-between-failures is
due to individual device reliabilities.

That said, a single MTBF number does not give an accurate
picture of this machine. With many GPU relocations and
replacements across the machine over its lifetime, it is best
to consider the variability of MTBF across fixed periods.
Here, we calculate the mean of quarterly (three months) time-
between-failures. Figure 7 shows the considerable change in
system-wide MTBF from one period to another. We can see
that MTBF tells the different phases that occurred on the
machine. Relatively high MTBFs are seen before 2015-Q4,
with some quarters not having any OTB events and overall
MTBF being determined solely by DBE events. During this
phase, we see some MTBF variation from quarter to quarter,
but generally, the system MTBF remains higher than one day
(33 hours) and reaches as high as 10 days in one instance. An
alarming drop in the system MTBF to less than a day, (7.7
hours), is observed in 2015-Q4. A consistent drop in system-
wide MTBF is observed starting from 2015-Q2 until 2016-Q4.
The corresponding increase in the number of failures during
this phase can be seen in Fig. 8, with a peak in 2016-Q4. The
usability of the machine comes into question with such low
MTBFs and it eventually triggered a phase of installing new

20
14

-Q1

20
14

-Q2

20
14

-Q3

20
14

-Q4

20
15

-Q1

20
15

-Q2

20
15

-Q3

20
15

-Q4

20
16

-Q1

20
16

-Q2

20
16

-Q3

20
16

-Q4

20
17

-Q1

20
17

-Q2

20
17

-Q3

20
17

-Q4

20
18

-Q1

20
18

-Q2

20
18

-Q3

20
18

-Q4

20
19

-Q1

20
19

-Q2

0

50

100

150

200

250
M

TB
F

(h
ou

rs
)

DBE
OTB
DBE or OTB

Fig. 7. Variation of system-wide MTBF over the lifetime of the machine.
System MTBF is calculated over three month periods to understand the various
episodes of the machine. The three month periods are referred to as quarters,
i.e., January through March is Q1, and so on. Most GPU replacements started
taking place at the end of 2016-Q4 and were completed before 2018-Q1. DBE
and OTB events are considered independently as well as together to represent
failures occurring on the machine.

20
14

-Q1

20
14

-Q2

20
14

-Q3

20
14

-Q4

20
15

-Q1

20
15

-Q2

20
15

-Q3

20
15

-Q4

20
16

-Q1

20
16

-Q2

20
16

-Q3

20
16

-Q4

20
17

-Q1

20
17

-Q2

20
17

-Q3

20
17

-Q4

20
18

-Q1

20
18

-Q2

20
18

-Q3

20
18

-Q4

20
19

-Q1

20
19

-Q2
0

100

200

300

400

500

600

Nu
m

be
r o

f F
ai

lu
re

s

ALL GPUs: DBE
ALL GPUs: OTB
Old GPUs: DBE
Old GPUs: OTB

Fig. 8. The number of DBE and OTB failures observed over the lifetime of
the machine. A distinction is made between failures on old GPUs to highlight
the number of failures on the newer GPUs. The peak failures are seen in 2016-
Q4 (813 failures), which marks the commencement of major replacement of
GPUs in the machine.

GPUs in the machine.
When GPU replacements start to take place in late 2016,

it triggers a slight increase in MTBF. However, this change
only lasts until 2018-Q1, when we see another downward
trend of system MTBF. Incidentally, 2018-Q1 also marks the
completion of all GPU replacements. So the upward trend
noted in the period from 2016-Q4 to 2018-Q1 is likely due
to phased replacements, each time a portion of the machine
being unavailable, thus having a smaller number of GPUs
than the full machine in operation. There is no definitive way
to incorporate this unavailability of the machine into MTBF
analysis, unless we know how the down times were scheduled.
The lowest MTBF obtained in 2016-Q4 is 2.7 hours, with
subsequent periods having the lowest MTBF of 5.9 hours.
With system MTBF less than a day, even slight variations
in MTBF make it difficult to reliably run applications despite
using failure recovery approaches such as checkpoint restart,
as discussed later on in Section VII.

