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Abstract

In this paper we introduce the concept of s-Fuss-Catalan words. This
new family of words generalizes the Catalan words (taking s = 1), which
are a particular case of growth-restricted words. Here we enumerate the
polyominoes or bargraphs associated with the s-Fuss-Catalan words ac-
cording to the semiperimeter and area statistics. Additionally, we obtain
combinatorial formulas to count the s-Fuss-Catalan bargraphs according
of these statistics.

1 Introduction

Given a positive integer s, an s-Fuss-Catalan path of length (s 4+ 1)n is a lattice
path in the first quadrant of the zy-plane from (0, 0) to the point ((s+ 1)n,0) using
up-steps Us = (1, s) and down-steps D = (1,—1). For s = 1 we recover the concept
of the classical Dyck path of length 2n enumerated by the famous Catalan numbers
Cn = #1(2:) The number of s-Fuss-Catalan paths of length (s + 1)n is given
by the Fuss-Catalan numbers C), ; = Sn1+1 ((Stll)"). There are several combinatorial
interpretations for both the Catalan numbers and for Fuss-Catalan numbers (see, for

example, [14] and [9]).

For an s-Fuss-Catalan path of length (s + 1)n, we associate the word formed by
the subtraction s — 1 from the y-coordinate of each final point of the Uy steps. This
family of words is called s-Fuss-Catalan words. See Figure 1 for an example.
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Figure 1: The 3-Dyck path corresponding to the 3-Fuss-Catalan word 1453512.

The s-Fuss-Catalan words can be characterized as the words w = wyw, - - - w,, over
the set of positive integers satisfying wy =1 and 1 <w; <w;_ 1 +sfori=2,... n.
Denote by c\? the set of s-Fuss-Catalan words of length n. It is clear that the
cardinality of el is given by the Fuss-Catalan number C, ;. An s-Fuss-Catalan
word w = wyws - - - w, can be represented as a polyomino P of n columns, also called
a bargraph, whose i-th column contains w; cells for 1 <7 < n. See Figure 2 for an
example.

Figure 2: Polyomino corresponding to the 3-Fuss-Catalan word 1453512.

The s-Fuss-Catalan words generalize the concept of Catalan words (taking s =
1). Catalan words have been studied in the context of exhaustive generation of
Gray codes for growth-restricted words [12]. Recently, Baril et al. [2, 3] studied the
distribution of descents on the set of Catalan words avoiding a pattern of length
at most three and pair of patterns of length three. Callan and the two authors of
this paper [7] started the study of the combinatorial properties of the polyominoes
associated with the Catalan words. For example, in [7] it is possible to find formulas
for the generating functions enumerating area and semiperimeter. Additionally, the
authors in [11] study the number of interior lattice vertices lying strictly within
the polygon determined by the polyomino. We remark that polyominoes provide a
rich source of combinatorial ideas and have been studied in connection with several
discrete structures such as words, set partitions, polyominoes, permutations, graphs,
among others (see for example [4, 5, 6, 8, 10] and references contained therein).

The goal of this paper is to enumerate the area and semiperimeter of the family
of polyominoes determined by the s-Fuss-Catalan words. So a property that is true
in this generalization immediately holds for the polyominoes associated to Catalan
words (taking s = 1). The results given in this paper were found using generating
functions and the kernel method. In particular, we give a functional equation satisfied
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by the generating function of the polyominoes determined by s-Fuss-Catalan words
according to the area and the semiperimeter statistics. Then we can derive generating
functions to the total distribution of both statistics and give some combinatorial
expressions.

2 Area and Semiperimeter Statistics

A bargraph is a self-avoiding lattice path in the first quadrant with steps up u = (0, 1),
horizontal h = (1,0), and down d = (0, —1) that starts at the origin and ends on
the z-axis. The bargraphs are a particular family of polyominoes (cf. [8]). We define
the area of a bargraph as the number of cells. The semiperimeter of a bargraph
is the sum of the number of up and horizontal steps. Let P, be the bargraph
associated with the s-Fuss-Catalan word w. We denote by area(P,) and sper(P,)
the area and semiperimeter of P, respectively. Hence, for the bargraphs in Figure 2,
area(P,) = 21 and sper(P,) = 15.

