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Introduction

We want to start our work on weighted consecutive ones problems by giving an example
from the �eld of developmental psychology. For more details on this application see Roberts
[Rob76].

Usually the development of each child has several stages, crawling, sitting up, pulling
itself up to a standing position, etc. These stages correspond to a certain interval of time
and can overlap each other. One hypothesis of psychologists studying the development of
children is that the pattern of stages passed through by a child is common to all children,
though the time each child stays in a certain stage di�ers. To check this the psychologists
observe a lot of children and note for each child if it has the traits of the given stages. The
results can be written into a 0=1 matrix with the children as the columns and the stages
as the rows. A \1" is written as entry if and only if the corresponding child shows the
trait of the corresponding stage. Now, if the above hypothesis were true, then ordering
the children according to their (unknown) developmental age would bring the matrix into
a form, where in each row the \1"-entries form a consecutive series corresponding to the
time interval of that stage.

This property of the matrix we call the consecutive ones property for rows. Testing if the
given 0=1 matrix has this property can be done very eÆciently by the PQ-tree algorithm of
Booth and Lueker [BL76]. But usually \real-world" experiments are in
uenced by errors.
Just imagine that a child is already in the stage of sitting up, but feels only like crawling at
the time it is observed. Therefore we are interested in determining this errors, i.e. �nding
the entries of the matrix that have to be changed to obtain a matrix with the consecutive
ones property. Or more precisely, given a changing-cost for each entry of the matrix, we
are interested in the cheapest way to obtain a consecutive ones matrix. This problem is
called the weighted consecutive ones problem (WC1P) and is known to be NP-hard (see
Booth [Boo75] and Papadimitriou [Pap76]). Tackling this problem is the purpose of this
thesis.

The method of choice for solving hard combinatorial problems to optimality has be-
come the branch-and-cut algorithm. The branch-and-cut approach was introduced in 1984
by Gr�otschel, J�unger and Reinelt [GJR84] for solving the linear ordering problem. In the
meantime branch-and-cut algorithms have been implemented for many combinatorial op-
timization problems. To get an idea of the power of the branch-and-cut method see for
example the work of Applegate, Bixby, Chv�atal, and Cook [ABCC01] who were able to solve
the traveling salesman problem \d15112" (available at Reinelt's TSPLIB [Rei91]) through
15112 cities in Germany to optimality. Note that this problem has about 7; 3 � 1056592
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2 Introduction

feasible solutions!
Fortunately nowadays it is not necessary to implement a branch-and-cut approach from

scratch. There are software frameworks like ABACUS [Thi95] which make that branch-
and-cut parts available to the user that are not dependent on the current problem. What
remains to be implemented are problem-speci�c routines such as a feasibility test, an
integer programming formulation, primal heuristics, and separation procedures. For the
latter theoretical knowledge of the associated polytope, which is de�ned as the convex hull
over all incidence vectors corresponding to feasible solutions, is very helpful.

Outline of the thesis

This work is structured as follows. In chapter 1 we review basic de�nitions and results from
linear algebra, polyhedral theory, graph theory, and complexity theory. Furthermore the
branch-and-cut algorithm for solving combinatorial optimization problems is introduced.
This preliminary chapter provides the reader with those concepts and notations required
in the subsequent chapters, but is not meant to be comprehensive.

Chapter 2 introduces de�nitions, notations, and complexity results concerning consecu-
tive ones problems. Booth's and Lueker's PQ-tree algorithm is presented, which provides a
test, whether a given 0=1-matrix has the consecutive ones property for rows or for columns.
The time complexity of this algorithm is linear in the number of entries of the matrix. The
weighted consecutive ones problem is de�ned and a proof of its NP-hardness according to
Booth [Boo75] is reproduced. Furthermore we show that this problem becomes linearly
solvable if the column permutation is �xed. In chapter 3 we address ourselves to polyhe-
dral investigations of the problem. After de�ning the consecutive ones polytope Pm;n

C1R and
proving some basic properties we present di�erent ways to obtain facet-de�ning inequal-
ities for Pm;n

C1R. An IP formulation of the WC1P is given consisting only of facets for the
corresponding polytope. This chapter will �nish with proving that the number of facets
of Pm;n

C1R grows only polynomially if the number of rows m or the number of columns n is
�xed.

In chapter 4 the simultaneous consecutive ones problem is introduced. Di�erent from
the standard problem feasible solution matrices must ful�ll the consecutive ones property as
well for columns as for rows. De�nitions, complexity results, polyhedral investigations, and
a strong IP formulation are given analogously to the standard problem. Proving that the
weighted simultaneous consecutive ones problem (WSC1P) remains NP-hard, even if the
column-permutation and the row-permutation are �xed, will be the highlight concerning
the complexity results.

Chapter 5 describes the development of a branch-and-cut algorithm for solving the
WC1P as well as the WSC1P. A feasibility test, primal heuristics and several separation
procedures are presented. These implementations are based on the branch-and-cut frame-
work ABACUS and enable us to solve weighted consecutive ones problems eÆciently.

We discuss possible applications of the WC1P and the WSC1P in chapter 6. They range
from the physical mapping problem, a fundamental problem in computational biology, to
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the problem of �nding clusters of inorganic crystal structure types. For these two problems
computational results are presented in chapter 7. Furthermore we investigate the behavior
of our branch-and-cut code for random problems with few rows or columns and go into the
question, how many entries of a random matrix have to be switched in average to obtain
a matrix ful�lling the consecutive ones property.

Chapter 8 with a discussion on the theoretical and computational results as well as
ideas for future research conclude this thesis.
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Chapter 1

Preliminaries

In this chapter we will give a very brief summary on basic de�nitions and notations of
mathematics and computer science. They are restricted to those concepts that will be
used in this thesis. If the reader is not familiar with these concepts or is looking for a
more detailed survey of a certain topic we recommend the usage of textbooks. According
references are given in each section.

1.1 Linear algebra

The main objects we will be dealing with are matrices. A matrix with m rows and n
columns we will denote (m;n) matrix. If the matrix is not further speci�ed we assume
that all entries are real numbers. If m = 1 we call the matrix row vector , for n = 1 it is
called column vector or only vector. An (m;n) matrix where the entries are restricted
to be 0 or 1 is denoted binary or 0/1 matrix. To specify the size of a binary matrix A
we also write A 2 f0; 1g(m;n) or to specify the size of a real vector b we write b 2 R

m .
AT denotes the transpose of the matrix A. The entry of a matrix A in the j-th column

of the i-th row is denoted by aij, the whole i-th row by Ai: and the j-th column by A:j.
Similarly, for I being an ordered subset of the row set f1; 2; : : : ; mg and J being an ordered
subset of the column set f1; 2; : : : ; ng of A we denote by AIJ the submatrix of A belonging
to the rows i 2 I and columns j 2 J in the speci�ed order.

Let x1; x2; : : : ; xk be vectors 2 R
d and a1; a2; : : : ; ak be coeÆcients 2 R. A linear

combination of the vectors
Pk

i=1 aixi is called aÆne combination if
Pk

i=1 ai = 1, con-

vex combination if
Pk

i=1 ai = 1 and ai � 0, 1 � i � k, and conic combination if
ai � 0, 1 � i � k. For a set S 2 R

d the convex hull conv(S) is de�ned as the set of
convex combinations of �nitely many vectors in S. The linear hull lin(S), the aÆne
hull a�(S), and the conic hull cone(S) are de�ned analogously. The aÆne rank of S
arank(S) is de�ned to be the smallest cardinality of a subset X of S with the property
that S � a�(X). By decreasing the aÆne rank by 1 we obtain the dimension of a set S,
thus dimS := arankS � 1. According to this de�nition, the empty set has dimension �1.

Note that all these de�nitions on vectors can easily be extended to (m;n) matrices by

5



6 Preliminaries

writing them as vectors 2 R
mn .

For more information about linear algebra see one of the common textbooks such as
Fischer [Fis02].

1.2 Graph theory

An undirected graph (or graph) G = (V;E) consists of a �nite node set V and a �nite
edge set E. Each edge e 2 E is related to an unordered pair of nodes (u; v), u; v 2 V , the
so called endnodes of e. In a directed graph (or digraph) the endnodes are ordered,
thus (u; v) and (v; u) denote two di�erent edges. The �rst one is directed from u to v, the
second one from v to u. An edge is called to be incident to its endnodes. The node-edge
incidence matrix is a (jV j; jEj) matrix with an entry being 1 if the corresponding edge is
incident to the corresponding node and 0 otherwise. Two edges are called adjacent, if
they have a common endnode. We consider only simple graphs, i.e., graphs without loops
(edges of the form e = (u; u)) and without parallel edges (two or more edges related to the
same pair of endnodes).

In a weighted graph G = (V;E; c) a weight cuv 2 R is associated with each edge
e = (u; v). The weight of a subset of the edge set F � E is de�ned as c(F ) =

P
(u;v)2F cuv.

A (v0; vk) path in a directed or undirected graph G = (V;E) is de�ned as an edge
set of the type P = f(v0; v1); (v1; v2); : : : ; (vk�1; vk)g, where k is the length of the path. A
path with length jV j�1 and V = fv0; v1; : : : ; vkg is called Hamiltonian path. Paths with
v0 = vk are called cycles. In an undirected graph a subset F � E with jF j = jV j � 1 that
contains no cycle is denoted as spanning tree.

Diestel [Die00] provides a good survey on graph theory.

1.3 Complexity theory

We mainly use complexity theory as a measure of the diÆculty of a problem and the
eÆciency of an algorithm.

There are two di�erent kinds of problems we are dealing with. The �rst type are
decision problems , which are formulated as a question which can be answered by \yes"
or \no". The second type are optimization problems, the aims of which are to �nd best
solutions in a sense to be speci�ed. For example, the question whether a given graph G =
(V;E) contains a Hamiltonian path is a decision problem. The question which spanning tree
in a weighted graph G = (V;E; c) has the minimal total weight is an optimization problem.
In both cases we are looking for an algorithm that answers the question correctly. The
running time of an algorithm is de�ned as the number of elementary steps (addition,
multiplication, etc.) which have to be executed to solve the problem. Normally the running
time of an algorithm depends on the input size, which in the examples above is the size
of the graph. This size is de�ned as the number of bits the input requires to be represented
in the memory of a computer.
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Taking into account that the running time of an algorithm A depends on its input
size we introduce the time complexity function of an algorithm. This is a function
tA : N ! N giving for each n 2 N the maximum running time of A required to solve a
problem with input size less or equal to n. We say the running time of A is O(f(n)), if
there exists a constant c > 0 and an integer n0 > 0 with tA(n) � cf(n) for all n � n0. If
the function f is a polynomial in n we say that A is a polynomial time algorithm.

The class of decision problems which can be solved by a polynomial time algorithm is
denoted by P. The class NP is de�ned as the set of all decision problems whose answer
can be veri�ed in polynomial time with the help of some structure whenever this answer is
\yes". For example, the Hamiltonian path problem introduced above is in NP. Whenever
the algorithm says \yes, there is a Hamiltonian path", the path itself is such a structure,
since it can be tested in polynomial time, if a given set of edges is indeed a Hamiltonian
path.

For any decision problem in P the algorithm itself can also be used as veri�cation.
Therefore P � NP and it is conjectured that P 6= NP. Whether this is true is probably
the most important open question in complexity theory.

We say that a decision or an optimization problem is NP-hard if any polynomial time
algorithm for solving it provides polynomial time algorithms for all problems in NP and
with it would imply P = NP.

A decision problem is called NP-complete if it is NP-hard and additionally lies in
NP. Normally, the NP-completeness of a decision problem implies the NP-hardness of
the related optimization problem. This is also the case for the consecutive ones problem
considered in this thesis (see section 2.4).

For a more detailed description of these concepts and a comprehensive survey on com-
plexity theory we refer to Garey and Johnson [GJ79].

1.4 Combinatorial optimization problems

We now want to specify the type of optimization problems we are dealing with. Gr�otschel
et al. [GLS93] or Korte and Vygen [KV00] are excellent books on the theory and practice
of combinatorial optimization problems.

De�nition 1.1 Let E be a �nite set and F � 2E a subset of the powerset of E. Let further
an objective function c : F ! R be de�ned. A problem of the type

maximize c(F )
subject to F 2 F

is called combinatorial optimization problem (E;F ; c). The elements F 2 F are
called feasible solutions. If the objective function can be written as

c(F ) =
X
e2F

c0(e)
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with a function c0 : E ! R, we call such a problem linear combinatorial optimization
problem. Of course the problem can also be stated as minimization problem by multipli-
cating the objective function with �1.

Example 1.2 Let E be the set of edges in a weighted graph G(V;E; c). Let further F be
the set of spanning trees of the graph. Then the problem

min c(F )
s.t. F 2 F

with c(F ) =
P

e2F ce is a linear combinatorial optimization problem. It is well known as
the mimimum spanning tree problem.

In principle a combinatorial optimization problem can be solved by enumeration of all
feasible solutions. However, in terms of the running time this is not a practicable way
in general. In the previous example there are jV jjV j�2 spanning trees. But despite this
exponential number of feasible solutions there are polynomial time algorithms to solve
the problem (see for example [CLR90]). Many other linear combinatorial optimization
problems, for example the traveling salesman problem, the linear ordering problem as well
as the weighted consecutive ones problem are known to be NP-hard.

The following sections will show a way of how to tackle such problems eÆciently.

1.5 Polyhedral theory

Applicating concepts of polyhedral theory to combinatorial optimization problems results
eventually in the branch-and-cut method. Therefore we will give some basic de�nitions
and results. For a deeper analysis see Pulleyblank [Pul89], Padberg [Pad95], or Ziegler
[Zie95].

Given a vector a 2 R
n and a0 2 R. Then the set fx 2 R

n j aTx = a0g is called
hyperplane and the set fx 2 R

n j aTx � a0g is called halfspace.
A polyhedron P � R

n is de�ned as the intersection of �nitely many halfspaces, or
more formally

P = fx 2 R
n j Ax � bg;

where A 2 R
(m;n) and b 2 R

m . This description of a polyhedron is called outer descrip-
tion. A classical result in polyhedral theory (see Weyl [Wey35] and Minkowski [Min96])
is that a each polyhedron P � R

n can be written as

P = conv(X) + cone(Y );

where X � R
n and Y � R

n are �nite sets. This description is called inner description
of the polyhedron.

In this thesis we only consider bounded polyhedra which are called polytopes. A
polytope P � R

n can be written as P = conv(X) with a suitable �nite set X � R
n .
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A polyhedron P 2 R
n is said to be full dimensional if dimP = n. An inequality

aTx � a0 is said to be valid for a polyhedron P � R
n , if P completely lies inside the

halfspace aTx � a0.
If aTx � a0 is a valid inequality for a polyhedron P , then the set F = P\fx j aTx = a0g

determines a face of P . A face F with dimF = 0 is called vertex , if dimF = dimP � 1
holds, the face is called facet. Let V be the set of vertices of a polytope P . Then
P = conv(V ) holds. If F = P \ fx j aTx = a0g de�nes a facet, we call the valid inequality
aTx � a0 facet-de�ning for P . Let �nally F = P \fx j aTx = a0g be a face of a polytope
P . Then each vertex x 2 F is called root of the face F or root of the inequality aTx � a0.

1.6 Branch-and-cut

A branch-and-cut algorithm combines the concepts of two algorithmic approaches,
namely the branch-and-bound method and the cutting plane method. This approach was
�rst used by Gr�otschel, J�unger and Reinelt [GJR84] for solving the linear ordering problem.
The name \branch-and-cut" was introduced by Padberg and Rinaldi [PR87, PR91].