We also separate the DBE and OTB failures in this analysis.
After the 2017 replacement of many GPUs, there is a drastic
increase in mean-time-between OTB failures, which is also
evident in a reduction of OTB failures in Fig. 8. However, the

20
17

-Q1

20
17

-Q2

20
17

-Q3

20
17

-Q4

20
18

-Q1

20
18

-Q2

20
18

-Q3

20
18

-Q4

20
19

-Q1

20
19

-Q2
0

25

50

75

100

125

150

175

200

M
TB

F
(h

ou
rs

)

New GPUs: DBE or OTB
Old GPUs: DBE or OTB
ALL GPUs: DBE or OTB

30

35

40

45

50

55

60

Ne
w

ba
tc

h
pa

rti
tio

n
siz

e
(%

 o
f i

n-
se

rv
ice

 G
PU

s)

Fig. 9. Variation of system-wide MTBF across hypothetical new and old
partitions of the machine after a substantial number of new GPUs were put
in service. The dashed line plotted with secondary y-axis shows the size of
new partition over time. DBE and OTB events both determine the MTBF.
Results highlight the difference in reliability for jobs using the new GPUs as
compared to old GPUs, as well as now MTBF is driven by the less reliable
old partition despite occupying only a minority portion of the machine.

system MTBF is determined by the weakest link and here the
occurrence of DBE events tends to dictate it. Even though the
replacements helped to increase the MTBF due to DBE events,
the overall system reliability is dictated by the components
with the most age in the system. There is a re-emergence of
an upward trend towards the end in DBE failures in Fig. 8,
which appears to be due to older GPUs in the system.

To better understand the difference in reliability of newer
and old portions of the machine, Fig. 9 shows the drastic
difference in system MTBF measured in two hypothetical
partitions of the machine starting from the time when a major
number of GPU replacements had been completed. The Fig. 9
also shows the proportion of the machine with new GPUs over
time. The majority of the machine had new GPUs installed
starting in 2017-Q3. This new partition of the machine has a
12X better MTBF than the older partition.

For example, in 2018-Q4, the old partition MTBF is about
7.9 hours, whereas the newer partition is 96 hours (4 days).
The implications of such a huge disparity on applications
running on the system are discussed in Section VII. Moreover,
while the old partition is smaller than the new partition, the
old partition drives the overall reliability of the machine.

VI. SURVIVAL ANALYSIS

Survival analysis (SA) methods [28], sometimes referred to
as time to event methods, focus on the effect of the machine
on the GPU units. These methods have roots in biomedical
statistics, where the effect on the patient is most important. So
here we treat the GPUs as patients to determine factors that
contribute to failures. SA methods use and combine informa-
tion across the operational lifetimes of all GPUs. For these
analyses, we take apart the location string of each GPU into
variables col, row, cage, slot, and node, and study the influence
of the locations on the GPU lifetimes. The construction of a
GPU lifetime is more complex than it initially appears because
the units are observed only at reboot time, because most units
were proactively replaced to prevent failure, and because some

cage: 0 cage: 1 cage: 2
batch: new

batch: old

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Years

S
ur

vi
va

l p
ro

ba
bi

lit
y

Node

0

1

2

3

Fig. 10. Comparison of the old and new batches, including the difference of survival probabilities based on cage and node GPU locations.

units continue in operation after OTB and DBE events (when
a second reboot may be successful).

A unit that experiences at least one OTB or DBE event
and is removed from the system is considered failed and its
operation time until the last seen time is taken as its lifetime.
Although most failed units experience one of these events
at the last seen time, our definition is not perfect because
some units experience OTB or DBE events at a time different
from its last seen time. Such units were relatively few so we
consider this definition of lifetime as the most pragmatic.

A key concept in survival analysis is censoring, which
is about using information from study subjects whose exact
failure times are not available or that have not failed. This
applies to our study because of proactive GPU replacement
before failure, because most units were still in operation when
the system was shut down, and also because life spans were
recorded only at inventory times. We use censoring concepts
on the proactive replacements and on units still in operation
at the end. This allows us to use all of the GPU lifetime data,
including units that did not fail. But we ignore the inspection
time censoring, treating inventory times as exact failure times
to reduce the complexity of this analysis. We expect that
because of the volume of data and length of operation time,
this would not make much difference in our conclusions.
However, we are making our data publicly available [24]
and expect that others, especially in the survival analysis
community, will dive deeper.

Kaplan-Meier survival analysis (KM) [13], [28] starts with

computing the probability of survival beyond a given time. It is
a nonparametric technique that makes no specific failure model
assumptions, such as Weibull, Exponential, etc. The technique
is able to use censored observations and can also split the data
into subpopulations to compute separate survival curves.

If T is the random variable of a GPU failure time, then
its cumulative distribution function F (t) = Pr{T < t} gives
the probability that a GPU fails by duration t. The survival
function is its complement

S(t) = Pr{T ≥ t} = 1− F (t).