Let C5 denote the set of s-Fuss-Catalan words of length n, and C*) = Unso e
Let Cffz) denote the set of words in C{) having last letter equal to 4, and let ¢, (n,i) =

\CT(LSZ) |. Yang and Wang [15] studied the sequence c4(n,7) in the context of the Enu-
merating Combinatorial Objects (ECO) method. The sequence ¢ (n, j) satisfies the
recurrence relation

cs(nyi) =cs(n—1,i—(s+1)+1)+cs(n—1,i—(s+1)+2)+---+cs(n—1,(n—1)s),

for all n,7 > 1, with the initial conditions ¢,(1,1) = 1 and ¢4(1,47) = 0 for all 4 > 1.
For example, the first few rows for the matrix [ca(n,i)],>1 are

1 0 0 0 0 0O 0 0 0 0O

1 1 1 0 0 0O 0 0 0 0O

[ea(n, )]s = 3 3 3 2 1 0O 0 0 0 0O
A= 12 12 12 9 6 31 0 0 00

55 55 55 43 31 19 10 4 1 0 O

273 273 273 218 163 108 65 34 15 5 1

We introduce the following generating functions according to the above parame-

ters:
{L‘ i D, q ZZL‘ Z pSPer(Pw area(Pw)

n>1 EC 5)

That is A;(x; p, q) is the generating function for the s-Fuss-Catalan words (or Catalan
bargraphs) ending in ¢ with respect to the area and semiperimeter. Moreover, define
the multivariate generating function

A (wip, ) == A (@ip, g

i>1
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In Theorem 2.1 we give a functional expression for the generating function A® (x;
P, q;v).

Theorem 2.1. The generating function A®(z;p,q;v) satisfies the functional equa-

tion
AW (zip, q;v) = pPqz + 1pqx A (z5p,q;1)
2z0(1 — v)* 2z0
L (prrvd = (pgv)) P A (i p. g qv). (1)
1 — pqu 1—qv

Proof. From the definition of an s-Fuss-Catalan word, we have, for ¢« = 1, the follow-
ing relation:

AP (w5p,q) = PPqr +pax Yy AT (w5p,q). @
j>1

See Figure 2 for a graphical representation of this decomposition.

i
=l
[ i

p?qx AP @ipg)  pgr

Figure 3: Decomposition of the s-Fuss-Catalan words in Cff%

For 2 < i < s we have (see Figure 4)

i—1
AP (w5p,q) = > p A (w5p,q) + pae Y A (w3 p, 0); (3)
k=1 £2i

i I

[ i

S 8 S

A (@5pq) p q'x A @pg)  pglx

Figure 4: Decomposition of the s-Fuss-Catalan words in C <) for 2 <i < s.

n,.)
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and for 7 > s we obtain the recursion

A (w5, q) = po' Z pRAR L (wip,g) +paie Y AP (aip,q). (4)

>

Multiplying (4) by v*~!, summing over i > s + 1 and using (2) and (3), we have

A (25 p, q) = pPqx + pgrA® (25 p, ¢; 1),

i—2 i—1
A (wip.q) = > P e AL (w:p,q) + pa' (A(S)(x;p, 0.1) = > A (x:p, q)) :
k=0
2<1<s

and

AO (zp, q0) = A (5 p, g)ot !

2
pq v s
= (=) (pg)*M* - )A()(x;p,q;qv)

— 1 —qu

s—1 s+1,.,,8 2
o k+1 k+1 k P4 TV pgTIU A(s)
(9:5 AR A 1_qv> (2;p,q)

S s+1,.,.5 3.,,,2
k+1 k+2 k+1 [ P4 XU pg rv (s)
— + - As :
<x P g — 1 qv) (z;p,q)

s—1

s+1 S S
P pqT U prqg-xv s
—qu 1 —qu

s+1 S
+ P AO (@i, g; 1),
1 —qu

Notice that

YA @sp, )" = pPqr + Y pgFaet T A (2 p, g3 1)
_ k=1
s—1

s—2
+ A (23p,9) Y (0 = pgt )zt + AY (259, g Z FHLGET2 — pght2)zoh
1 k=1

B
Il

9 (x50, 0)(0Pq° — pg®)av® Y,

which leads to

A (z;p, qiv) = pPaz + L A (2:p, g5 1)
q'U

1_
S 2
R b pg-rv A (1. 0
+ (E (pq) T U) (z3p,q; qU).