We now want to give a brief summary on the branch-and-bound algorithm and the
cutting plane method. For a more detailed presentation see J�unger et al. [JRT95].

1.6.1 Branch-and-bound

The general idea of a branch-and-bound algorithm is to decompose a problem into
smaller problems, so-called subproblems. Say we are dealing with a maximization prob-
lem. Then all feasible solutions of subproblems are also feasible for the original problem
and therefore are a global lower bound of the optimal solution. Furthermore we try to
solve each subproblem to optimality or at least to compute upper bounds of the optimal
solution for the current subproblem, the so-called local upper bounds. If a local upper
bound is less or equal than the global lower bound, the subproblem has not to be con-
sidered any more and can be fathomed. If the subproblem neither can be solved nor be
fathomed, it is split recursively into further subproblems. This can be represented by the
so-called branch-and-bound tree. If no splitting is required at all, we say the problem
is solved in the root node of the branch-and-bound tree.

The principle of this algorithm works as follows.

Algorithm 1.3 (Branch-and-bound)

(1) Initialize the list of active subproblems with the original problem.

(2) If the list of active subproblems is empty, STOP (the best feasible solution found so
far is optimal).

(3) Choose some subproblem from the list of active problems and process it as follows:

(3.1) �nd an optimal solution for the subproblem, or
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(3.2) prove that the optimal solution for the subproblem cannot exceed the global lower
bound, or

(3.3) prove that the subproblem has no feasible solution, or

(3.4) if none of the above is possible, split the subproblem into further subproblems
and add them to the list of active problems.

(4) Go to step 2.

The success of a branch-and-bound algorithm depends on the values for the lower and
upper bounds. Lower bounds can be obtained by any feasible solution of a subproblem.
Usually (primal) heuristics are used for this purpose. For the computation of upper
bounds relaxations are used. A relaxation of a combinatorial optimization problem is a
problem for which the set of feasible solutions contains the set of feasible solutions of the
original problem. In a branch-and-cut algorithm linear programming is used as relaxation
method.

1.6.2 Cutting plane method

Let E = fe1; e2; : : : ; ekg be the �nite basic set of a combinatorial optimization problem and
F the set of feasible solutions. Then any feasible solution F 2 F of the problem can be
written as a k-dimensional 0=1 incidence vector �F the i-th entry �Fi of which is equal
to 1 if and only if ei 2 F , 1 � i � k.

The polytope associated with this problem is de�ned as

P = conv
��
�F j F 2 F

	�
:

Each vertex of P corresponds to a feasible solution F . Now assume a linear combina-
torial optimization problem (E;F ; c)

max c(F )
s.t. F 2 F

is given with the associated polytope P . Then this problem is equivalent to solving

max cTx
s.t. x 2 P

x 2 f0; 1gk

where c = (c(ei)), 1 � i � k, is the objective function vector. If we knew the outer
description Ax � b of P , it would be suÆcient to solve the linear program (LP)

max cTx
s.t. Ax � b

since the simplex algorithm which usually is used for solving an LP terminates with
an optimal vertex of P corresponding to a feasible solution. The vector c is called the
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objective function and the inequalities in Ax � b are called the constraints of the LP.
For more information on linear programming see Chv�atal [Chv83] and Schrijver [Sch86].

Unfortunately, the complete outer description of P is not available in general, since
the number of inequalities in Ax � b is too large. But we could proceed as follows. We
start with a polytope Q which contains P and the outer description of which is small
enough. For example the 0=1 cube Q = fx 2 R

k j 0 � xi � 1; 1 � i � kg is such a choice
for initializing the constraints of the �rst LP. After solving this LP with respect to the
objective function c, there are two possibilities for the optimal vertex x�. If x� 2 P , then
x� is the incidence vector of an optimal solution of the combinatorial optimization problem
(E;F ; c). Otherwise, i.e., if x� 2 Q but x� =2 P , we are looking for an inequality aTx � a0
with the property that P 2 fx 2 R

k j aTx � a0g but a
Tx� > a0. Since this inequality cuts

o� the LP solution x� from the polytope Q, it is called cutting plane. After adding this
cutting plane to the current LP and reoptimizing, we obtain a new LP solution and repeat
this procedure. The whole algorithm looks as follows.

Algorithm 1.4 (Cutting plane method)

(1) Initialize Q = fx 2 R
k j 0 � xi � 1; 1 � i � kg.

(2) Solve the linear programming problem maxfcTx j x 2 Qg and obtain an optimum
solution x�.

(3) If x� is the incidence vector of some feasible solution F 2 F , then STOP (I� is an
optimum solution of (E;F ; c)).

(4) Otherwise, identify an inequality aTx � a0 with P 2 fx 2 R
k j aTx � a0g, but

aTx� > a0.

(5) Set Q = Q \ fx 2 R
k j aTx � a0g and proceed with step 2.

The most important part of this algorithm is step 4 of �nding a cutting plane. This
problem is called separation problem. Theoretical knowledge on the outer description of
P usually is very helpful for eÆcient separation procedures.

To test in step 3 whether the LP solution x� is the incidence vector of a feasible solution
usually is done by a so-called integer programming formulation (IP formulation)
of the problem (E;F ; c). This is an inequality system Ax � b with the property that
P = conv(fx j Ax � b; x integerg). Whether x� is integer can be tested easily and
the separation problem concerning the system Ax � b can in many cases be solved in
polynomial time.

Note that the objective function values of all LP solutions occurring during the cutting
plane algorithm are upper bounds of the optimal solution of the problem (E;F ; c). This
upper bounds are very useful for embedding the cutting plane method in a branch-and-
bound algorithm. Furthermore, if the current LP solution x� ful�lls the constraints Ax � b
but at least one entry x�i is not integer (here binary), the problem can easily be splitted
into two subproblems by setting xi = 0 in the �rst and xi = 1 in the second subproblem.
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Chapter 2

The Consecutive Ones Problem

This chapter will give the basic de�nitions concerned with the consecutive ones problem as
it was introduced by Fulkerson and Gross [FG65]. The theoretical results on the complexity
that are given in literature are summarized. Booth [Boo75] and Papadimitriou [Pap76]
independently showed the NP-completeness of an augmentation version of the consecutive
ones problem. Furthermore Booth and Lueker [BL76] presented a very eÆcient algorithm
for testing whether a given 0=1 matrix has the consecutive ones property, the so-called PQ-
tree algorithm. The chapter will �nish with a �rst new result, namely that the weighted
consecutive ones problem is solvable in linear time if the column permutation is �xed. This
result will turn out to be very useful for the construction of primal heuristics which will
be done in chapter 5.

First of all we will introduce some appropriate notations.

2.1 Notations

Since in the consecutive ones problem we are actually dealing with matrices, we will in-
troduce a new notation for a product of matrices. For two (m;n) matrices A = (aij) and
B = (bij) we write A Æ B for the scalar product of the two matrices written as vectors of
dimension m � n, i.e.

A ÆB =
mX
i=1

nX
j=1

aijbij:

Consequently inequalities of the corresponding polytope, which will be introduced in
chapter 3, are denoted by \AÆx � a0", with x being the matrix of the variables representing
the solution we are looking for. The matrix entry of row i and column j is denoted by xij.
We will interpret x = (x11; : : : ; x1n; : : : ; xm1; : : : ; xmn) as a vector or as a matrix, whatever
is more appropriate in a given context.

When writing \A Æ x � a0" we assume that both matrices are of the same size. But we
often deal with inequalities that have nonzero coeÆcients only for a submatrix of x. For
this purpose we extend our notation. Let A be an (k; l)-matrix of coeÆcients and x the
(m;n)-matrix of the variables (m � k; n � l). For an ordered k-tuple I = (r1; : : : ; rk) with

13
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pairwise distinct rows ri 2 f1; : : : ; mg and an ordered l-tuple J = (c1; : : : ; cl) with pairwise
distinct columns cj 2 f1; : : : ; ng we de�ne

A Æ xIJ =
lX

i=1

kX
j=1

aijxricj :

For the sake of simplicity we will just say, for example, \A Æ xIJ � a0 for all (k; l)-tuples
(I; J)", meaning that all k-tuples I = (r1; : : : ; rk) and all l-tuples J = (c1; : : : ; cl) are
allowed for mapping A to x. Whenever we use A Æ x we assume that I = (1; : : : ; m) and
J = (1; : : : ; n).

2.2 De�nition of the problem

2.2.1 The consecutive ones property

The consecutive ones property can be formulated both as a property of a subset of the
power set of f1; : : : ; ng and as a property of a binary (m;n) matrix. Both formulations
can easily be converted into each other; as a matter of fact they only di�er in the notation
of the input. For matrices, we will de�ne both the consecutive ones property for rows and
for columns. Since these de�nitions equal each other except for switching the roles of rows
and columns, we will only make use of the row-formulation in this thesis.

De�nition 2.1 An (m;n) 0=1-matrix M has the consecutive ones property for rows
(for shorter writing we say M is C1PR), if there is a permutation of the columns of M
such that in each row of M the ones occur consecutively.

Let � 2 S(n) be such a permutation of the columns. Then we say � establishes the
consecutive ones property for rows of M (� establishes C1PR of M).

Example 2.2 All binary matrices with less than 3 columns are C1PR since in any row
with less than 3 elements the ones already occur consecutively.

Any 0=1-matrix M with 2 rows consists of at most 4 di�erent types of columns�
0
0

�
,

�
0
1

�
,

�
1
1

�
and

�
1
0

�
.

Now consider any column permutation � that sorts the columns along the order written
above. Obviously all such permutations and their reverses establish C1PR of M . Therefore
M is C1PR. An even easier argumentation shows that all 0=1-matrices consisting of a
single row are C1PR.

Thus the smallest nontrivial case is m = n = 3. Indeed the matrix

M =

0
@ 1 1 0

1 0 1
0 1 1

1
A
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is not C1PR which can be veri�ed for example by testing all 6 possible column permuta-
tions. This is the only (3; 3) binary matrix that is not C1PR except for column and row
permutations.

Symmetrically, one can de�ne the consecutive ones property for columns.

De�nition 2.3 An (m;n) 0=1-matrixM has the consecutive ones property for columns
(we say M is C1PC), if there is a permutation of the rows of M such that in each column
of M the ones occur consecutively.

We say � establishes the consecutive ones property for columns of M (� establishes
C1PC of M) if � is a permutation in the above sense.

As a result of this symmetric de�nition a 0=1-matrixM is C1PC if and only if its transposed
matrix MT is C1PR.

The set consisting of all binary (m;n) matrices that are C1PR is di�erent from the set
of those that are C1PC. For example the following (4; 3)-matrix is C1PR,

M =

0
BB@

1 1 1
1 0 0
0 1 0
0 0 1

1
CCA

but none of the 24 row permutations establishes C1PC of M . Chapter 4 will deal with
those binary matrices that are both C1PR and C1PC.

Sometimes the following set-formulation of the consecutive ones property is more
suitable, especially for formulating the PQ-tree algorithm which we will introduce later.

De�nition 2.4 Given a �nite set U and a subset M of the power set of U , i.e. M =
fS1; S2; : : : ; Skg, where Si � U; 1 � i � k, are subsets of U . M has the consecutive
ones property (is C1P), if we can �nd an ordering � of the elements of U such that the
elements of every Si, 1 � i � k, appear in � as a consecutive sequence. Here as well we
say that an ordering � with this property establishes C1P of M.

Both the matrix-formulation and the set-formulation of the consecutive ones property
might suggest that the test whether a given binary matrix is C1PR requires to check all
possible column permutations. However, already Fulkerson and Gross who �rst introduced
C1PR as a property of binary matrices had a polynomial time algorithm for this test,
given in [FG65]. This algorithm is based on the following neat characterization of C1PR-
matrices. The original formulation is slightly modi�ed, since in contrast to our convention
Fulkerson and Gross used C1PC instead of C1PR.

Theorem 2.5 ([FG65]) Let A and B 0=1-matrices satisfying

AAT = BBT :
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Then either both A and B are C1PR or neither is. Moreover, if A and B have the same
number of columns and A is C1PR, then the matrix B can be obtained by permuting the
columns of A.

The algorithm of Fulkerson and Gross �rst decomposes the matrix to be tested and after
that uses the above theorem to check each part. The running time is O(mn2), where m is
the number of rows and n the number of columns of the input matrix.

2.3 PQ-trees

An even better algorithm, as it works in linear time in the number of entries of the matrix,
was introduced by Booth and Lueker in [BL76]. Their algorithm is based on so called PQ-
trees. With the help of this data structure, it is even possible to represent all permutations
establishing C1PR of a given 0=1-matrix by a single tree .

We will now give a short introduction into the PQ-tree data structure and the principle
of the PQ-tree algorithm.

De�nition 2.6 Given a �nite set U . A PQ-tree over U is a rooted ordered tree with the
following properties:

(1) The PQ-tree has two types of internal nodes, P-nodes and Q-nodes. A P-node has at
least two children, a Q-node has at least three children.

(2) The leaves of the tree are exactly the elements of U .

P

1 2 34 5

Q

P

Figure 2.1: PQ-tree

Each PQ-tree over U represents a set of permutations of the elements of U . To illustrate
this we need to introduce an equivalence relation on the PQ-trees of a common set U and
to de�ne the frontier of a PQ-tree.
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De�nition 2.7 Two PQ-trees T1 and T2 over the same set U are equivalent (T1 � T2)
if and only if T1 can be transformed into T2 by applying zero or more of the following
transformations.

(1) Perform an arbitrary permutation of the children of a P-node.

(2) Perform the reverse permutation of the children of a Q-node.

De�nition 2.8 Let T be a PQ-tree over U . The leaves of the tree scanned from left to
right yield a permutation of the elements of U . This permutation is called the frontier of
T and is denoted by frontier(T ).

Now we can de�ne the permutations represented by a single tree.

De�nition 2.9 Let T be a PQ-tree over U . The set of all permutations of U that are
represented by T is given by

perm(T ) = ffrontier(T 0) j T 0 � Tg:

Example 2.10 Figure 2.1 shows an illustration of a PQ-tree. P-nodes are displayed by
a circle and Q-nodes by a rectangle. The frontier of this tree is 12453 and the set of all
represented orderings is given by f12453; 12543; 13452; 13542; 24531; 25431; 34521; 35421g.

The PQ-tree representing all possible permutations of the elements of U is called uni-
versal tree of U . It consists of one P-node as root which has exactly jU j many leaves as
children. Figure 2.2 shows the universal tree of f1; 2; 3; 4; 5g.

P

1 2 3 4 5

Figure 2.2: Universal tree

Another special tree is the so called null tree (see �gure 2.3). This tree has no nodes
and represents the empty set of permutations. In the strict sense it is no PQ-tree at all
but its de�nition has turned out to be useful.

Figure 2.3: Null tree

The following theorem states the main relationship between PQ-trees and the consec-
utive ones property.
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Theorem 2.11 ([BL76]) Let U be a �nite set. For each subset M = fS1; S2; : : : ; Skg,
Si � U; 1 � i � k, of the power set of U there exists a PQ-tree over U such that its set
of represented permutations is identical to the set of all permutations � of U that establish
C1P of M, and vice versa.

The PQ-tree algorithm related to a given set M works as follows. For 0 � i � k let
Mi = fS1; S2; : : : ; Sig. The algorithm starts with constructing the universal tree, which
in consistence with theorem 2.11 is the PQ-tree corresponding to the empty set M0. Now
the universal tree is reduced with respect to S1 to construct the PQ-tree of M1. This
reduction step is performed k times after each other with respect to all sets Si. After the
i-th step the current PQ-tree is the one related to Mi. Whenever the null tree arises (say
after reduction step i), the algorithm can be terminated, since according to theorem 2.11
Mi is not C1P with the consequence that neither of Mj, i < j � k, is. Otherwise the
algorithm terminates after the k-th reduction step with the PQ-tree of Mk =M.