It is the probability of being operational at duration t. We
use the R packages survival [29] and survminer [14] for
the KM analysis, which is reported in Fig. 10. Within each
batch, separate survival curves are computed for each cage
by node combination. Along with the survival curve estimate,
this analysis provides 95% confidence region for survival
probability shaded around the curves.

It appears that transport of cooling air provides a complete
explanation for relative differences in cage and node survival
rates in the old batch. We reach this conclusion with reference
to Fig. 4 and relative positions of cages and nodes within a cab-
inet. Both cage and node differences in survival probabilities
can be explained by an inverse relationship with the distance to
the bottom of the cabinet, where cooling air is forced through
the cabinet to the top. The survival curves can be ordered
(cage 0, cage 1, cage 2) in decreasing order of survival. As
the blades are placed vertically within the cabinet, pairs of

col

row

cage

slot

node

 0 (X− 1)
 1 (X− 2)
 2 (X−25)
 3 (X− 3)
 4 (X−24)
 5 (X− 4)
 6 (X−23)
 7 (X− 5)
 8 (X−22)
 9 (X− 6)
10 (X−21)
11 (X− 7)
12 (X−20)
13 (X− 8)
14 (X−19)
15 (X− 9)
16 (X−18)
17 (X−10)
18 (X−17)
19 (X−11)
20 (X−16)
21 (X−12)
22 (X−15)
23 (X−13)
24 (X−14)

0
1
2
3
4
5
6
7

0
1
2

0
1
2
3
4
5
6
7

0
1
2
3

744
759
772
739
755
759
752
744
758
758
739
760
756
759
743
753
754
758
758
751
766
759
755
743
743

2363
2352
2351
2363
2371
2334
2339
2364

6240
6275
6322

2355
2353
2349
2352
2364
2349
2357
2358

4712
4722
4697
4706

173
169
97
217
88
266
125
225
131
259
180
233
228
242
228
257
224
207
194
192
217
218
244
220
193

795
639
565
596
687
577
472
696

1107
1746
2174

637
592
575
553
606
633
694
737

1388
1494
1195
950

Variable N Events Hazard ratio

0.5 1 2 5 10 20

Fig. 11. GPU hazard ratios from Cox regression model on old batch. All
variables, col, row, cage, slot, and node are with respect to spatial locations
shown in Fig. 4. Notably, the col are physical columns of cabinets.

nodes too experience the same relationship with distance to
the bottom, nodes 2 and 3 having lower failure rates than
nodes 0 and 1.

An increasing average temperature gradient of about 4◦C
per cage is reported in both [30, Fig.10] and [32], inde-
pendently confirming our airflow temperature interpretation.
Findings in [30] also suggest that DBEs may be sensitive to
temperature, although their evidence is considered preliminary
due to the relatively low number of DBEs in 2014-2015
and high variability of 10◦C to 15◦C in their measured cage
replicates.

Very few failures have occurred in the new batch and they
are clearly less prone to failure at the 2.5 year mark. There
is a slight change at the 3 year mark of cages 1 and 2 but it
is also accompanied with a rise in uncertainty and survival is
still well above levels in the old batch.

We don’t see a “bathtub curve” phenomenon, in fact the
opposite is apparent in cages 1 and 2 of the old batch. The
slope of the survival curve is related to the hazard rate. There
does not seem to be an early “infant mortality” period nor a
“wear out” phenomenon at the end. Rather, we see a steeper

col

row

cage

slot

node

 0 (X− 1)
 1 (X− 2)
 2 (X−25)
 3 (X− 3)
 4 (X−24)
 5 (X− 4)
 6 (X−23)
 7 (X− 5)
 8 (X−22)
 9 (X− 6)
10 (X−21)
11 (X− 7)
12 (X−20)
13 (X− 8)
14 (X−19)
15 (X− 9)
16 (X−18)
17 (X−10)
18 (X−17)
19 (X−11)
20 (X−16)
21 (X−12)
22 (X−15)
23 (X−13)
24 (X−14)

0
1
2
3
4
5
6
7

0
1
2

0
1
2
3
4
5
6
7

0
1
2
3

400
389
384
383
380
399
378
451
443
473
457
471
461
462
469
478
473
494
507
494
518
508
526
488
484

1875
1662
1638
1277
1285
1256
1241
1136

777
4123
6470

1434
1389
1410
1427
1414
1424
1434
1438

3495
3513
2209
2153

1
1
1
2
1
2
0
2
2
0
2
5
2
3
5
0
5
4
4
3
1
4
5
2
5

15
6
6
9
11
4
5
6

2
16
44

13
6
5
5
3
10
9
11

19
20
10
13

Variable N Events Hazard ratio

0.05 0.1 0.2 0.5 1 2 5 10 20

Fig. 12. GPU hazard ratios from Cox regression model on new batch.

slope (higher hazard rate) in the middle, associated with the
unexpected resistor failures.