k=1 —4q

0
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3 The Area Statistic

The goal of this section is to analyze the area statistic. By setting p = 1 in Theo-
rem 2.1 we obtain the functional equation

“ “ ¢ 2ot ©
ANz 1, q;v) = qr + B 4G (1, q:1 Az 1, q; qu). 5
(z;1,qv) = qu 1—qu (;1,¢;1) — 1— qu (z;1,q; qv) (5)
Let Ty(v) := —qSTf;’;H; then by iterating this equation an infinite number of times

(here, we may assume |z|< 1 or |¢|< 1), we obtain the equality

A® (21, q;0) = qx <1+ZHT qv>+zl_qUH To(¢" ) A® (2,1, ¢, 1).

>0 (=0 i>1

By setting v = 1, and solving for A®)(x:1,¢;1), we may state the following result.

Theorem 3.1. The generating function enumerating the polyominoes associated with

the nonempty s-Fuss-Catalan words according to their length and area is given by
(_1)iqi((s+1)i+s+3)/2xi

qr +qx Zi>1 HZ 1(1—¢")

z((s+1)z+s+3)/2xz :

L= ar T

AW (z;1,q;1) =

For example, for s = 2,3 we have the series

Az 1, ) = qr+ (¢* + @ + ) 2 + (" + ¢* +2¢" +2¢° + 3¢° + 2¢* + ¢*) 2°
_'_(qu+q15+2q14+3q13+4q12+5q11+7q10+7q9+8q8
+7q7+6q6+3q5+q4)x4—|—~~

and

A1) = qr +¢* (¢ + ¢ + g+ 1) a7
+¢* (" + ¢ +2¢" +2¢° +3¢° + 3¢" + 4¢° + 3¢° + 2¢ + 1) 2°
+q4(q18 +ql7_'_2q16 +3q15 +4q14 _'_5q13 _'_7q12 +8q11 4 10q10 4 12q9 4 13q8
+14¢" 4 14¢° 4 14¢° + 12¢"* + 10¢* + 6¢° + 3¢ + D)a* + - -
Figure 5 shows the Welghts of the polyominoes associated with the 2-Fuss-Catalan
words members of C . Notice that the sum of the weights of this example corre-
sponds to the coefﬁment [23]A@) (2;1,¢;1).

Define Aq(f)(v) = L AW (2;1,¢;v) with u € {g,v} and A®(v) = A®(z;1,q;0).
Then from (5), we have

<1+TUS+I)A<S( V) |yt = x+(1 7

(s 4+ 2)zv* T — (s + 1)zo™™2 |
i (= e
s+2

v
_ A®) L
AP (0) Jom

;A (L) |-

1— ( ) |q:1
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q q q q
LI O L]
— qs
q5 qﬁ — q7 —t —
q8 q9 —
q° q’ ] ]
| | |

Figure 5: Weights for the polyominoes associated with the words in C§2).

This type of functional equation can be solved systematically using the kernel method

(see [1]). Let vo = 7,50 5757 ((5”;1)”)x” be the root of the equation vy = 1 + zvg',

which is the generating function for the sequence |CT(LS)|. Note that A®)(x;1,1;1) =
vp — 1. Thus, by taking v = vy, then we have

Vit (s +2 — (s + 1)vp)
1— Vo

A9(1) lg=1= Vo +

q A (v0) [g=1 —|—v8+2A§f) (V) [g=1,0=0 - (6)

Note that from (5) we have

x
1—(s+1)av§

Al (vo) |q:1:

and
(8—51) .1’2’0871

1—(s+1)zvg)?

AP() lgm10m00= ( (8)

Hence, by (6), (7), (8), and the fact that vy = 1 + avi™, we obtain the following
result.