See the original paper of Booth and Lueker for more details on how the reduction pro-
cedure works. The outstanding fact is that reduction with respect to Si can be performed
in time O(jSij) and therefore we obtain an overall running time which is linear in the input
size.

Theorem 2.12 ([BL76]) The algorithm for constructing the PQ-tree for a given set M
has the time-complexity O(jU j+ k +

Pk
i=1 jSij).

Now testing if a given binary (m;n)-matrix A is C1PR can be accomplished in linear
time O(mn). If the matrix has few \1"-entries and is stored in a suitable sparse-format
the running time is even better. Another advantage is that the output of the PQ-tree
algorithm is not only a \yes" or \no", but even provides the whole PQ-tree related to A,
which allows to construct all permutations that establish C1PR of A. We will make use of
this fact in section 5.2.2 by constructing a rounding heuristic for our problem. But note
that creating a complete list of those permutations cannot be done in linear time, since
their number might be exponential in n.

2.4 Results on the complexity

As we have just seen �nding out whether a 0=1-matrix is C1PR, has a linear time com-
plexity. An advanced problem one could tackle is \how far away" a given matrix is from
being C1PR. We will see that such an augmented version of the problem will turn out to
be much harder to solve.

2.4.1 Consecutive ones matrix augmentation

Of course the sense of \how far away" has to be speci�ed. Booth [Boo75] de�ned the
augmented version of the consecutive ones property as follows.
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De�nition 2.13 A binary matrixM has the k-augmented consecutive ones property
(is C1PRk) if there exists a matrix M 0 which is C1PR and which arises from M by
replacing at most of k \0"-entries of M by \1"-entries.

Example 2.14 0
BB@

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

1
CCA

0
BB@

1 1 1 0
1 1 1 1
1 1 1 1
0 1 1 1

1
CCA

The left matrix is not C1PR but C1PR2, because, for example, switching the two \0"-
entries in rows 2 and 3 to \1"-entries, leads to the matrix on the right-hand side which is
C1PR.

Note that the de�nition of C1PRk is somehow arbitrary since only changes from \0"-entries
to \1"-entries are allowed. Analogously one could also have de�ned a problem where only
the opposite changes are allowed, or even both kinds of replacements. Probably Booth did
it this way, because there exists a nice transformation to an NP-complete problem. At
least this is the reason why the de�nition for the augmentation problem in the simultaneous
case is done in a di�erent way (see 4.2.1).

Booth [Boo75] and Papadimitriou [Pap76] independently transformed the decision ver-
sion of C1PRk from the simple optimal linear arrangement problem. This problem is
de�ned as deciding whether a graph has a numbering of the vertices such that the sum
over all edges of the (positive) di�erences of their endpoints is less than a constant W . Or
more formally,

De�nition 2.15 A graph G = (V;E) has a simple optimal linear arrangement of
weight W if there is an ordering � of the vertices such thatX

ij2E

j�(i)� �(j)j � W:

Garey, Johnson and Stockmeyer [GJS76] showed that �nding a simple optimal linear ar-
rangement of a graph with weight W is NP-complete. Thus to show the NP-completeness
of the decision version of C1PRk only a polynomial transformation between both prob-
lems remains to be shown. Due to the importance of this result for this thesis the proof
according to [Boo75] will be given in the following.

Theorem 2.16 ([Boo75],[Pap76]) Deciding whether a binary matrix M is C1PRk is
NP-complete.

Proof. Verifying whether a given k-augmentation for M is C1PR can be done in poly-
nomial time using the PQ-tree algorithm 2.12. It remains to show that given a polynomial
time algorithm for testing C1PRk one can also solve simple optimal linear arrangement in
polynomial time. The transformation works as follows. Given a graph G = (V;E) and a
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weight W . We construct our 0=1-matrix M simply as the node-edge incidence matrix of
the graph. More precisely we de�ne M = (mij) as

mij =

�
1 : vj 2 ei
0 : vj =2 ei:

Now the claim is that G has a simple linear arrangement of weight W if and only if M is
C1PR(W�jEj). For any ordering of the vertices the number of zeros between the two ones
corresponding to an edge in each row is exactly one less than the di�erence of the numbers
of the two incident vertices. Thus the total number of zeros to be switched is exactly jEj
less than the weight of the linear arrangement.

Assume we have a polynomial time algorithm which decides whether a given matrixM
is C1PRk. Since the construction above can be performed also in polynomial time there
would be a polynomial time algorithm for the simple optimal linear arrangement. Thus
the NP-completeness is proven. ut

2.4.2 The weighted consecutive ones problem

A step to generalize the problem further is to consider the associated optimization problem.
That is, we do not only allow changes of entries both from 1 to 0 and vice versa, but we
also penalize each switch with a certain cost. The aim is then to �nd a series of changes
transferring the matrix to one that is C1PR and minimizing the total cost of the switches.
This general version of the problem has to be solved in computational biology. Section 6.1
will deal with this physical mapping problem.

De�nition 2.17 Let some 0=1-matrix B = (bij) 2 f0; 1g(m;n) and a cost matrix C 0 =
(c0ij) 2 R

(m;n) be given. For a binary matrix A = (aij) 2 f0; 1g(m;n) the total cost for
switching entries to transform B to A is de�ned as

c(A) =
mX
i=1

nX
j=1

c0ijjbij � aijj:

We de�ne the weighted consecutive ones problem (WC1P) as the task to �nd a
matrix A which is C1PR and minimizes c(A).

Since B and C are �xed it is easy to linearize the objective function. Let the (m;n)-
matrix C = (cij) be de�ned as

cij =

�
c0ij : bij = 0

�c0ij : bij = 1:

Now we have c(A) = C ÆA�C ÆB and since C ÆB is a constant the WC1P can be written
as

minC ÆA
s:t: A is C1PR:
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In the following the converted matrix C will be denoted as cost matrix.
One easily can transform the augmentation problem to the weighted problem with the

consequence that WC1P is NP-hard.

Corollary 2.18 The weighted consecutive ones problem is NP-hard.

Proof. Since in Booth's augmentation de�nition (2.13) no switches from ones to zeros
are allowed, one has to penalize them with a high cost. The total number of entries mn
is suÆcient for this purpose. Now let A be a given binary matrix. Then we construct the
cost matrix C as

cij =

�
1 : aij = 0

�mn : aij = 1:

Further, let l be the number of ones in A. Then A is C1PRk if and only if the solution of

minC Æ A
s:t: A is C1PR

is less or equal to k� lmn. The construction of the cost function is polynomial. Therefore
the NP-hardness is shown. ut

Solving this NP-hard WC1P as well as variants to optimality is the main part of this
thesis. Therefore in the next chapter we will do some polyhedral investigations of the
associated polytope which are the basis of the branch-and-cut approach, we will present in
chapter 5. The chapters 6 and 7 will give applications and computational results on the
WC1P.

First we want to investigate a special form of the WC1P, where we assume that the
column permutation that should establish C1PR of the input matrix is already known.

2.4.3 Fixed column permutation

Without loss of generality we assume that the known column permutation is the identity.
Otherwise one can rearrange the columns of the input matrix. According to Booth [Boo75]
binary matrices where the identity establishes C1PR are in what we call the Petrie form.
This denotation is due to Flinders Petrie's work on seriation in archaeology (see section
6.2).

De�nition 2.19 A 0=1-matrix which has the consecutive ones property for rows without
any rearrangements of its columns is in Petrie form (is PET).

Example 2.20 0
BB@

0 1 1 0
1 1 1 1
0 0 1 0
1 1 1 0

1
CCA

0
BB@

1 0 0 1
1 1 1 1
1 1 0 0
1 1 0 1

1
CCA

Both matrices are C1PR but only the left one is PET.
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Now we can de�ne the weighted Petrie problem (WPEP) as a special variant of the
WC1P where the column permutation is �xed to the identity.

minC Æ A
s:t: A is PET:

Since the column permutation is �xed the problem decomposes into m corresponding
problems for single rows, minimizing Ci: Æ Ai: such that Ai: is PET. But in this form the
problems are equivalent to the maximum subarray problem. Here the aim is, for a
given array of numbers, to �nd a consecutive subarray such that the sum of the numbers
in the subarray is a maximum. This can be done in linear time in the size of the array by
making use of the following scan-line algorithm.

Algorithm 2.21 (MaximumSubarray(array, length))

(1) Initialize scanMax = 0, maxSum = 0

(2) For index from 0 to length-1

(2.1) if (scanMax + array[index] > 0) scanMax = scanMax + array[index]

else scanMax = 0

(2.2) if (scanMax > maxSum) maxSum = scanMax

(3) return(maxSum)

Performing this algorithm for each row and taking the sum of all return values also
gives an optimal solution for WPEP in linear time.

Lemma 2.22 WPEP is solvable in linear time.

This directly leads to the observation that WC1P is in P if the number of columns is �xed.

Corollary 2.23 For �xed number n of columns WC1P can be solved in linear time in the
number m of rows.

Proof. We make use of the fact that for a �xed number of columns also the number
of permutations of the columns is a constant in m. For a �xed permutation � we solve
a WPEP where the columns of the coeÆcient matrix of WC1P are permuted according
to �. As seen before this can be done in linear time. Now we perform this for all n!
column permutations and take the minimum of all WPEP solutions. The time required
for this is also linear in m, since n! does not depend on m. In fact we only need half of the
permutations since � and its reverse de�ne the same WPEP. ut

In section 3.6 we will see that the WC1P is also polynomially solvable in the case that
the number of rows is �xed. This is a consequence of the more general result that even
the number of facets of the related polytopes grows only polynomially if the number of
columns or rows is �xed.



Chapter 3

The Facial Structure of the

Consecutive Ones Polytope

As one of the most crucial parts of developing an e�ective branch-and-cut algorithm turned
out to be the theoretical knowledge of the facial structure of the associated polytope.

This chapter de�nes the consecutive ones polytope Pm;n
C1R and gives a variety of classes of

facet-de�ning inequalities as well as methods to construct them. The associated separation
problems will be addressed in section 5.3. Proving that the number of facets of Pm;n

C1R grows
only polynomially in m if n is �xed and polynomially in n if m is �xed, will conclude this
chapter. An immediate consequence is that the WC1P is polynomially solvable for a �xed
number of rows or columns.

3.1 Basic de�nitions and results

The usual way in combinatorial optimization is to de�ne a polytope whose vertices cor-
respond to the feasible solutions of the problem. If these feasible solutions are given as
0=1 vector we can take the convex hull of all these vectors. In our case we do not deal
with binary vectors but with binary matrices. Therefore we will take the convex hull over
all feasible C1PR matrices. We do not introduce polytopes as convex hulls over C1PC
matrices since they are isomorphic to the previous ones after exchanging the roles of rows
and columns.

3.1.1 The consecutive ones polytope P
m;n

C1R

For given numbers of rows m and columns n the consecutive ones polytope is de�ned
as

P
m;n

C1R
= convfM jM is an (m;n)-matrix with C1PRg:

It is easy to see that Pm;n
C1R is full dimensional.

Theorem 3.1 Pm;n
C1R has dimension m � n.

23
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Proof. The zero matrix is C1PR and, for every 1 � i � m and 1 � j � n, the matrix
consisting of zeros only except for a \1"-entry in position ij is C1PR. This gives a set of
m � n+ 1 aÆnely independent C1PR matrices. ut

A nice consequence of the fact that Pm;n
C1R has full dimension is that we do not need

equations to describe these polytopes and therefore the descriptions of facet-de�ning in-
equalities are unique up to multiplication with a positive scalar.

Being able to lift facet-de�ning inequalities to polytopes of higher dimensions is a very
useful property. In our case even trivial lifting is possible.

3.1.2 Lifting facet-de�ning inequalities

Let A Æ x � a0 be a valid inequality for Pm;n
C1R and let m0 � m and n0 � n. We say that the

inequality A Æ x � a0 for P
m0;n0

C1R is obtained from A Æ x � a0 by trivial lifting if

aij =

�
aij : i � m and j � n
0 : otherwise.

Theorem 3.2 Let A Æ x � a0 be a facet-de�ning inequality for Pm;n
C1R and let m0 � m and

n0 � n. If the inequality A Æ x � a0 for P
m0;n0

C1R is obtained from A Æ x � a0 by trivial lifting

then it de�nes a facet of Pm0;n0

C1R .

Proof. Denote the lifted inequality by A Æ x � a0, and let x be a matrix satisfying
A Æ x = a0. First consider the case m

0 > m and n0 = n, where without loss of generality
m0 = m+ 1.

We form the matrix x0 by adding a zero row to x and matrices xj by adding a row of
zeros except for a \1"-entry in column j, j = 1; : : : ; n. Obviously all generated matrices
are C1PR, and we have A Æ xj = a0, for all j = 0; 1; : : : ; n.

Therefore, if we have m � n aÆnely independent matrices satisfying A Æ x = a0 we
can obtain by the above construction (m + 1) � n aÆnely independent matrices satisfying
A Æ x = a0, thus proving that the trivially lifted inequality is also facet-de�ning.

The case m0 = m and n0 > n, where without loss of generality n0 = n+1 follows along a
similar line. We add one column to x and form the matrix x0 by adding a zero column and
matrices xi by adding a column of all zeros except for a 1 in row i, i = 1; : : : ; m. Again all
generated matrices are C1PR since column n+1 can be moved to an appropriate position,
and we have A Æ xi = a0, for all i = 0; 1; : : : ; m. From m � n aÆnely independent matrices
satisfying A Æ x = a0 we can obtain this way m � (n + 1) aÆnely independent matrices
satisfying A Æ x = a0.

The general result follows from these two constructions. ut

3.1.3 Melting valid inequalities

If trivial lifting is possible, this means that larger polytopes inherit all facets of smaller
polytopes. Conversely given a valid inequality A Æ x = a0 it is also possible to derive valid
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inequalities ~A Æ ~x = a0 for polytopes of lower dimensions. We call this method melting.
Unfortunately the melting process does not preserve the facet-de�ning property.

Theorem 3.3 Let A Æ x � a0 be a valid inequality for Pm;n
C1R and let ~A be the resulting

(m�1; n)-matrix ((m;n�1)-matrix) when replacing two rows (columns) of A by their sum,
then ~A Æ ~x � a0 is a valid inequality for Pm�1;n

C1R (Pm;n�1
C1R ).

Proof. We will do the proof for the case of melting rows. Without loss of generalization
~A is constructed from A by replacing the last two rows Am�1: and Am: by their sum ~Am�1:.
Now let ~M be any (m�1; n) 0=1 matrix that is C1PR. We construct an (m;n) 0=1 matrix
M from ~M by duplicating the last row, thus Mm: =Mm�1: = ~Mm�1:. Since the last row of
M is a copy of a row of ~M we can establish C1PR ofM with the same column permutation
as for ~M . Further A Æ x � a0 is valid for Pm;n

C1R and with it A ÆM � a0 holds. Because of
the construction of M we have ~A Æ ~M = A ÆM with the consequence that also ~A Æ ~M � a0
holds and since ~M was chosen arbitrarily from the set of all C1PR-matrices of given size
~A Æ x � a0 is valid for Pm�1;n

C1R . The proof in the case of melting columns follows along the
same lines. ut

Example 3.4 The following inequality is facet-de�ning for P 4;4
C1R (see A.2)0

BB@
1 1 0 �1
1 0 1 �1
0 1 �1 1
0 �1 1 1

1
CCA Æ x � 7:

Melting rows 1 and 2, columns 1 and 3 resp., leads to the inequalities

0
@ 2 1 1 �2

0 1 �1 1
0 �1 1 1

1
A Æ x � 7

0
BB@

2 0 �1
1 1 �1
1 �1 1

�1 1 1

1
CCA Æ x � 7:

The �rst inequality is valid for P 3;4
C1R, the second one for P 4;3

C1R. Performing both melting
procedures after another yields 0

@ 3 1 �2
1 �1 1

�1 1 1

1
A Æ x � 7

which is valid for P 3;3
C1R but not facet-de�ning since it is the sum of0

@ 1 1 �1
1 �1 1

�1 1 1

1
A Æ x � 5

and three trivial inequalities, which will be introduced in the following.
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3.1.4 Facets induced by trivial inequalities

The validity of the trivial inequalities xij � 0 and xij � 1, for all 1 � i � m, 1 � j � n
is obvious due to the de�nition of Pm;n

C1R. It is easily seen that they also de�ne facets.