To get more comparison power across the locations, we
can use a technique that in a sense averages over time. Cox
proportional hazards (CPH) regression analysis, can include
covariates and estimates relative risk averaged over time based
on the covariates [4], [11]. The CPH regression function takes
the form

h(t) = h0(t)e
b1x1+b2x2...bkxk ,

where xi are covariates, h0(t) is the baseline hazard, and the
bi are coefficients that measure the impact of the covariates.
The quantity ebi is the hazard ratio (increased average risk
over baseline) for covariate i.

CPH is considered a semi-parametric model as there are no
assumptions about the shape of the baseline hazard function.
Its strongest assumption is that the hazards are proportional.
There are a number of tests for this, including graphical
diagnostics in the survminer package as well as checking
that survival curves for categorical covariates do not cross. We
ran these diagnostics and concluded that the hazards for our
location categories are approximately proportional. However,
survival functions partitioned on batch do cross and so we

col

row

cage

slot

node

 0 (X− 1)
 1 (X− 2)
 3 (X− 3)
 5 (X− 4)
 7 (X− 5)
 9 (X− 6)
11 (X− 7)
13 (X− 8)
15 (X− 9)
17 (X−10)
19 (X−11)
21 (X−12)
23 (X−13)
24 (X−14)
22 (X−15)
20 (X−16)
18 (X−17)
16 (X−18)
14 (X−19)
12 (X−20)
10 (X−21)
 8 (X−22)
 6 (X−23)
 4 (X−24)
 2 (X−25)

0
1
2
3
4
5
6
7

0
1
2

0
1
2
3
4
5
6
7

0
1
2
3

744
759
739
759
744
758
760
759
753
758
751
759
743
743
755
766
758
754
743
756
739
758
752
755
772

2363
2352
2351
2363
2371
2334
2339
2364

6240
6275
6322

2355
2353
2349
2352
2364
2349
2357
2358

4712
4722
4697
4706

173
169
217
266
225
259
233
242
257
207
192
218
220
193
244
217
194
224
228
228
180
131
125
88
97

795
639
565
596
687
577
472
696

1107
1746
2174

637
592
575
553
606
633
694
737

1388
1494
1195
950

Variable N Events Hazard ratio

0.5 1 2 5 10 20

Fig. 13. GPU hazard ratios from Cox regression model on old batch, with the
col variable in interconnect torus X-coordinate order. The torus order removes
the peculiar interleaving pattern in Fig. 11 and presents a response that can
be explained by an interaction of system cooling and job scheduling.

fit the model to the new and the old batches separately. The
results are presented in Fig. 11, and 12.

We find that the average hazard ratios strongly correlate
with detailed nuances of the system cooling architecture and
are also impacted by job scheduling. The figures give hazard
ratios for each of the location variables, giving the ratio for
each level compared to its first (0) level (consequently the
0 level is always 1). Due to the exponential nature of the
CPH model, the horizontal hazard ratio axis is on a log scale.
The estimates include 95% confidence intervals, which too are
most reliably computed on a log scale (see, for example, [25]).
In the figures, we also include the number of units, N, at risk
and the number of events that occurred in each category.

All the factors (col, row, cage, slot, node) in the old batch
are balanced with respect to the number of units at risk and
consequently nearly orthogonal (each level of a factor contains
all levels of the other factors) seemingly an almost “designed”
experiment nature to this analysis. This is not the case for the
new batch, where the cage levels have very different numbers
of units at risk. But this also points out that even for the

old batch the balance holds only at the outset and as life
proceeds, failing units are replaced with new units and the
balance degrades because failures are location-dependent.

Our interpretation of correlation with details of the cooling
system comes mostly from the hazard ratios for the old batch.
The new batch has not had many failure events and the
uncertainty bars of nearly all ratios include 1, which is no
difference. In the old batch, we see that cage has the strongest
effect, putting the highest hazard ratio on cage 2, which is
consistent with lowest survivals in the KM analysis earlier. Its
ratio value near 20 has to be interpreted with caution because
it is a time averaged value on a log scale and suffers from
the degrading balance mentioned in the previous paragraph.
This aspect is not captured by the uncertainty, which accounts
for the randomness of the failures but not for the geometric
time averaging [12]. Consequently, we interpret the pattern of
relative hazards rather than actual ratio magnitudes. More in-
depth analysis with penalized estimation methods like [2] can
take such balance issues in the exposure history into account
and provide time-dependent hazard estimates.