Theorem 3.2. The generating function for the total area over the polyominoes as-

sociated with the members of el is given by

s+2—(s+Dvy (T (vo—1—av3)
1—(s+1)zvd (1= (s+ 1)axvd)?

v (sHTYL [ dv)T
- Tdx 2 ) de )’

where vy =Y, L ((SH)")QE”.

n>0 sn+1 n

AL (1) o1 = vo —
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Note that if vy = }_ g snlJrl ((St})”)x” (solution of vy = 1 + zvy™), then

L =135 (¢ )2+t Hence, by Theorem 3.2

vo n

APA) =D jJ+ 1 (<s + m‘)xj

>0 J

L)) (B (7))

from which, by comparing the coefficient of 2™ on both sides, we obtain the following
result.

Theorem 3.3. The total area over the polyominoes associated with the members of
¢\ is given by

()OS e e ()

A= i(j — 1)
< 2 );;(siJrl)(S(j—i)Jrl)(n—j)

y ((3 t 1)@) <(s Jrjl)_(yZ — i)) ((s +;)_(n1—_]“j) — 2>'

Let as(n) denote the total area of the polyominoes associated with the members

of C$). For s = 1 the combinatorial formula given in Theorem 3.3 can be simplified
to just (see [7, Corollary 12])

-3 (e ()

Table 1 gives the first few values of the sequence a4(n) for s = 1,2,3,4. Notice that
the sequence ag(n) was studied by Merlini et al. [13] in the context of the Tennis
Ball Problem.

s\n [[1 2 3 4 5 6 7 8 9

s=1]1 5 22 93 386 1586 6476 26333 106762

s = 1 9 69 502 3564 24960 173325 1196748 8229849

s = 1 14 156 1622 16347 161970 1588176 15465222 149866020
s = 1 20 295 4000 52290 670316 8491720 106740640 1334461075

Table 1: Values of the total area.
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4 The Semiperimeter of the Polyominoes

By setting ¢ = 1 in (1) we obtain the functional equation

A9 (25p, 15 0) = pPa + %A(s’(ﬂs;p, (x > it - = U) A9 (z3p, 150).
(9)
Then
-2y gk P ) A (a3 p 15 0) = pPa+ —A (;p,1;1). (10)
— 1—w 1-—

Define the function

DTV 2zv(1 — (pv)? TV
_1_xzpk+lk _1_]9 ( (p))+P

1—v 1—pv 1—v

Let vy = vo(z,p) be a root of K(v) = 0. This functional equation can be solved
again by the kernel method. In this case, if we assume that v = vy, where vy satisfies
K (vg) = 0, we obtain
A® (z;p,1;1) = p(uo — 1).

Note that the equation K (vg) = 0 can be written as
L—p—p"wg(wy +1)°

(1-p(-)
where wy = vy — 1. Using the Lagrange inversion formula we obtain that the coeffi-
cient of 2™ in wy (here, we assume that |p|< 1) is given by

[xn]w B l Z (_1)jpn+l+i+(s+l)j n—1+1 n TL‘I‘SJ
LY (1 — p)ity i iJ\n—1—i—j)

0<i+j<n—1

wo = pr(wy + 1)

Hence, we can state the following result.
Theorem 4.1. The coefficient of ™, n > 1, in A®)(x;p, 1;1) is given by

j yn+1+i+(s+1)j . .
Perff)(p) = l Z (—=1)7p"* +‘+§ DI — 1 +1 n n + s? .
n (1 —p)its i jj\n—1—i—j

0<i+j<n—1

For example, Per:(f) (p) = p* + 3p° + 5p° + 2p” + pB. Figure 6 shows the weights of
the polyominoes corresponding to this term.

Corollary 4.2. The total semiperimeter over the polyominoes associated with the
members of el is given by
OPer® (p)
Ip

p=1

Table 2 gives the first few values of the total semiperimeter sequence for s =
1,2,3,4.
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p p p P
LT L Ll I
— p°
P° P° 7 e
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P’ Pl
b P° f—
I I I I

Figure 6: Weights for the polyominoes associated with the words in CéQ).

s\n [[1 2 3 4 5 6 7 8 9
s=112 7 25 091 336 1254 4719 17875 68068
5§ = 2 12 71 430 2652 16576 104652 665874 4263050
s=3 |2 18 150 1275 11033 96768 857440 7658001 68827440
5§ = 2 33 439 5900 80535 1113273 15541258 218637585 3094921424
Table 2: Values of the total semiperimeter.
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