Lemma 3.5 For all m � 1, n � 1, 1 � i � m, 1 � j � n, the inequalities xij � 0 and
xij � 1 de�ne facets of Pm;n

C1R.

Proof. We have P 1;1
C1R = convf0; 1g and therefore x11 � 0 and x11 � 1 are facet-de�ning

for P 1;1
C1R. The general result holds due to the trivial lifting property. ut

3.2 Tucker's characterization

In the previous section we presented basic properties of consecutive ones polytopes but
we have still no idea how an integer programming formulation of the problem could look
like. That is the outer description of a polytope whose integral interior points are exactly
the feasible C1PR matrices and allows that the WC1P can be formulated as a mixed
integer program. A characterization of feasible C1PR matrices could be very helpful for
this purpose. By making use of a graph theoretical correspondence Tucker ([Tuc72]) has
characterized these matrices by exhibiting �ve types of matrices M1k , M2k , M3k , M4 and
M5 which must not occur as submatrices. To be more precise, Tucker identi�ed the rows
and columns of 0=1 matrices with the two node-sets of an undirected bipartite graph with
an edge between two nodes if and only if the corresponding entry of the matrix is 1. From
a set of forbidden subgraphs in the graph theoretical formulation he derived the following
characterization for the matrix formulation of the consecutive ones property.

Theorem 3.6 ([Tuc72]) The 0=1-matrix M has the consecutive ones property for rows
if and only if no submatrix of M possibly after column or row permutation is one of the
matrices occurring in �gure 3.1.

3.2.1 A preliminary IP formulation

Based on this result we can obtain an integer programming formulation of WC1P. All we
have to do is to construct valid inequalities that cut o� all forbidden matrices. For M1k ,
M2k ,M3k ,M4 andM5 letM1k ,M2k ,M3k ,M4 andM5 denote the corresponding matrices
where all zero entries are replaced by �1. Figure 3.2 shows these matrices. Note that for
convenience we write here and in the following \�" instead of \�1" and \+" instead of
\+1".

Now look for example at the possible values of M5 Æ x for a given (4; 5) binary matrix
x. The maximum value for this sum is 11 and will be reached if and only if x equals
the Tucker matrix M5. Therefore the inequality M5 Æ x � 10 cuts o� only M5. Note
that 11 is the number of ones occurring in M5. This principle can be generalized to all
forbidden matrices. One only has to make sure that the right hand sides of the constructed
inequalities are equal to the number of ones of the matrix to be cut o� reduced by one.
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(k+2;k+2)-matrixM1k
(k�1)z }| {0

BBBBB@
1 1

1 1
. . . . . .

1 1
1 0 : : : 0 1

1
CCCCCA

(k+3;k+3)-matrixM2k
(k�1)z }| {0

BBBBBBB@

1 1 0
1 1 0

. . . . . .
...

1 1 0
0 1 : : : 1 1 1
1 1 : : : 1 0 1

1
CCCCCCCA

(k+2;k+3)-matrixM3k
(k�1)z }| {0

BBBBB@
1 1 0

1 1 0
. . . . . .

...
1 1 0

0 1 : : : 1 0 1

1
CCCCCA

(4;6)-matrixM4z }| {0
BB@

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 1 0 1 0 1

1
CCA

(4;5)-matrixM5z }| {0
BB@

1 1 0 0 0
1 1 1 1 0
0 0 1 1 0
1 0 0 1 1

1
CCA

Figure 3.1: Forbidden Tucker matrices M1k , M2k , M3k , M4 and M5

The complete IP formulation of the WC1P looks as follows:

min cTx
M1k Æ xIJ � 2k + 3 for all (k + 2; k + 2)-tuples (I; J) and k � 1,
M2k Æ xIJ � 4k + 5 for all (k + 3; k + 3)-tuples (I; J) and k � 1,
M3k Æ xIJ � 3k + 1 for all (k + 2; k + 3)-tuples (I; J) and k � 1,
M4 Æ xIJ � 8 for all (4; 6)-tuples (I; J),
M5 Æ xIJ � 10 for all (4; 5)-tuples (I; J),

xij 2 f0; 1g for all i = 1; : : : ; m, j = 1; : : : ; n.

The validity of this formulation is clear, since for a 0=1-matrix all Tucker submatrices
are cut o� by this set of inequalities.

However, this is not a good formulation in the sense that most of the inequalities do not
de�ne facets of the associated polytope. The following example 3.7 shows a Tucker-based
inequality that is not facet de�ning.
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(k+2;k+2)-matrixM1k
(k�1)z }| {0

BBBBB@
+ + � � �
� + + � �
...

. . . . . .

� � � + +
+ � : : : � +

1
CCCCCA

(k+3;k+3)-matrixM2k
(k�1)z }| {0

BBBBBBB@

+ + � � � � � �
� + + � � � � �
...

. . . . . . . . .
...

� � � � � + + �
� + � � � + + +
+ + � � � + � +

1
CCCCCCCA

(k+2;k+3)-matrixM3k
(k�1)z }| {0

BBBBB@
+ + � � � � � �
� + + � � � � �
...

. . . . . . . . .
...

� � � � � + + �
� + � � � + � +

1
CCCCCA

(4;6)-matrixM4z }| {0
BB@

+ + � � � �
� � + + � �
� � � � + +
� + � + � +

1
CCA

(4;5)-matrixM5z }| {0
BB@

+ + � � �
+ + + + �
� � + + �
+ � � + +

1
CCA

Figure 3.2: The left-hand sides of the IP formulation derived from Tucker's
characterization. The right-hand sides for each inequality are
equal to the number of \+"-entries reduced by 1.

Example 3.7 Consider the inequality M12 Æ x � 7.0
BB@

+ + � �
� + + �
� � + +
+ � � +

1
CCA Æ x � 7

We add the inequality M11 Æ x � 5 and 7 trivial inequalities, all lifted to P 4;4
C1R.0

BB@
+ + � 0
� + + 0
+ � + 0
0 0 0 0

1
CCA Æ x � 5

0
BB@

0 0 0 �
0 0 0 �
0 0 0 +
+ � � +

1
CCA Æ x � 3

After taking the sum, dividing by 2 and round o� the right hand side we get0
BB@

+ + � �
� + + �
0 � + +
+ � � +

1
CCA Æ x � 7;
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which is stronger than the �rst inequality. Therefore M12 Æ x � 7 cannot be facet-de�ning
for P 4;4

C1R.

With similar arguments one can show that M11 Æ x � 5 and M31 Æ x � 5 are the
only inequalities of the Tucker based IP formulation that are facet-de�ning. Note that the
strengthened inequality in example 3.7 only di�ers fromM12 Æx � 7 by an additional \0"-
entry instead of a \�"-entry. Therefore one idea for constructing facet de�ning inequalities
cutting of the Tucker matrices could be to replace \�"-entries as long by zeros as the
inequality remains valid. The next sections shows two possibilities to construct such classes
of facets.

3.3 Facets induced by staircase inequalities

As said before we want to strengthen the �rst IP formulation given in 3.2.1 with the purpose
to obtain an IP formulation consisting only of facets for the corresponding polytope.

First of all we are looking for facet de�ning inequalities cutting of the Tucker matrices
M1k , M2k and M3k . The inequalities that will do this job are based on two classes of
matrices F1k and F2k , for k � 1. As mentioned before the �rst class of matrices F1k is
obtained fromM1k by replacing most of the \�"-entries by zeros. There is only one \�"-
entry per row remaining. F2k arises fromM3k in a similar way. There are two \�"-entries
per row remaining and in addition most of the \+"-entries of the last row are replaced by
zeros (the right-hand side will be decreased accordingly). The matrices are shown in �gure
3.3. 0

BBBBBBB@

+ � +
+ + �

+ + �
. . . . . .

...
+ + �

� + +

1
CCCCCCCA

0
BBBBBBB@

+ + � �
+ + � �

. . . . . .
...

...
+ + � �

� + + �
� + � +

1
CCCCCCCA

Figure 3.3: Staircase matrices F1k and F2k .

The structure of the matrices F1k and F2k as well as the Tucker matrices themselves
look similar to a staircase. Therefore we will name these matrices staircase matrices and
the derived inequalities staircase inequalities. Now we will show that these matrices lead
to facet-de�ning inequalities. To be more precise, here we only show the validity of the
corresponding inequalities, the facet-de�ning property for Pm;n

C1R follows from the fact that
they are even facet-de�ning for the simultaneous polytope Pm;n

C1S which is contained in Pm;n
C1R.

This will be shown in section 4.3.1.



30 The Facial Structure of the Consecutive Ones Polytope

Theorem 3.8 The staircase inequalities

F1k Æ xIJ � 2k + 3;

for k � 1 and all (k+2; k+2)-index sets, are valid for Pm;n
C1R for all m � k+2 and n � k+2.

Proof. We only need to consider the canonical ordered index sets I = f1; 2; : : : ; mg and
J = f1; 2; : : : ; ng. Let x be a 0/1-matrix such that F1k Æ x > 2k + 3. Then x must have 0
entries at the \�"-positions of F1k and 1 entries at the \+"-positions. We will show that
we cannot obtain a C1PR matrix no matter how the remaining entries of x are assigned
and how the columns of x are permuted. We call a row \bad" if and only if there is a
forced 0 between two forced 1 entries. Note that x has exactly one bad row. Now consider
any sequence of permutations of adjacent columns of x. The status of a row changes if and
only if the entries of this row in the two columns are a forced 0 and a forced 1. For each
pair of columns of x there is an even number (0 or 2) of rows with this property. Thus
for any column permutation of x the number of bad rows remains odd and therefore at
least one. But a matrix with a bad row cannot be C1PR and validity of the inequality
follows. ut

Theorem 3.9 The staircase inequalities

F1k Æ xIJ � 2k + 3;

for k � 1 and all (k + 2; k + 2)-index sets, are facet-de�ning for Pm;n
C1R for all m � k + 2

and n � k + 2.

Proof. The proof immediately follows from their validity, from theorem 4.33 and lemma
4.31. ut

Analogously we will proceed with the second class of staircase inequalities.

Theorem 3.10 The staircase inequalities

F2k Æ xIJ � 2k + 3;

for k � 1 and all (k+2; k+3)-index sets, are valid for Pm;n
C1R for all m � k+2 and n � k+3.

Proof. The proof is similar to the previous one. Here rows of x are called \bad" if and
only if there is a forced 0 between two forced 1 entries and a forced 1 between two forced
0 entries, i.e., the relative order of the nonzero entries of the corresponding row in F2k is
either \+�+�" or \�+�+". Then the veri�cation of validity follows exactly along the
same lines as for F1k . ut

Theorem 3.11 The staircase inequalities

F2k Æ xIJ � 2k + 3;

for k � 1 and all (k + 2; k + 3)-index sets, are facet-de�ning for Pm;n
C1R for all m � k + 2

and n � k + 3.

Proof. The proof immediately follows from their validity, from theorem 4.34 and lemma
4.31. ut
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3.4 An IP formulation with facets

For the purpose of deriving an IP formulation with facets, it remains to construct facets
cutting of the two single Tucker matrices M4 and M5. We will see that the inequalities
F3 Æ x � 8 and F4 Æ x � 8 have this properties, where the matrices F3 and F4 are shown
in the following picture.0

BB@
+ + � 0 � 0
� 0 + + � 0
� 0 � 0 + +
� + � + � +

1
CCA

0
BB@

+ + 0 + �
+ 0 0 + �
� 0 + + �
+ � � + +

1
CCA

Figure 3.4: Matrices F3 and F4.

Theorem 3.12

(a) The inequalities F3 Æ xIJ � 8, for all (4; 6)-index sets, de�ne facets of Pm;n
C1R for all

m � 4 and n � 6.

(b) The inequalities F4 Æ xIJ � 8, for all (4; 5)-index sets, de�ne facets of Pm;n
C1R for all

m � 4 and n � 5.

Proof. Using the software PORTA we could verify that F3 Æ x � 8 is facet-de�ning
for P 4;6

C1R and F4 Æ x � 8 is facet-de�ning for P 4;5
C1R. The result then follows from trivial

lifting. ut
We now must make sure that all forbidden matrices are cut o� at least once.

Lemma 3.13 The facet-de�ning inequalities from theorems 3.9, 3.11 and 3.12 cut o� all
Tucker matrices occurring in �gure 3.1.

Proof. It is easily veri�ed that

i) F1k ÆM1k = 2k + 4,

ii) F1k+1
ÆM2k = 2k + 6,

iii) F2k ÆM3k = 2k + 4,

iv) F3 ÆM4 = 9,

v) F4 ÆM5 = 9.

Therefore every Tucker matrix violates one of these inequalities. ut
Based on the above results we obtain the following integer programming formulation of
WC1P. It consists only of inequalities which are facet-de�ning for Pm;n

C1R.
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min cTx
F1k Æ xIJ � 2k + 3 for all (k + 2; k + 2)-tuples IJ and k � 1,
F2k Æ xIJ � 2k + 3 for all (k + 2; k + 3)-tuples IJ and k � 1,
F3 Æ xIJ � 8 for all (4; 6)-tuples IJ ,
F4 Æ xIJ � 8 for all (4; 5)-tuples IJ ,

xij 2 f0; 1g for all i = 1; : : : ; m, j = 1; : : : ; n.

For �xed k there are
�

m
k+2

��
n

k+2

�
((k + 2)!)2 possibilities to choose the (k + 2; k + 2)-tuples

IJ , where the F1k inequalities are de�ned on. Since k varies from 1 to minfm�2; n�2g the
total number of F1k inequalities is exponential in the input size. The same holds for the
F2k inequalities. Nevertheless in section 5.3.1 we will show that the separation problem
associated with this IP formulation can be solved in polynomial time using a shortest path
algorithm to separate the staircase inequalities.

3.5 Facets derived from betweenness polytopes

This section presents a completely di�erent way to obtain facets for Pm;n
C1R. We relate

the consecutive ones problem to the betweenness problem with the intention to realize
connections between their associated polytopes. We will prove some results on the facet
structure of the betweenness polytope and show how facets of this polytope can be used
to generate facets of Pm;n

C1R.

3.5.1 The betweenness problem

The input of the betweenness problem consists of a set of n objects 1; 2; : : : ; n and a
set B of betweenness conditions. Every element of B is a triple (i; j; k) requesting that
object j should be placed between objects i and k. The task is to �nd an ordering of the
objects such that as few betweenness conditions as possible are violated. If violations are
penalized by weights, we call the problem of �nding an ordering which minimizes the sum
of penalties the weighted betweenness problem (WBWP).

Both the WC1P and a variant of the WBWP occur as models in the physical mapping
problem. For more details on this application see section 6.1.