In addition to the strong cage and node hazard rate dif-
ferences that increase with distance from the bottom of each
cabinet, seen in both KM and CPH results, there is a weaker
but peculiar pattern in the row and col hazard rates. The
different behavior in col 0-11 from col 12-24 is likely due
to the presence of additional server systems and the Atlas file
system to the right of col 24, as can be seen in the floor layout
of Fig. 4. The servers used ambient forced air for cooling and
did not have additional evaporator heat exchangers, affecting
room temperature on the right side of Titan. Anecdotally, this
was confirmed by measurements (unfortunately we do not have
access to this data) and resulted in biasing more perforated
floor tiles on the right side of Titan.

The peculiar interleaving pattern of the first set of columns
can be explained by Titan’s folded torus interconnect. If we
order the columns by their torus X coordinate [6], seen in
Fig. 13, the column pattern retains the proximity to other
server systems explanation and loses the interleaving pattern
peculiarity. Moreover, Titan job scheduler filled temporal and
spatial gaps in nodes starting with low torus X coordinate. This
potentially explains that the low col and low X coordinate
columns have higher hazard due to higher workload than
the low col and high X coordinate columns. Moreover, an
impact of scheduling on low X coordinate (left) temperature
aligns with higher servers-caused room temperature on high
col numbers (right).

It is possible that the torus Y coordinate can help explain
the apparent row effects, but we have difficulty interpreting
the row description in [6]. A very minor airflow effect across
slots also seems to be present as it mimics faster airflow for
the middle slots.

VII. CONCLUSIONS

The failure rates of the old batch are not matched by the new
batch nor by experience at other facilities with the same type
of GPU components, making the failure mode [35] specific

to the component batch installed in the second rework cycle.
This unexpected event had considerable impact on operations
and on availability of the system. On a positive but ironic
note, the corrosion process in the failing resistors made the
specific GPU batch act as sensitive instruments for obtaining
cumulative trend information from component heat dynamics,
giving the current analysis the strong signals observed, and
providing lessons learned. Here we discuss the conclusions
we can draw from the experience on mitigation, which keeps
the system operating at an acceptable level and possibly
even restores some of the lost capability, and on long-term
planning, which addresses such scenarios in future-generation
supercomputers.

A. Mitigation

Mitigation response on Titan included replacing about
11,000 GPUs and changing the job scheduling strategy [36].
This replacement, which amounted to about 59% of Titan’s
18,688 GPUs, helped to improve productivity by restoring
some of the lost capability, but it was a costly and time-
consuming effort. Changing the job scheduling strategy to run
larger jobs on more reliable nodes and smaller jobs on less
reliable nodes played a crucial role in maintaining productivity
at reduced capability. However, jobs running on larger portions
of the system, utilizing most or all of its resources, were still
impacted by the failing GPUs and corresponding low system
MTBF.

The options of replacing failed components and employing
reliability-aware resource management may not be available or
be cost effective for other supercomputing centers dealing with
similar unexpected reliability issues. Replacement components
may not be readily available and may have to be manufactured,
which can be impossible for a technology that is no longer
supported by the original manufacturer. If errors or failures
are caused by software, this too can be difficult to fix if the
software itself or the deployed version is no longer supported
by the vendor.

There are service contract or warranty aspects that may
involve more than one manufacturer and it may not be clear
cut who has the financial responsibility in a given situation.
Did the component fail because it was faulty or because it
was placed in a faulty environment? An operational budget
of a supercomputing center may not have significant funds to
cover replacement or re-engineering costs. Root-cause analysis
can be time consuming and require expensive, even research
grade expertise, as was needed to find the failing resistors on
Titan. On a world class system the same is true of developing a
hardware and/or software mitigation strategy. Fixing a problem
requires finding and understanding it, which can be difficult
in today’s complex systems and may require knowledge that
only the original manufacturer or vendor possesses.

Reliability-aware resource scheduling also has its limita-
tions, as the network architecture needs to be taken into
account. Titan’s 3D torus network created more challenges
for efficient job allocations than the fat tree network of Titan’s
successor, Summit [22]. Nodes associated with the same job

need to be close to each other on the network for maximum
application performance. But node outages or less reliable
nodes create resource allocation holes. Separating two lower
nodes in each cage 0 on Titan would not create a contiguous
partition, yet this group would be the most reliable in 2016
as was shown in the preceding section. Alternatively, partially
or completely replacing the aging and failing supercomputer
with a new system, even if this solution offers less capability,
may be more cost effective in the end.