3.5.2 The betweenness polytope P n

BW

In the following we use indices i(j)k (betweenness triples) for pairwise di�erent objects
i, j and k, indicating that we consider whether object j is between objects i and k or not.
Since the indices i(j)k and k(j)i are equivalent, we only use i(j)k such that i < k. In
vectors, triples are ordered lexicographically, i.e., we use the order

1(2)3; 1(2)4; : : : ; n�1(n�2)n:

For each permutation � of n � 3 elements 1; : : : ; n and each betweenness triple i(j)k we
de�ne an indicator ��i(j)k which is 1 if and only if the element j lies between the elements
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i and k in the permutation � and 0 otherwise, i.e.,

��i(j)k =

�
1 : if ��1(i) < ��1(j) < ��1(k) or ��1(i) > ��1(j) > ��1(k) ,
0 : otherwise.

The 3
�
n
3

�
-dimensional characteristic betweenness vector associated with a permutation �

is then

�� = (��1(2)3; �
�
1(2)4; : : : ; �

�
n�1(n�2)n):

Now we can de�ne the associated polytope.

De�nition 3.14 The betweenness polytope for n � 3 is de�ned as

P n
BW

= convf�� j � is a permutation of f1; : : : ; ngg.

In contrast to Pm;n
C1R the betweenness polytope is not full-dimensional as the following results

show.

Lemma 3.15 For an arbitrary point x = (x1(2)3; : : : ; xn�1(n�2)n) 2 P n
BW and three pairwise

di�erent i, j, k, 1 � i; j; k � n, the equation (betweenness equation)

xi(j)k + xi(k)j + xj(i)k = 1

holds.

Proof. For each permutation � and pairwise di�erent i, j and k exactly one of the three
indicators ��i(j)k, �

�
i(k)j and ��j(i)k is 1. Thus the equations hold for any vertex of P n

BW and
with it for any point of P n

BW. ut
Up to linear combinations these equations are the only ones that are valid for P n

BW.

Theorem 3.16 P n
BW has dimension 2

�
n
3

�
.

Proof. No variable xi(j)k appears twice in the betweenness equations. Therefore the
coeÆcient matrix of these equations has full row rank

�
n
3

�
.

It remains to be shown that all further equations that are valid for P n
BW are linear

combinations of the betweenness equations implying that the dimension of P n
BW is equal

to 3
�
n
3

�
�
�
n
3

�
.

We conclude a contradiction from the assumption that there is an equation aTx = a0
valid for P n

BW, n � 4, which cannot be written as linear combination of betweenness
equations. Then there is at least one betweenness triple i(j)k with ai(j)k 6= ai(k)j. Without
loss of generality we set i = 1, j = 2 and k = 3. Now we construct an equation ~aTx = ~a0
with ~a1(2)3 6= ~a1(3)2 and show that it is valid for P 4

BW, which is a contradiction, because
P 4
BW does not contain such an equation as we have veri�ed by using the software PORTA.
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The coeÆcients of ~aTx = ~a0 are de�ned as follows (note that always i < k).

~ai(j)k =

8>>>>>><
>>>>>>:

ai(j)k : if i; j; k � 3;

1

n� 3

nX
l=4

ai(j)l : if k = 4;

1

n� 3

nX
l=4

ai(l)k : if j = 4:

Now it remains to show that for each permutation ~� 2 S(4) the value ~aT�~� is a constant
value not depending on ~�. We construct (n�3)! permutations �1; �2; : : : ; �(n�3)! 2 S(n) by
replacing the element 4 in ~� by all permutations of the (n�3) elements 4; : : : ; n. According

to our assumption 1
(n�3)!

P(n�3)!
p=1 aT��p = a0 holds. Therefore it remains to show that

~aT�~� + a0 �
1

(n� 3)!

(n�3)!X
p=1

aT��p

is a constant. After a short calculation we see that this value equals

a0 �
1

2

3X
i=1

X
j;k�4

ai(j)k �
1

3

X
i;j;k�4

ai(j)k:

Obviously this term, which is the right hand side ~a0 of the constructed equation, does not
depend on �~� anymore. ut

In contrast to the consecutive ones polytope, trivial inequalities only de�ne facets for
the betweenness polytope in the smallest case.

Theorem 3.17

(a) The complete linear description of P 3
BW is given by the betweenness equation x1(2)3 +

x1(3)2+x2(3)1 = 1 and the three trivial inequalities x1(2)3 � 0, x1(3)2 � 0 and x2(1)3 � 0.

(b) For n � 4 none of the trivial inequalities xi(j)k � 0 or xi(j)k � 1 de�nes a facet.

Proof. The description of P 3
BW is easily veri�ed. Now let n � 4.

For any permutation � the condition ��i(j)k = 1 forces ��i(k)j = 0 and ��j(i)k = 0. Thus

the dimension of fx j x 2 P n
BW and xi(j)k = 1g is at most 2

�
n
3

�
� 2. And consequently the

inequality xi(j)k � 1 cannot be facet-de�ning for P n
BW.

Similarly, for all permutations of four elements i; j; k; l with ��i(j)k = 0 the additional
equation ��i(j)l = ��k(j)l holds. This can easily be seen by testing all possibilities. This
equation cannot be derived from the betweenness equations. Thus again the dimension of
the induced face is at most 2

�
n
3

�
� 2. ut

Using PORTA we found that the complete description of P 4
BW consists of the four

betweenness equations and 12 additional facets, all de�ned by inequalities of the form
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xi(j)k + xi(k)j + xj(i)l + xk(i)l � 1: The outer description of P 5
BW needs 10 additional classes

of inequalities. Appendix A.4 shows one representative of each class.
Since we have equations, the same facet-de�ning inequality can be stated in various

ways. Therefore we de�ne a normal form with the property that two facet-de�ning
inequalities de�ne the same facet if and only if their normal forms coincide.

De�nition 3.18 A facet-de�ning inequality of P n
BW is stated in normal form if the follow-

ing properties hold.

i) The inequality is written as
P

ai(j)kxi(j)k � a0.

ii) All coeÆcients ai(j)k are nonnegative coprime integers.

iii) At least one of the three coeÆcients ai(j)k, ai(k)j and aj(i)k is zero for pairwise di�erent
elements i, j and k, 1 � i; j; k � n.

It is easily seen that the normal form of a facet-de�ning inequality is unique and that it is
easy to convert an inequality to normal form.

3.5.3 A common polytope

Both the feasible solutions of the WBWP and of the WC1P are based on the permutations
of n elements. In order to examine relations between the two problems we de�ne a master
problem combining their constraints. Here we seek for a permutation satisfying between-
ness conditions as well as having an associated matrix where the ones appear consecutively.
This would model the practical situation where a consecutive ones matrix has to be found
that satis�es in addition certain betweenness conditions.

De�nition 3.19 The common betweenness and consecutive ones polytope Pm;n
BWC1R is de-

�ned as

Pm;n
BWC1R = convf(��; �A) j A 2 f0; 1g(m;n) and � establishes C1PR of Ag:

The single polytopes can be simply obtained from Pm;n
BWC1R.

Remark 3.20 The projection of Pm;n
BWC1R on the betweenness variables xi(j)k is the between-

ness polytope P n
BW and the projection on the consecutive ones variables xri is the consecutive

ones polytope Pm;n
C1R.

Proof. Clearly the restriction of any vertex of Pm;n
BWC1R on the betweenness variables, the

consecutive ones variables, respectively, is a vertex of P n
BW, a vertex of Pm;n

C1R, respectively.
It remains to be shown that all vertices of P n

BW and Pm;n
C1R can be reached by projection.

If A is the zero matrix then every permutation � establishes C1PR of A. Thus for every
vertex v of P n

BW (which is associated to a permutation �) there is at least one vertex v0 of
Pm;n
BWC1R with v0 = (v; �).
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Similarly, every vertex w of Pm;n
C1R is associated with a matrix A that is C1PR. Therefore

there is at least one permutation establishing C1PR of A. And with it there is a vertex w0

of Pm;n
BWC1R such that w0 = (�; w). ut
Of course, all valid inequalities for Pm;n

C1R or P n
BW remain valid for Pm;n

BWC1R. We will now
construct valid inequalities for Pm;n

BWC1R that are formulated both on betweenness and on
consecutive ones variables.

Lemma 3.21 Let A = (ari) be an (m;n)-matrix (n � 3) with C1PR. Then for all rows
r of A, all betweenness triples i(j)k of columns i; j; k of A and all permutations � that
establish C1PR of A we have

��i(j)k � 2� ar��1(i) + ar��1(j) � ar��1(k):

Proof. The only possibility to violate this inequality is to set ��i(j)k = 1, ar��1(i) = 1,

ar��1(j) = 0 and ar��1(k) = 1. But according to the de�nition ��i(j)k = 1 means ��1(i) <

��1(j) < ��1(k) or ��1(i) > ��1(j) > ��1(k). Both cases force the 0-entry ar��1(j) to lie
between the 1-entries ar��1(i) and ar��1(k). Thus the ones do not occur consecutively in
row r of A in contradiction to the choice of �. ut

Based on this observation we can de�ne so-called linking constraints.

Theorem 3.22 The inequalities

xi(j)k � 2� xri + xrj � xrk

are valid for Pm;n
BWC1R for all r 2 f1; : : : ; mg and all betweenness triples i(j)k.

Proof. According to Lemma 3.21 the inequalities are ful�lled by all vertices of Pm;n
BWC1R.

Therefore they are valid for the polytope. ut
Intuitively there is a close relationship between the consecutive ones and the between-

ness problem. We now establish a connection between the facets of the two polytopes by
making use of the linking constraints. These constraints are used to eliminate betweenness
variables and replace them by consecutive ones variables.

Theorem 3.23 Let aTx � a0 be a facet-de�ning inequality for P n
BW, n � 4, in normal

form. Further let m be the number of nonzero coeÆcients of a. We assign pairwise dif-
ferent numbers ri(j)k 2 f1; : : : ; mg to the betweenness triples i(j)k with ai(j)k > 0. Let
the inequality B Æ x � b0 be obtained by summing up �aTx � �a0 and all (scaled) linking
constraints ai(j)kxi(j)k � ai(j)k(2�xri(j)ki+xri(j)kj�xri(j)kk).Then BÆx � b0 is facet-de�ning
for Pm;n

C1R.

Proof. The validity of B Æ x � b0 for the common polytope Pm;n
BWC1R is clear because

it was constructed as the sum of valid inequalities. Now since the projection of Pm;n
BWC1R

on the consecutive ones variables is Pm;n
C1R (see remark 3.20) and since B Æ x � b0 contains

no betweenness variables the inequality is also valid for Pm;n
C1R. It remains to show that it

is facet-de�ning. For this purpose we use the same technique as in the proof of theorem
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3.9. Again let F = fx j aTx = a0g \ Pm;n
C1R denote the induced face of B Æ x � b0 and let

DÆx � d0 be any facet-de�ning inequality for P
m;n
C1R such that F � fx j DÆx = d0g\P

m;n
C1R.

We will show that both inequalities only di�er by multiplication with a positive scalar.
For a given permutation � whose characteristic betweenness vector �� ful�lls aTx � a0

with equality we construct a standard solution x� as follows.

x�ri(j)kc =

8>>>>>>><
>>>>>>>:

1 : if ��i(j)k = 1 and c = i;

0 : if ��i(j)k = 1 and c 6= i;

1 : if ��i(j)k = 0 and c = i;

1 : if ��i(j)k = 0 and c = k;

1 : if ��i(j)k = 0 and ��i(c)k = 1;

0 : if ��i(j)k = 0 and ��i(c)k = 0:

One can easily calculate that for each row r = ri(j)k the corresponding linking constraint
��i(j)k � 2�x�ri+x�rj�x�rk holds with equality. All inequalities which add up to B Æx� � b0
are ful�lled with equality with the consequence that x� 2 F .

In the following we consider an arbitrary but �xed row r = ri(j)k of D. Since aTx � a0
is facet-de�ning for P n

BW there is at least one ordering � with aT�� = a0 and ��i(j)k = 1.

Otherwise xi(j)k = 0 would hold for all solutions of aTx = a0 contradicting the facet-de�ning
property of aTx � a0 since this equation cannot be written as linear combination of the
betweenness equations. Now consider the standard solution x�. We construct another
solution ~x� from x� by setting ~x�ri = 0 and ~x�rk = 1. Then we have

0 = D Æ x� �D Æ ~x� = dri � drk

and with it dri = drk := Æ. Taking a column i0 with bri0 = 0 and which lies next to i in the
permutation � we construct another solution �x� from x� by setting �x�ri0 = 1. This leads to

0 = D Æ x� �D Æ �x� = �dri0:

Very similar to the proof of theorem 3.9 we can extend this to a series of solutions starting
from x� and ~x� to show that drc = 0 for c =2 fi; j; kg.

Finally let x̂� be the solution obtained from x� by setting all entries of row r to 1. Since
most of the coeÆcients of Dr: are already shown to be zero we get

0 = D Æ x� �D Æ x̂� = �drj � drk

and therefore drj = �Æ.
The same arguments can be performed for any row. Thus we have shown that D = ÆB

holds. Since the solution consisting of zeros only contradicts Æ < 0 we are done.
ut

By this construction (which in fact corresponds to projecting out some variables of a system
of inequalities) we can obtain for each facet class of P n

BW a facet class of Pm;n
C1R.
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Example 3.24 Consider for example the inequality

x1(2)3 + x1(3)2 + x2(1)4 + x3(1)4 � 1

which is facet-de�ning for P 4
BW and in normal form. The four linking constraints

�x1(2)3 � �2 + x11 � x12 + x13

�x1(3)2 � �2 + x21 � x23 + x22

�x2(1)4 � �2 + x32 � x31 + x34

�x3(1)4 � �2 + x43 � x41 + x44

are valid for P 4;4
BWC1R.

Summing up these �ve inequalities (thus eliminating the betweenness variables) and
multiplying by �1 yields the staircase inequality0

BB@
1 �1 1 0
1 1 �1 0

�1 1 0 1
�1 0 1 1

1
CCA Æ x � 7:

According to theorem 3.23 this inequality is facet-de�ning for P 4;4
C1R.

If we start with a facet aTx � a0 of P n
BW in normal form, clearly the support of the

constructed facet of Pm;n
C1R has at most n columns. But what about the number of rows m?

According to the construction, m is the number of nonzero coeÆcients of a. Since at least
one of three coeÆcients is zero, we have m � 2

�
n
3

�
. Taking into account that these facets

can be trivially lifted to facets of Pm0;n
C1R with m0 > m the total number of constructed facets

of Pm;n
C1R for �xed n and arbitrary m is O(m2(n3)) and thus polynomial in m. Unfortunately,

not every facet can be constructed in this way. But in the following section we will show
the surprising result that for �xed n (�xed m) also the total number of facets of Pm;n

C1R is
polynomial in m (in n) with the consequence that the WC1P is polynomially solvable for
�xed n or m.

3.6 Number of facets for a �xed number of rows or

columns

The left hand sides of the facets constructed in the last section have the common property
that in each row the number of nonzeros is 3, corresponding to a betweenness triple. To take
general facet de�ning inequalities into account one has to consider not only interactions of
three but of arbitrarily many columns. Moreover, a single betweenness triple only models
a special relation of columns. But we are also interested in interactions of rows. For these
purposes we introduce the concept of feasible sets both of rows and of columns.
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De�nition 3.25 A set C = fc1; : : : ; ckg where ci 2 f0; 1g(m;1), for i = 1; : : : ; k, of columns
is called consecutive ones feasible for columns (C1FC) if the matrix consisting of all
columns of C is C1PR.