Other mitigation components for Titan included matching
the checkpointing interval of applications with the system’s
current reliability [1], [31]. The issue here was lack of au-
tomated systems to report reliability information and lack of
flexibility in application-level checkpoint/restart implementa-
tions.

Finally, mitigation is engaged only when we discover there
is a problem. Considering the KM analysis shown in Fig. 10,
beginning of year 2 (early 2016 for old units) is roughly when
the survival probability confidence intervals of nodes in cage 2
begin to separate. Their separation indicates that the nodes in
cage 2 are different even after accounting for random variation.
A statistical comparison of cages 0 and 2 would likely show an
earlier signal. The use of more advanced statistical modeling
techniques on future systems, especially when combined with
more diagnostic data collection, can lead to earlier detection
of a problem and deeper insight into its causes. The statistical
data processing, visualization, and modeling tools used in this
paper can be scaled to large distributed systems [3], [27] to
keep up as data collection on such systems ramps up.

B. Future Systems

The long-term planning component is one of the biggest
lessons learned from the Titan reliability experience. Today’s
supercomputers are designed to deal with expected reliabil-
ity issues. However, history has shown [7] that unexpected
reliability issues do occur and do have a significant impact.
Vendors and manufacturers obviously can not mitigate against
all possible reliability threats, however, a resilience strategy is
needed for future-generation systems that is able to deal with
emerging unexpected reliability threats in a reasonable and
cost effective way. In addition to mitigation, better support
for automated real-time reliability monitoring and reporting is
needed, including for root-cause analysis.

Supercomputer center policies regarding reliability monitor-
ing, resource allocation and checkpointing strategies need to be
powerful and flexible enough to facilitate mitigation for such
unexpected reliability threats. System acquisition contracts
may need to include performance requirements for degraded
operation, such as a certain percentage of performance capa-
bility if the MTBF drops by an order of magnitude.

The reliability issues that Titan experienced had a direct
impact on the development and deployment of Titan’s succes-
sor, Summit, and even on Summit’s successor, Frontier. More
and better monitoring data is already collected on Summit
and discussions about the use of more advanced statistical
methods have already started. NVIDIA’s GPU management

and monitoring software has been significantly improved.
Temperature monitoring has been significantly improved as
well.

VIII. ACKNOWLEDGMENTS

This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC05-00OR22725.

This work was supported by the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing
Research, Resilience for Extreme Scale Supercomputing Sys-
tems Program, with program managers Robinson Pino and
Lucy Nowell.

We are very grateful to four anonymous reviewers who
provided detailed and insightful comments on our initial
submission, which resulted in a greatly improved presentation
and deeper conclusions.

REFERENCES

[1] L. Bautista-Gomez, A. Gainaru, S. Perarnau, D. Tiwari, S. Gupta,
C. Engelmann, F. Cappello, and M. Snir, “Reducing waste
in extreme scale systems through introspective analysis,” in
2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), May 2016, pp. 212–221. [Online]. Available:
https://doi.org/10.1109/IPDPS.2016.100

[2] A. Bender, F. Scheipl, W. Hartl, A. G. Day, and H. Küchenhoff,
“Penalized estimation of complex, non-linear exposure-lag-response
associations,” Biostatistics, vol. 20, no. 2, pp. 315–331, Apr. 2019.
[Online]. Available: https://doi.org/10.1093/biostatistics/kxy003

[3] W. Chen, G. Ostrouchov, D. Schmidt, P. Patel, and H. Yu, “pbdMPI:
Programming with Big Data–Interface to MPI,” R Package, 2012.
[Online]. Available: http://cran.r-project.org/package=pbdMPI

[4] D. R. Cox, “Regression models and life-tables,” Journal of the Royal
Statistical Society. Series B (Methodological), vol. 34, no. 2, pp. 187–
220, 1972.

[5] S. Di, H. Guo, E. Pershey, M. Snir, and F. Cappello, “Characterizing
and understanding HPC job failures over the 2k-day life of
IBM BlueGene/Q system,” in 49th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN) 2019,
Portland, OR, USA, Jun. 24-27, 2019, pp. 473–484. [Online].
Available: https://doi.org/10.1109/DSN.2019.00055

[6] M. A. Ezell, “Understanding the impact of interconnect failures on
system operation,” in Proceedings of the Cray User Group Conference
(CUG) 2013, Napa Valley, CA, USA, May 6-9, 2013.