De�nition 3.26 A C1FC set C is called consecutive ones maximal for columns
(C1MC) if C is maximal with respect to set inclusion.

Example 3.27 Let m = 3. The set

C =

8<
:
0
@ 0

0
0

1
A ;

0
@ 0

0
1

1
A ;

0
@ 0

1
1

1
A ;

0
@ 1

1
0

1
A ;

0
@ 0

1
0

1
A
9=
;

is C1FC but not C1MC since one can add the column (1 1 1)T and the resulting set

C =

8<
:
0
@ 0

0
0

1
A ;

0
@ 0

0
1

1
A ;

0
@ 0

1
1

1
A ;

0
@ 1

1
1

1
A ;

0
@ 1

1
0

1
A ;

0
@ 0

1
0

1
A
9=
;

is still C1FC. But any further column (1 0 0)T or (1 0 1)T would lead to a set whose
corresponding matrix is not C1PR. Therefore C is C1MC.

Note that C1FC and C1MC sets do not contain duplicate columns. This contrasts with
matrices that are C1PR.

Lemma 3.28 The cardinality of all C1MC sets for m rows is 2m.

Proof. Let C = fc1; : : : ; ckg be C1MC and M a corresponding matrix such that the
ones in every row of M occur consecutively and the rows are ordered lexicographically.

Then the �rst column of M is 0. Assume without loss of generality that the columns
occur in order c1; : : : ; ck in C. Let jci � cjj be the number of entries in which ci and cj
di�er. Since C is C1MC there is at least one \1"-entry in every row of M . Otherwise
one could add a further column as the �rst column which has a \1"-entry in that row and
\0"-entries otherwise.

Because the \1"-entries occur consecutively in all rows we have the equation

kX
i=1

jci � ci+1j = 2m

(where ck+1 is identi�ed with c1). Since the ci are pairwise di�erent it follows that
Pk

i=1 jci�
ci+1j � k. On the other hand, if there were a consecutive pair of columns satisfying
jci�ci+1j > 1, one could add an additional di�erent column between these two contradicting
the maximality of C. Therefore we obtain that

Pk
i=1 jci � ci+1j = k which implies that

k = 2m. ut
As immediate consequence of this lemma we can give an upper bound on the number

of C1MC sets.
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Corollary 3.29 The number of C1MC sets for m rows is at most
�
2m

2m

�
.

Proof. The result is clear since the number of all possible columns is 2m and since the
cardinality of all C1MC sets for m rows is 2m. ut

Analogously to the de�nition of feasible sets for columns we can introduce feasible sets
for rows.

De�nition 3.30 A set R = fr1; : : : ; rkg where ri 2 f0; 1g
(1;n), for i = 1; : : : ; k, of rows is

called consecutive ones feasible for rows (C1FR) if the matrix consisting of all rows
of R is C1P.

De�nition 3.31 A C1FR set R is called consecutive ones maximal for rows (C1MR)
if R is maximal with respect to set inclusion.

Example 3.32 Let n = 3. The set

R =

8>>>>>><
>>>>>>:

( 0 0 0 )
( 0 0 1 )
( 0 1 0 )
( 1 0 0 )
( 0 1 1 )
( 1 1 1 )

9>>>>>>=
>>>>>>;

is C1FR but not C1MR since one can add the row ( 1 1 0 ) and the resulting set

R =

8>>>>>>>><
>>>>>>>>:

( 0 0 0 )
( 0 0 1 )
( 0 1 0 )
( 1 0 0 )
( 0 1 1 )
( 1 1 0 )
( 1 1 1 )

9>>>>>>>>=
>>>>>>>>;

is still C1FR. But any further row (( 1 0 1 ) is the only one remaining) would lead to a
set which cannot be brought into C1-structure. Therefore R is C1MR. Analogously to the
previous case C1FR and C1MR sets do not contain duplicate rows.

The smallest set that is not C1FR consists of the three rows ( 1 1 0 ), ( 1 0 1 ) and
( 0 1 1 ). Here the relationship with the concept of betweenness triples is observable. The
three rows correspond to the triples 1(3)2, 1(2)3 and 2(1)3 and it is not possible to ful�ll
all three betweenness conditions simultaneously.

Lemma 3.33 The cardinality of all C1MR sets for n columns is n(n+1)
2

+ 1. The total
number of di�erent C1MR sets for n columns is n!=2.
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Proof. Let R be a C1MR set of rows with n columns. Further let � be a permutation
of the columns that establishes C1PR for each row. Without loss of generality we assume
that � is the identity. Then all rows of R must be of the form

(0 : : : 0 1 : : : 1 0 : : : 0):

There is one such row with no \1"-entry, n rows with one \1"-entry, n�1 rows with two
\1"-entries and so on up to a single row with n \1"-entries. Because of the maximality of
R none of these rows must be missing. Therefore by adding all these numbers we obtain
that the total number of rows in R is equal to n(n+1)

2
+ 1.

For two di�erent column permutations �1 and �2 the corresponding C1MR sets are
equal if and only if �2 is the reverse ordering of �1. This can be seen by viewing the
subsets of the corresponding C1MR sets consisting of the n�1 rows containing exactly
2 ones. These rows correspond to pairs of neighboring elements of �1 or �2, respectively.
These 2 sets of pairs are identical if and only if �1 and �2 de�ne the same permutation or
one de�nes the reverse of the other. As a consequence the number of di�erent C1MR sets
is n!=2. ut

Note that due to the de�nition of C1PR, a matrix is C1PR if and only if it consists of
(an arbitrary number of) rows from a set R which is C1MR (columns from a set C which
is C1MC, resp.). Further, for any matrix M 2 f0; 1g(m;n) which is C1PR there is at least
one set R which is C1MR and contains all di�erent rows of M as a subset and at least one
set C which is C1MC and contains all di�erent columns of M .

Remark 3.34 All C1MC sets have the same cardinality. The same holds for the C1MR
sets. Therefore both independence systems de�ne matroids. Unfortunately the objective
function of WC1P is not directly de�ned on rows or columns but on single entries of the
matrix. Furthermore duplicated rows or columns are allowed in feasible WC1P solutions.
Otherwise one could derive a polynomial algorithm for WC1P from a simple greedy algo-
rithm on the matroid.

See [KV00] for more details on independence systems and matroids.

Now with the help of C1MC and C1MR sets we are able to prove the surprising result
that for a �xed number of rows (columns resp.) the number of facets of Pm;n

C1R grows only
polynomially in the number of columns (rows resp.). This contrasts with many combina-
torial optimization problems where the number of facets of the corresponding polytopes
grow exponentially, though the problems are polynomially solvable.

Theorem 3.35 The number of facets of Pm;n
C1R for �xed m is O(n(

2m

2m)).

Proof. Let m be the �xed number of rows.
Suppose B Æ x � b0 is a nontrivial facet-de�ning inequality for Pm;n

C1R. Since the zero
matrix and all matrices consisting of zeros except for one entry are feasible solutions it
follows that b0 > 0.

Let l be the number of C1MC sets C consisting of columns 2 f0; 1g(m;1) with the
property that there exists a matrix M 2 f0; 1g(m;n) with B ÆM = b0 and all columns of
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M are in C. According to corollary 3.29 we have l �
�
2m

2m

�
. Our goal is to show that the

support of B has at most l columns.
For each of these chosen sets C 2 fC1; : : : ; Clg and every column j of B we de�ne

mC
j (B) = maxfBT

:jv j v 2 Cg

as the maximum possible contribution of column j to the left hand side of the facet.
Furthermore, for all C1PR matricesM with BÆM = b0 and all C1MC sets C containing

all columns of M the relation

BT
:jM:j = mC

j (B)

holds for every column j. The relation BT
:jM:j � mC

j (B) is clear from the de�nition of
mC

j (B). If we assume that BT
:jM:j < mC

j (B) we can construct a new C1PR matrix M 0 by
replacing the column j of M by the maximum column v from the above de�nition. But
then B ÆM 0 > b0 contradicting the validity of B Æ x � b0.

Now let k be the number of nonzero columns of B. We create the (l; k)-matrix

M(B) = (mij(B)) = (mCi

j (B)):

Of course the rank of M(B) is at most l independently of the number k of columns.
Now assume that a facet-de�ning inequality B Æ x � b0 is given with the number of

nonzero columns k of B greater than l. Because of rankM(B) � l at least one column j
of M(B) can be written as a linear combination M(B):j =

P
j0 6=j dj0M(B):j0. And since

BT
:jM:j = mCi

j (B) holds for any C1PR matrix M with B ÆM = b0 and a suitable C1MC
set Ci containing the di�erent columns of M we have

BT
:jM:j = mCi

j (B) =
X
j0 6=j

dj0m
Ci

j0 (B) =
X
j0 6=j

dj0B
T
:j0M:j0:

This equation holds for every vertex M of fx 2 Pm;n
C1R j B Æ x = b0g. And since it contains

no constant coeÆcient it cannot be obtained by scaling the equation BÆx = b0 with b0 > 0.
Therefore the inequality B Æ x � b0 cannot be facet-de�ning.

Thus the support of every facet-de�ning inequality for Pm;n
C1R has at most l �

�
2m

2m

�
columns and therefore each of these facets can be obtained by trivial lifting from a facet of

P
m;(2

m

2m)
C1R . Since the number of facets of P

m;(2
m

2m)
C1R is constant in n and the number of lifting

possibilities for one facet is at most
�

n

(2
m

2m)
�
the total number of facet-de�ning inequalities

for Pm;n
C1R is O(n(

2m

2m)). ut

Theorem 3.36 The number of facets of Pm;n
C1R for �xed n is O(mn!=2).

Proof. The proof follows along the same lines as the proof of the previous theorem.
Since for �xed n the number of C1MR sets R is equal to n!=2, the total number of facet-
de�ning inequalities for Pm;n

C1R for �xed n is of order O(mn!=2). ut
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3.6.1 Polynomial solvability

As a consequence of the results on the number of facets we obtain that WC1P is solvable
in polynomial time for �xed n or �xed m. Note that for a �xed number of columns this
result has already been shown in section 2.4.3.

Corollary 3.37 WC1P is solvable in polynomial time for �xed n or �xed m.

Proof. Consider the case that the number n of columns is �xed. According to the
discussion above all facets of Pm;n

C1R can be obtained by trivial lifting from facets of P
n!=2;n
C1R .

Computing all of these facets takes time constant in m. And for each of these facets there
are at most

�
m
n!=2

�
possibilities for trivial lifting. Thus we need time O(mn!=2) to create a

complete listing of all facets of Pm;n
C1R.

Since the number of facets as well as their encoding length is polynomial in m, we
can list them all explicitly in polynomial time and use a polynomial algorithm for linear
programming to minimize the objective function over the exact linear description of Pm;n

C1R.

An analogous argumentation applies to the case where m is �xed. ut

Linear programming provides one means of solving the WC1P for �xed m or n in
polynomial time. However, looking more closely into the combinatorial structure of the
problem, we can even derive a linear time algorithm.

Theorem 3.38 WC1P is solvable in linear time for �xed n or �xed m.

Proof. We only consider the case that m is �xed as the discussion for �xed n is similar.
Besides, the latter case has been proven by corollary 2.23 in a di�erent manner.

Let the WC1P be formulated as

maxfB Æ x j x 2 f0; 1g(m;n) is C1PRg:

Now for each C1MC set C and for each column c of B we compute mC
c (B). One com-

putation takes time O(2m2). Therefore all of these calculations take time O(2m2
�
2m

2m

�
n).

Since

maxfB Æ x j x 2 f0; 1g(m;n) is C1Pg

= max
�X

j

mC
j (B) j C is a C1MC set

	

holds, we are done. The total running time of this algorithm is O(2m2
�
2m

2m

�
n) and thus

linear in n. ut

When �xing the number n of columns, we obtain a running time O(n3n!m) which can
be improved to O(n!nm) by making use of the scan line method described in section 2.4.3.
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3.7 Outer descriptions of small polytopes

We want to conclude this chapter with some notes on the complete description of polytopes
for few rows or columns.

If m � 2 or n � 2, all (m;n)-matrices are C1PR and therefore the trivial inequalities
completely describe Pm;n

C1R.
For n = 3 there are n!=2 = 3 C1MR sets. According to theorem 3.36 the support of any

facet-de�ning inequality for Pm;3
C1R has at most 3 rows. Therefore the complete descriptions

of Pm;3
C1R for m � 3 only consist of lifted facets for P 3;3

C1R which are the trivial inequalities
and the smallest class of staircase inequalities F110

@ 1 1 �1
1 �1 1

�1 1 1

1
A Æ x � 5:

For m = 3 we have shown by complete enumeration that there are 12 C1MC sets. Analo-
gously, using theorem 3.36 it follows that facet-de�ning inequalities for P 3;n

C1R have at most
12 nonzero columns. We tried to compute the complete descriptions for 4 � n � 12 by
making use of the software package PORTA [CL98]. Thus the description of P 3;4

C1R requires
one additional class of facet-de�ning inequalities, namely the staircase inequality class F210

@ 1 1 �1 �1
1 �1 1 �1
1 �1 �1 1

1
A Æ x � 5:

Interestingly the description of P 3;5
C1R requires no additional facet classes, but the description

of P 3;6
C1R does. Appendix A.1 shows the outer description in this case including 3 further

classes. Unfortunately computing the complete description of P 3;n
C1R for 7 � n � 12 was not

possible in a reasonable amount of time.
Finally, appendix A.2 shows all facet-de�ning inequalities of the polytope P 4;4

C1R. Its
complete description requires 9 classes of facet-de�ning inequalities besides the trivial ones.
The total number of facets of P 4;4

C1R is 1880.
In section 5.3.2 we will see that such descriptions of small instances together with the

trivial lifting property can be very useful for separation purposes.



Chapter 4

The Simultaneous Consecutive Ones

Problem

Up to now we have dealt with binary matrices having the consecutive ones property only
for rows. Clearly their transposes have the consecutive ones property for columns. But
what about matrices that are simultaneously C1PR and C1PC? In the following this
simultaneous case will be investigated. Some of the results can easily be derived from the
standard case. But there are also some new outcomes. As most surprising result it will turn
out that the weighted optimization problem in the simultaneous case remainsNP-hard even
if the row-permutation and the column-permutation are �xed (see section 4.2.3). We will
conclude this chapter with some polyhedral investigations of the simultaneous consecutive
ones polytope and as in the standard case we will give an IP formulation of the weighted
problem that consists only of facets of the corresponding polytope.

4.1 Basic de�nitions and results

Both the de�nition of the simultaneous consecutive ones property and the de�nition of the
corresponding weighted optimization problem can directly be taken over from the nonsi-
multaneous case. However characterizing 0/1 matrices having the simultaneous consecutive
ones property can be accomplished with less forbidden matrices than in the standard case.

0/1 matrices are de�ned to have the simultaneous consecutive ones property if they have
both the consecutive ones property for rows and for columns. Therefore the de�nition is
directly reduced to the de�nitions 2.1 and 2.3.

De�nition 4.1 An (m;n) 0=1-matrixM has the simultaneous consecutive ones prop-
erty (is C1PS) if M is both C1PR and C1PC.

45
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Example 4.2 The matrix

M =

0
BB@

1 1 0 1
0 1 1 0
1 1 0 0
1 0 0 0

1
CCA

is C1PS. Permuting the �rst and the third column establishes C1PR

M 0 =

0
BB@

0 1 1 1
1 1 0 0
0 1 1 0
0 0 1 0

1
CCA

and an additional switching of the �rst two rows leads to

M 00 =

0
BB@

1 1 0 0
0 1 1 1
0 1 1 0
0 0 1 0

1
CCA

where both C1PR and C1PC is established.

Remark 4.3 As seen in the previous example establishing C1PR and C1PC of a matrix by
suitable column-permutations and row-permutations does not interact each other. Therefore
we can take any column-permutation that establishes C1PR and any row-permutation that
establishes C1PC and receive an arrangement of the matrix where both in each row and in
each column the ones occur consecutively.

Analogously to de�nition 2.17 we de�ne the weighted simultaneous consecutive
ones problem (WSC1P) as a problem of the form

minC Æ A
s:t: A is C1PS:

In section 4.2.2 we will show that the WSC1P is NP-hard This is a consequence of the fact
that a corresponding augmentation problem will be shown to be NP-complete (see 4.2.1).

Of course one can characterize C1PS matrices in the same manner as C1PR ones
(compare to section 3.2) by taking all forbidden matrices from �gure 3.1 and adding all
their transposes. But some of the matrices already contain the transposes of smaller ones.
For example M34 contains MT

21 as submatrix. Therefore not all of these matrices are
required in the simultaneous case.

Theorem 4.4 ([Tuc72]) The 0=1-matrix M has the simultaneous consecutive ones prop-
erty if and only if no submatrix of M , or of the transpose of M , is one of the matrices
occurring in �gure 4.1.

As well in this case we can derive an IP formulation for WSC1P by taking a set of valid
inequalities that cut o� all these matrices and their transposes. Section 4.3.2 will give a
tightened version of such an IP formulation.
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(k+2;k+2)-matrixM1k
(k�1)z }| {0

BBBBB@
1 1

1 1
. . . . . .

1 1
1 1

1
CCCCCA

(4;4)-matrixM21z }| {0
BB@

1 1 0 0
0 1 1 0
0 1 1 1
1 1 0 1

1
CCA

(5;5)-matrixM22z }| {0
BBBB@

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 1 1 1 1
1 1 1 0 1

1
CCCCA

(3;4)-matrixM31z }| {0
@ 1 1 0 0

0 1 1 0
0 1 0 1

1
A

(4;5)-matrixM32z }| {0
BB@

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 1 1 0 1

1
CCA

(5;6)-matrixM33z }| {0
BBBB@

1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 1 1 1 0 1

1
CCCCA

Figure 4.1: Tucker matrices M1k , M21 , M22 , M31 , M32 and M33

4.2 Complexity results

In this section we want to outline some new results on the complexity in the simultaneous
case. Although the WSC1P being NP-hard in the general case and being solvable in
linear time, if we �x the number of rows or columns, shows the same behavior as in the
nonsimultaneous case, an astonishing result will turn out to be the fact that WSC1P
remains NP-hard even if no column-permutation and row-permutation are allowed.

4.2.1 The augmentation problem

As mentioned in 2.4.1 our de�nition of the augmentation problem in the simultaneous case
di�ers from Booth's one [Boo75] in the sense that the roles of zeros and ones are switched.
This is because in the simultaneous case this de�nition has turned out to be more useful
to show the NP-completeness of the augmentation problem. As a corollary we get the
NP-hardness of the corresponding weighted optimization problem.

De�nition 4.5 A 0=1-matrix M has the k-augmented simultaneous consecutive
ones property (is SC1Pk) if and only if there exists a matrix M 0 which is C1PS and
which arises from M by replacing at most k \1"-entries of M by a \0".

Example 4.6 0
BB@

1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

1
CCA

0
BB@

1 1 1 0
1 1 0 0
0 0 1 1
0 1 1 1

1
CCA
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The left matrix is SC1P2 since switching two entries from \1" to \0" leads to the right
matrix which is C1PS. This can be seen by permuting the �rst two rows and the last two
rows.

Similarly to theorem 2.16 we will now show the NP-completeness of the corresponding
decision problem by transformation from the Hamiltonian path problem which is known
to be NP-complete [GJ79].

Theorem 4.7 Deciding whether a 0=1-matrix M is SC1Pk is NP-complete.

Proof. Verifying whether a given k-augmentation for M is C1PS can be done in poly-
nomial time using the PQ-tree algorithm both for rows and for columns. It remains to
specify a polynomial transformation to the Hamiltonian path problem. Although we use a
di�erent augmentation de�nition and a di�erent NP-complete problem to transform from
the construction works very similarly to the one used in the proof of theorem 2.16. Again
we construct the 0=1-matrix M as the node-edge incidence matrix of a given a graph
G = (V;E) . Consequently M = (mij) is de�ned as

mij =

�
1 : vj 2 ei
0 : vj =2 ei:

Now we claim that G contains a Hamiltonian path if and only if M is SC1P(jEj�jV j+1).
To proof this we �rst assume that G contains a Hamiltonian path H. Then there are
jEj � jV j + 1 edges not contained in H. Now in each row of M corresponding to this
edges an arbitrary \1"-entry is 
ipped to \0". In the remaining matrixM 0 the columns are
ordered according to the vertices appearing in H. Since the only rows containing still two
\1"s correspond to edges in H the \1"s in each row occur consecutively. After arranging
the rows lexicographically also the \1"s in each column must occur consecutively because
the maximal di�erence of the number of \1"s in two rows is 1.

Conversely we assume that M is SC1P(jEj�jV j+1). Let M 0 be the SC1P matrix which
arises from M by replacing jEj � jV j+ 1 \1"s by \0"s. At most one entry per row can be
replaced because otherwise there would be more than jV j�1 rows left with two \1"s. Since
these rows correspond to edges in the graph there would be at most one cycle consisting
of these edges which forces the matrix M 0 not to be C1PR and with it C1PS. Therefore
M 0 has exactly jV j � 1 rows with two \1"-entries. Since M 0 is C1PS the relative order of
these rows in an C1PS-establishing permutation creates a Hamiltonian path in G.

Now assume we are given a polynomial time algorithm which decides whether a given
matrix M is SC1Pk. Also the construction above can be performed in polynomial time.
Therefore we would have been created a polynomial time algorithm for �nding a Hamilto-
nian path in a graph. Thus the NP-completeness is proven. ut

Example 4.8 Figure 4.2 gives an example for the transformation used in the previous
proof. It shows a graph containing a Hamiltonian path, the corresponding node-edge inci-
dence matrix on the left-hand side and the modi�ed matrix on the right hand-side which
has become C1PS after a suitable row permutation and 
ipping 2 = jEj � jV j + 1 entries
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from \1" to \0". An additional column permutation has not been necessary in this case
because the nodes in the Hamiltonian path already occur in the order 1� 2� 3� 4� 5.

1 2

3 4

5

0
BBBBBB@

1 1 0 0 0
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1
0 0 1 1 0
0 0 0 1 1

1
CCCCCCA

0
BBBBBB@

1 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

1
CCCCCCA

Figure 4.2: Transformation used for proving theorem 4.7.

4.2.2 The weighted problem

As a corollary of the NP-completeness of the augmentation problem we obtain the NP-
hardness of the weighted problem where the objective function is arbitrary.

Corollary 4.9 The weighted simultaneous consecutive ones problem is NP-hard.

Proof. Assume we are given a polynomial time algorithm solving WSC1P to optimality.
Given a 0/1-matrix A we construct the objective function C = �A. Let l be the number
of \1"-entries of A. Then A is SC1Pk if and only if the solution of

minC Æ A
s:t: A is C1PS

is less or equal to k � l. Since the construction of C is polynomial we have derived a
polynomial time algorithm for the augmentation problem which was shown to be NP-
complete. ut

4.2.3 Complexity for �xed row and column permutation

Section 2.4.3 shows that the WC1P is solvable even in linear time for �xed column permu-
tation (the same holds for �xed row and column permutation). Therefore it seems pretty
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surprising that in the simultaneous case the WSC1P remains NP-hard even if row and
column permutation are �xed. To prove this we �rst want to generalize de�nition 2.19 to
the simultaneous case.

De�nition 4.10 A 0=1-matrix is in simultaneous Petrie form (is SPET) if it has
the consecutive ones property both for rows and for columns without any rearrangements
of rows or columns.

Example 4.11 0
BB@

0 0 1 0
0 0 0 0
0 0 1 0
0 0 0 0

1
CCA

0
BB@

1 0 0 0
1 1 1 1
0 0 1 1
0 0 1 0

1
CCA

Both matrices are C1PS but only the right one is SPET.

Also in this case we de�ne an augmentation version. Note that in this de�nition both kinds
of replacements are allowed.

De�nition 4.12 A 0=1-matrix M has the k-augmented simultaneous Petrie form
(is SPETk) if and only if there exists a matrix M 0 which is SPET and which arises from
M by switching at most k entries of M from \0" to \1" or vice versa.

Example 4.13 0
BBBB@

0 0 1 1 1
1 1 1 1 0
1 1 0 1 0
1 1 0 1 1
1 0 0 1 1

1
CCCCA

0
BBBB@

0 0 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 1
0 0 0 1 1

1
CCCCA

The �rst matrix is SPET4. Switching 4 entries leads to the second one which is SPET.

The proof of the NP-completeness of the corresponding decision problem is a little bit more
complicated than the the proof of theorem 4.7. Our goal is to construct a transformation
from the directed Hamiltonian path problem and to do this we need some preparations.

De�nition 4.14 For a given directed graph G = (V;A) we de�ne the hyperincidencematrix
HG = (hij); (1 � i; j � jV j) as

hij =

8<
:

S : i = j
E : i 6= j and (ij) 2 A
O : i 6= j and (ij) =2 A;

where S, E and O are 0=1-matrices de�ned as follows

S =

0
@ 0 0 0 0 0 0 0

1 1 1 0 0 1 1
0 0 0 0 0 0 0

1
A ;
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E =

0
@ 0 0 0 0 0 0 0

1 1 0 0 1 1 1
0 0 0 0 0 0 0

1
A ;

O =

0
@ 0 0 0 0 0 0 0

1 1 0 1 0 1 1
0 0 0 0 0 0 0

1
A :

Furthermore the binary matrix HG exists of jV j � 1 identical copies of HG written hori-
zontally.

According to this construction both HG and HG are 0=1-matrices with 3jV j rows. HG has
7jV j and HG contains 7jV j(jV j�1) columns. Figure 4.3 shows a directed graph with three
nodes and the corresponding matrices HG and HG.

1

2 3

HG =

0
@ S E O

O S O
E E S

1
A =

0
BBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 0 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCA

HG =

0
@ S E O S E O

O S O O S O
E E S E E S

1
A

Figure 4.3: A directed graph G = (V;A) and the corresponding matrices
HG and HG.

Although the claims of the following two lemmata seem to be clear their proof is rather
technical.
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Lemma 4.15 Given a directed graph G = (V;A) with jV j � 2. Let HG be SPETk and

H
0

G be a corresponding 0=1-matrix that is SPET and di�ers from HG exactly by k entries.

If there is a column of H
0

G containing at least 2 \1"-entries then HG is SPETk�1.

Proof. We assume that HG = (hij) and H
0

G = (h
0

ij) with 1 � i � 3jV j and 1 � j �

7jV j(jV j � 1). Scanning H
0

G from left to right let j be the �rst column that contains at
least 2 \1"-entries. Furthermore let j 0 be the �rst column with the property that there
exists a row i0 with i0 6� 2 (mod 3) (that means that row i0 of HG consists of \0"-entries

only) and h
0

i0j0 = 1. Now we distinguish to cases.

First let j 0 < j. In this case H
0

G remains SPET if the entry h
0

i0j0 changes to \0". The
consecutive ones property in column j 0 is still ful�lled because from j 0 < j it follows that
H
0

G has only a single \1"-entry in this column. Furthermore the \1"-entries of row i0 remain

occurring consecutively since column j 0 corresponds to the �rst \1"-entry of H
0

G in this
row. Therefore we have constructed a SPET matrix requiring only k�1 changes starting
from HG and with it HG is SPETk�1.

Now let j 0 � j. We have a look at the series of \1"s in column j of H
0

G, especially to the
�rst and last \1"-entry in that column. Let i1 and i2 (i1 < i2) be the rows corresponding
to these entries. If i1 6� 2 (mod 3) or i2 6� 2 (mod 3) holds we are ready, since in this
case switching the entry with this property back to \0" both preserves SPET (because of
j 0 � j) and reduces the total number of changes to k�1. Otherwise we have at least 4
\1"-entries in column j since both i1 � 2 (mod 3) and i2 � 2 (mod 3) holds. Because

of j 0 � j at least one of the 2 \1"-entries h
0

i1j and h
0

i2j is the �rst \1"-entry in its row.
Let i denote this row. Without loss of generalization we assume i = i1. Because of the
appearance of HG we get h(i+1)j = 0 and h(i+2)j = 0. And due to the de�nition of j 0 and

the fact that j 0 � j also h
0

(i+1)k = h
0

(i+2)k = 0, for all k < j, h
0

(i+1)j = 1 and h
0

(i+2)j = 1

follows. Consequently switching both h
0

ij and h
0

(i+1)j and h
0

(i+2)j to \0" preserves SPET;

increases the number of changes by 1 but decreases it by 2. Therefore HG is SPETk�1. ut

Lemma 4.16 Given a directed graph G = (V;A) with jV j � 2. Let HG be SPETk and

H
0

G be a corresponding 0=1-matrix that is SPET and di�ers from HG exactly by k entries.

If there is a row i 6� 2 (mod 3) with the property that H
0

G contains a \1"-entry in this row
then HG is SPETk�1.

Proof. If the conditions of lemma 4.15 hold we are ready. Therefore we assume that
H
0

G contains at most 1 nonzero entry in each column. Now let h
0

ij the �rst \1"-entry in row
i after scanning from the left to the right. If we switch this entry to \0" we both preserve
SPET and reduce the number of changes by 1 to k � 1. ut

The previous two lemmata show how \optimal" matrices H
0

G do not look like. In this
sense \optimal" means, for a given graph G we are looking for a minimal k such that HG

is SPETk. Now we prove a lower bound on this k.

Lemma 4.17 Given a directed graph G = (V;A) with jV j � 2. If HG is SPETk then
k � 5jV j3 � 8jV j2 + 3 follows.
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Proof. Again let H
0

G be a 0=1-matrix that is SPET and di�ering from HG exactly by
k entries. Taking the lemmata 4.15 and 4.16 into account it is suÆcient to show the claim
for the case that H

0

G has at most 1 nonzero entry in each column and only nonzero entries

in rows i with i � 2 (mod 3). Now we partitionH
0

G into the jV j(jV j�1) blocks (numbered
from 1 : : : jV j(jV j � 1)) each consisting of 7 columns. Now for each block we determine a

lower bound on the number of entries di�ering between HG and H
0

G. For a given block

i let ri be the number of rows where H
0

G has at least one nonzero entry in this block. If
ri = 0 then all 5jV j \1"-entries of HG have to be switched to \0". If ri = 1 then in that
row at least two entries and in all the other rows 5 entries have to be switched, which
makes a total of 5jV j�3. If ri = 2 then in both rows we need at least two switched entries.
This works only for the case that the �rst row corresponds to an S-block and the second
to an E-block. All the other rows need 5 entries to be switched and thus 5jV j � 6 changes
altogether. For ri � 3 we argue as follows. The total number of \1"-entries in block i of
H
0

G is at most 7 according to the number of columns. The number of \1"-entries of HG is

5jV j. Thus we need at least 5jV j � 7 changes from HG to H
0

G.
Let ri � 1 then ri � 1 counts the number of transitions from one row to another.

Altogether there are at most jV j � 1 transitions since there are at most jV j rows where
\1"-entries can occur. Therefore we have

jV j(jV j�1)X
i=1

(ri � 1) � jV j � 1:

Now computing the minimum number of switches needed leads to solving a simple knapsack
problem. The optimum solution is to take jV j � 1 times ri = 2 and (jV j � 1)2 times ri = 1
which leads to a minimum total number of

(jV j � 1)(5jV j � 6) + (jV j � 1)2(5jV j � 3) = 5jV j3 � 8jV j2 + 3

switched entries. ut

Theorem 4.18 The directed graph G = (V;A) contains a Hamiltonian path if and only if
HG is SPET5jV j3�8jV j2+3.