[7] A. Geist, “How to kill a supercomputer: Dirty power, cosmic
rays, and bad solder,” IEEE Spectrum, Feb.23, 2016. [Online].
Available: https://spectrum.ieee.org/computing/hardware/how-to-kill-a-
supercomputer-dirty-power-cosmic-rays-and-bad-solder

[8] G. Grolemund and H. Wickham, “Dates and times made easy with
lubridate,” Journal of Statistical Software, vol. 40, no. 3, pp. 1–25,
Apr. 2011. [Online]. Available: http://www.jstatsoft.org/v40/i03/

[9] S. Gupta, D. Tiwari, C. Jantzi, J. Rogers, and D. Maxwell,
“Understanding and exploiting spatial properties of system failures on
extreme-scale HPC systems,” in 45th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN) 2015, Rio
de Janeiro, Brazil, Jun. 22-25, 2015, pp. 37–44. [Online]. Available:
https://doi.org/10.1109/DSN.2015.52

[10] S. Gupta, T. Patel, C. Engelmann, and D. Tiwari, “Failures in large
scale systems: Long-term measurement, analysis, and implications,”
in Proceedings of the 30th IEEE/ACM International Conference on
High Performance Computing, Networking, Storage and Analysis (SC)
2017, Denver, CO, USA, Nov. 12-17, 2017, pp. 44:1–44:12. [Online].
Available: https://doi.org/10.1145/3126908.3126937

[11] F. E. Harrell, Cox Proportional Hazards Regression Model. Springer
International Publishing, 2015, pp. 475–519. [Online]. Available:
https://doi.org/10.1007/978-3-319-19425-7

[12] M. A. Hernán, “The hazards of hazard ratios.” Epidemi-
ology, vol. 21 1, pp. 13–15, 2010. [Online]. Available:
https://doi.org/10.1097/EDE.0b013e3181c1ea43

[13] E. L. Kaplan and P. Meier, “Nonparametric estimation from
incomplete observations,” Journal of the American Statistical
Association, vol. 53, no. 282, pp. 457–481, 1958. [Online]. Available:
https://doi.org/10.2307/2281868

[14] A. Kassambara, M. Kosinski, and P. Biecek, Drawing Survival Curves
using ’ggplot2’, 2019, r package version 0.4.6. [Online]. Available:
https://CRAN.R-project.org/package=survminer

[15] M. Kumar, S. Gupta, T. Patel, M. Wilder, W. Shi, S. Fu,
C. Engelmann, and D. Tiwari, “Understanding and analyzing
interconnect errors and network congestion on a large scale HPC
system,” in Proceedings of the 48th IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN) 2018, Luxembourg City,
Luxembourg, Jun. 25-28, 2018, pp. 107–114. [Online]. Available:
https://doi.org/10.1109/DSN.2018.00023

[16] C. D. Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop,
and W. Kramer, “Lessons learned from the analysis of system failures
at petascale: The case of Blue Waters,” in 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN)
2014, Atlanta, GA, USA, Jun. 23-26, 2014, pp. 610–621. [Online].
Available: https://doi.org/10.1109/DSN.2014.62

[17] E. Meneses, X. Ni, T. Jones, and D. Maxwell, “Analyzing
the interplay of failures and workload on a leadership-class
supercomputer,” in Proceedings of the Cray User Group Conference
(CUG) 2015, Chicago, IL, USA, Apr. 26-30, 2015. [Online]. Available:
https://www.researchgate.net/publication/276290607

[18] H. Meuer, E. Strohmaier, J. Dongarra, and H. Simon, “Top 500 List of
Supercomputer Sites,” 2020. [Online]. Available: http://www.top500.org

[19] B. Nie, D. Tiwari, S. Gupta, E. Smirni, and J. H. Rogers, “A large-scale
study of soft-errors on GPUs in the field,” in IEEE International
Symposium on High Performance Computer Architecture (HPCA) 2016,
Barcelona, Spain, Mar. 12-16, 2016, pp. 519–530. [Online]. Available:
https://doi.org/10.1109/HPCA.2016.7446091

[20] B. Nie, J. Xue, S. Gupta, C. Engelmann, E. Smirni, and D. Tiwari,
“Characterizing temperature, power, and soft-error behaviors in data
center systems: Insights, challenges, and opportunities,” in Proceedings
of the 25th IEEE International Symposium on the Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS) 2017, Banff, AB, Canada, Sep. 20-22, 2017, pp. 22–31.
[Online]. Available: https://doi.org/10.1109/MASCOTS.2017.12

[21] B. Nie, J. Xue, S. Gupta, T. Patel, C. Engelmann, E. Smirni, and
D. Tiwari, “Machine learning models for GPU error prediction in
a large scale HPC system,” in Proceedings of the 48th IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN)
2018, Luxembourg City, Luxembourg, Jun. 25-28, 2018, pp. 95–106.
[Online]. Available: https://doi.org/10.1109/DSN.2018.00022

[22] Oak Ridge Leadership Computing Facility, “Summit supercom-
puter,” 2020. [Online]. Available: https://www.olcf.ornl.gov/olcf-
resources/compute-systems/summit/

[23] ——, “Titan supercomputer,” 2020. [Online]. Available:
https://www.olcf.ornl.gov/olcf-resources/compute-systems/titan/

[24] G. Ostrouchov, D. Maxwell, R. A. Ashraf, C. Engelmann, M. Shankar,
and J. H. Rogers, “Titan supercomputer GPU reliability data 2012-2019
and code to reproduce analysis,” DOI, 2020. [Online]. Available:
https://github.com/olcf/TitanGPULife

[25] G. Ostrouchov and W. Q. Meeker, Jr., “Accuracy of approximate
confidence bounds computed from interval censored Weibull and log-
normal data,” Journal of Statistical Computation and Simulation,
vol. 29, no. 1, pp. 43–76, May 1988. [Online]. Available:
https://doi.org/10.1080/00949658808811050

[26] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
2020. [Online]. Available: https://www.R-project.org/

[27] D. Schmidt, W.-C. Chen, M. A. Matheson, and G. Ostrouchov,
“Programming with BIG data in R: Scaling analytics from one to
thousands of nodes,” Big Data Research, vol. 8, pp. 1 – 11, 2017.
[Online]. Available: https://doi.org/10.1016/j.bdr.2016.10.002

[28] Terry M. Therneau and Patricia M. Grambsch, Modeling Survival
Data: Extending the Cox Model. New York: Springer, 2000. [Online].
Available: https://doi.org/10.1007/978-1-4757-3294-8

[29] T. M. Therneau, A Package for Survival Analysis in R, 2020, version
3.1-12. [Online]. Available: https://cran.r-project.org/package=survival

[30] D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai,
D. Oliveira, D. Londo, N. DeBardeleben, P. Navaux, L. Carro, and
A. Bland, “Understanding GPU errors on large-scale HPC systems
and the implications for system design and operation,” in IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA) 2015, San Francisco, CA, USA, Feb. 7-11, 2015, pp. 331–342.
[Online]. Available: https://doi.org/10.1109/HPCA.2015.7056044

[31] D. Tiwari, S. Gupta, and S. S. Vazhkudai, “Lazy checkpointing:
Exploiting temporal locality in failures to mitigate checkpointing
overheads on extreme-scale systems,” in 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN)
2014, Atlanta, GA, USA, Jun. 23-26, 2014, pp. 25–36. [Online].
Available: https://doi.org/10.1109/DSN.2014.101

[32] D. Tiwari, S. Gupta, G. Gallarno, J. Rogers, and D. Maxwell, “Reliability
lessons learned from GPU experience with the Titan supercomputer
at Oak Ridge Leadership Computing Facility,” in Proceedings of
the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC) 2015, Austin, TX, USA, 2015.
[Online]. Available: https://doi.org/10.1145/2807591.2807666

[33] D. Tiwari, S. Gupta, J. Rogers, and D. Maxwell, “Experience with
gpus on the titan supercomputer from a reliability, performance and
power perspective,” in Proceedings of the Cray User Group Conference
(CUG) 2015, Chicago, IL, USA, Apr. 26-30, 2015. [Online]. Available:
https://www.osti.gov/biblio/1265578

[34] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts
Valley, CA: CreateSpace, 2009.

[35] O. L. Vargas, S. Valdez, M. Veleva, K. R. Zlatev, W. M. Schorr, and
G. J. M. Terrazas, “The corrosion of silver in indoor conditions of
an assembly process in the microelectronics industry,” 2009. [Online].
Available: https://doi.org/10.1108/00035590910969347

[36] C. Zimmer, D. Maxwell, S. McNally, S. Atchley, and S. S.
Vazhkudai, “GPU age-aware scheduling to improve the reliability
of leadership jobs on Titan,” in International Conference for High
Performance Computing, Networking, Storage and Analysis (SC) 2018,
Dallas, TX, USA, Nov. 11-16, 2018, pp. 83–93. [Online]. Available:
https://doi.org/10.1109/SC.2018.00010