Proof. Assume G containing a Hamiltonian path consisting of the jV j � 1 edges ei =
(ti; hi) (1 � i � jV j � 1). HG consists of jV j � 1 identical copies of HG. And according to
its construction HG contains a column with an S-block in row t and an E-block in row h if
and only if there is an edge from t to h in the graph G. Now we construct the matrix H

0

G

from the left to the right by starting with 1 entries in row 3t1 + 2 and making a transition
from row 3ti + 2 to row 3hi + 2 in the i-th copy of HG corresponding to a transition from
an S-block to an E-block. As in the proof of the previous lemma we have exactly jV j � 1
transitions from an S-block to an E-block and this can be managed by a total number of
5jV j3 � 8jV j2 + 3 switched entries. Figure 4.4 shows an example for this construction. It
models a Hamiltonian path in the graph of �gure 4.3. In each of the 4 \dotted" blocks
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0
BBBBBBBBBBBB@

0 � � � 0 0 0 0 0 0 0 0 0 � � � 0 0 0 0 0 0 0 0 0 � � � 0 0 � � � 0
0 � � � 0 0 0 0 0 1 1 1 1 � � � 1 1 1 1 0 0 0 0 0 � � � 0 0 � � � 0
0 � � � 0 0 0 0 0 0 0 0 0 � � � 0 0 0 0 0 0 0 0 0 � � � 0 0 � � � 0
0 � � � 0 0 0 0 0 0 0 0 0 � � � 0 0 0 0 0 0 0 0 0 � � � 0 0 � � � 0
1 � � � 1 1 1 1 0 0 0 0 0 � � � 0 0 0 0 0 0 0 0 0 � � � 0 0 � � � 0
0 � � � 0 0 0 0 0 0 0 0 0 � � � 0 0 0 0 0 0 0 0 0 � � � 0 0 � � � 0
0 � � � 0 0 0 0 0 0 0 0 0 � � � 0 0 0 0 0 0 0 0 0 � � � 0 0 � � � 0
0 � � � 0 0 0 0 0 0 0 0 0 � � � 0 0 0 0 0 1 1 1 1 � � � 1 1 � � � 1
0 � � � 0 0 0 0 0 0 0 0 0 � � � 0 0 0 0 0 0 0 0 0 � � � 0 0 � � � 0

1
CCCCCCCCCCCCA

Figure 4.4: This SPET matrix H
0

G arises from matrix HG of �gure 4.3
by 66 switched entries and models the Hamiltonian path from
node 2 via node 1 to node 3.

this matrix di�ers from HG by 5jV j � 3 = 12 entries. In the other 2 blocks it di�ers by
5jV j � 6 = 9 entries which makes a total of 66 = 5jV j3 � 8jV j2 + 3.

Conversely let HG be SPET5jV j3�8jV j2+3. Then we know from the proof of the previous
lemma that the corresponding solutions must contain jV j�1 transitions from an S to an E
block of HG. Each of these transitions corresponds to an edge in the underlying directed
graph G. And since in each row of H

0

G the \1"s have to occur consecutively no node in the
constructed path is allowed to occur twice. Therefore we have constructed a Hamiltonian
path in G. ut
This equivalence to the directed Hamiltonian path problem immediately leads to the NP-
completeness proof.

Theorem 4.19 Deciding if a 0=1-matrix M is SPETk is NP-complete.

Proof. Verifying if a given k-augmentation for M is SPET can be done in linear time
by scanning each row and each column.

Now assume we are given a polynomial time algorithm deciding if a given 0=1-matrix is
SPETk. Because the transformation from and to the directed Hamiltonian path problem
can also be performed in polynomial time we would obtain a polynomial time algorithm
for �nding a Hamiltonian path in a directed graph which is known to be NP-complete
([GJ79]). ut
Analogously to section 4.2.2 a direct corollary is the fact that the corresponding weighted
optimization problem is NP-hard.

Corollary 4.20 The corresponding weighted optimization problem is NP-hard.

Proof. Given a 0=1-matrix A we construct the objective function matrix C as

cij =

�
1 : aij = 0

�1 : aij = 1:
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Now let l be the number of \1"-entries of A. Then A is SPETk if and only if the solution
of

minC Æ A
s:t: A is SPET

is less or equal to k�l. The construction of the objective function is polynomial. Therefore
the NP-hardness is shown. ut

4.2.4 Complexity for �xed number of rows or columns

Analogously to section 3.6 we can introduce the concept of feasible and maximal sets to
the simultaneous case. For symmetrical reasons it is suÆcient to de�ne sets of columns.

De�nition 4.21 A set C = fc1; : : : ; ckg where ci 2 f0; 1g(m;1), for i = 1; : : : ; k, of columns
is called consecutive ones simultaneous feasible (C1SF) if the matrix consisting of
all columns of C is C1PS.

De�nition 4.22 A C1SF set C is called consecutive ones simultaneous maximal
(C1SM) if C is maximal with respect to set inclusion.

Example 4.23 For m = 3 all C1FC sets are also C1SF. This is due to the fact that non
of the C1FC sets includes all the 3 columns each containing 2 \1"s. Therefore also C1PC
can be established (compare example 3.27). Now let m = 4. The set

C =

8>><
>>:
0
BB@

0
0
0
0

1
CCA ;

0
BB@

1
0
0
0

1
CCA ;

0
BB@

1
1
1
0

1
CCA ;

0
BB@

0
1
1
0

1
CCA ;

0
BB@

0
1
1
1

1
CCA ;

0
BB@

0
0
0
1

1
CCA
9>>=
>>;

is C1SF but not C1SM since one can add the column (1 1 0 0)T and the resulting set

C =

8>><
>>:
0
BB@

0
0
0
0

1
CCA ;

0
BB@

1
0
0
0

1
CCA ;

0
BB@

1
1
0
0

1
CCA ;

0
BB@

1
1
1
0

1
CCA ;

0
BB@

0
1
1
0

1
CCA ;

0
BB@

0
1
1
1

1
CCA ;

0
BB@

0
0
0
1

1
CCA
9>>=
>>;

is still C1SF. But any further column would lead to a set whose corresponding matrix is
not C1PS. Therefore C is C1SM. Note that C cannot be C1MC. According to lemma 3.28
a C1MC set always contains exactly 2m = 8 elements. Indeed, in the nonsimultaneous
case (and only in this) one can add the column (0 1 0 1)T .

The previous example gives an idea that in contrast to C1MC and C1MR sets C1SM sets
do not have the same cardinality (for given m). Therefore they do not de�ne a matroid
(compare to remark 3.34). But for the purpose of determining the complexity of WSC1P
for a �xed number of columns (rows resp.) we only need the fact that the number of C1SM
sets only depends on the number of rows (columns resp.). As in section 3.6 we will show
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that in this case even the associated polytope has only a polynomial number of facets.
First we should de�ne this polytope.

De�nition 4.24 The simultaneous consecutive ones polytope is de�ned as

P
m;n

C1S
= convfM jM is an (m;n)-matrix with C1PSg:

As in the nonsimultaneous case Pm;n
C1S is full-dimensional.

Theorem 4.25 Pm;n
C1S has dimension m � n.

Proof. As in the proof of theorem 3.1 the zero matrix and the matrices consisting of
zeros only except for a single \1"-entry give a set of m � n + 1 aÆnely independent C1PS
matrices. ut
As in the standard case trivial inequalities de�ne facets and all facet-de�ning inequalities
can be trivially lifted to polytopes of higher dimensions. The proofs are given in section 4.3.

Proving that for a �xed number m of columns the number of facets of Pm;n
C1S grows

only polynomially in the number n of rows follows exactly the same lines as the proof of
theorem 3.35. As mentioned above we only need the fact that the number of C1SM sets
only depends on m which is a constant. A very rough upper bound for this number is the
number of elements of the according powerset which is 2(2

m).

Theorem 4.26 The number of facets of Pm;n
C1S is polynomial in m if n is �xed and vice

versa.

Proof. See proof of 3.35. ut
And again as a consequence we obtain the polynomial solvability of WSC1P for �xed

number of rows or columns.

Corollary 4.27 WSC1P is solvable in polynomial time for �xed n or �xed m.

Proof. See proof of 3.37. ut

4.3 The facial structure of P
m;n

C1S

We want to conclude this chapter with some polyhedral investigations of the simultaneous
polytope. As already mentioned, facet-de�ning inequalities can be lifted trivially to higher
dimensions. The proof is di�erent to the standard case and for technical reasons we will
do it only for facets of Pm;n

C1S with m � 3 and n � 3. This is no real restriction, since for
m � 2 or n � 2 all matrices are C1PS. Therefore these polytopes only consist of trivial
inequalities that will be shown to be facet-de�ning separately.

Theorem 4.28 Let A Æ x � a0 be a facet-de�ning inequality for Pm;n
C1S and let m0 � m � 3

and n0 � n � 3. If the inequality A Æ x � a0 for Pm0;n0

C1S is obtained from A Æ x � a0 by

trivial lifting then it de�nes a facet of Pm0;n0

C1S .
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Proof. Because of the symmetry it is suÆcient to show the case m0 > m and n0 = n,
where without loss of generality m0 = m+ 1.

For all matrices x satisfying A Æ x = a0 we do the following construction. We add one
row to x by duplicating an arbitrary row. Let xj denote the matrix obtained by duplicating
row j of x (1 � j � m). Clearly all these matrices satisfy AÆx = a0. Now assume AÆx � a0
not to be facet-de�ning for Pm0;n0

C1S . Then there must exist an equation B Æ x = b0 that is
ful�lled by all matrices constructed above with the property that at least one coeÆcient of
the last row of B is nonzero. Therefore we have

B Æ x1 = : : : = B Æ xm = b0

and since the matrices xj only di�er in their last row we get

Bm0: Æ x
1
m0: = : : : = Bm0: Æ x

m
m0::

But due to their construction we have xjm0: = xj: and with it

Bm0: Æ x1: = : : : = Bm0: Æ xm::

These equations hold for all matrices x satisfying A Æ x = a0 and since m � 3 there are at
least two equations. Therefore the inequality A Æ x � a0 cannot be facet-de�ning for Pm;n

C1S

which is a contradiction. Consequently A Æ x � a0 is facet-de�ning for Pm0;n0

C1S . ut
Very similar to the proof that Pm;n

C1S has full dimension, we can show that trivial in-
equalities are always facet-de�ning.

Lemma 4.29 For all m � 1, n � 1, 1 � i � m, 1 � j � n, the inequalities xij � 0 and
xij � 1 de�ne facets of Pm;n

C1S .

Proof. The zero matrix and the matrices consisting of zeros only except for a single
\1"-entry in all possible positions besides ij give a set of m � n aÆnely independent C1PS
matrices satisfying xij = 0. Taking the same set but switching the role of \0"-entries and
\1"-entries we get a set of m �n aÆnely independent C1PS matrices satisfying xij = 1. ut

The next question we want to address to is, whether valid respectively facet-de�ning
inequalities of the standard polytope keep their properties for the simultaneous polytope
or vice versa. Since Pm;n

C1S is contained in Pm;n
C1R it is clear that valid inequalities for Pm;n

C1R

are also valid for Pm;n
C1S .

Lemma 4.30 Let AÆx � a0 be a valid inequality for Pm;n
C1R. Then it is also valid for Pm;n

C1S .

This property does not hold for facet-de�ning inequalities. Consider for example the in-
equality 0

BB@
2 �8 �5 11 9
2 �1 5 �5 5

�6 7 4 11 �5
4 8 �4 �8 4

1
CCA Æ x � 60:
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It is facet-de�ning for P 4;5
C1R and has only 20 roots. If not all of these 20 C1PR-matrices

are also C1PS, than the inequality de�nes no facet for the simultaneous case, since the
number of roots of a facet must be greater or equal to the dimension of the corresponding
polytope which is 4 � 5 = 20. Indeed, one of the 20 roots is the matrix0

BB@
0 0 0 1 1
1 1 1 1 1
0 1 1 1 0
1 1 0 0 0

1
CCA :

Its C1PR-property is already established. But this matrix is not C1PS, since the (4; 3)
matrix consisting of columns 1, 3 and 5 is equal to the matrix MT

31 which according to
�gure 4.1 is one of the forbidden matrices in the simultaneous case. Therefore the above
inequality de�nes a facet for P 4;5

C1R but is only valid for P 4;5
C1S.

And it is the smallest possible example (in terms of m + n) with this property. For
m � 3 we have Pm;n

C1R = Pm;n
C1S , for n � 3 the polytopes Pm;n

C1R only consist of trivial facets and
facets of type F11 (we will see later on that all staircase inequalities remain facet-de�ning in
the simultaneous case) and furthermore appendix A.3 displaying the complete description
of P 4;4

C1S shows, that all facets of P
4;4
C1R appear again in this description.

Besides the transposed versions of the known facets there occur 3 completely new classes
of facet-de�ning inequalities for P 4;4

C1S. They are shown in �gure 4.5.

0
BB@
�1 �1 1 1
�1 2 1 1
2 �2 2 �1
2 2 �1 �1

1
CCA Æ x � 12

0
BB@

2 2 1 �1
�2 �2 2 1
�2 2 �2 2
2 �2 �2 2

1
CCA Æ x � 13

0
BB@

2 3 �1 2
3 �3 3 �2

�2 3 3 �1
1 �1 �2 2

1
CCA Æ x � 19

Figure 4.5: Inequalities that are facet-de�ning for P 4;4
C1S but not even valid

for P 4;4
C1R.

None of them is valid for P 4;4
C1R. This observation leads to the following lemma.

Lemma 4.31 Let A Æ x � a0 be facet-de�ning for Pm;n
C1S . Then it is either nonvalid for

Pm;n
C1R or facet-de�ning for Pm;n

C1R.
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Proof. Assume that A Æ x � a0 is valid for Pm;n
C1R. Then we have to show that it is even

facet-de�ning for Pm;n
C1R. Since it is facet-de�ning for Pm;n

C1S there is a set of m � n aÆnely
independent C1PS matrices satisfying A Æ x = a0. And since each of these matrices is also
C1PR we are ready. ut

Example 4.32 We have a look at the inequality0
@ 1 1 �1 �1

1 �1 1 �1
1 �1 �1 1

1
A Æ x � 5:

According to appendices A.2 and A.3 it is both facet-de�ning for P 3;4
C1S and P

3;4
C1R. If we take

the transposed version of this inequality0
BB@

1 1 1
1 �1 �1

�1 1 �1
�1 �1 1

1
CCA Æ x � 5:

it remains facet-de�ning for P 4;3
C1S but it is not valid for P

4;3
C1R since the feasible C1PR matrix0

BB@
1 1 1
1 0 0
0 1 0
0 0 1

1
CCA

is cut o� by this inequality.

Note that the proofs of the previous two lemmata only require the property that Pm;n
C1S is

contained in Pm;n
C1R. The tightened version, that a given facet-de�ning inequality of Pm;n

C1R

de�nes also a facet of Pm;n
C1S is more diÆcult to show and, as we have seen above, not true

in any case. We will perform this proof in the following for the large and important classes
of staircase inequalities.

4.3.1 Staircase inequalities

Analogously to the standard case we are interested in investigating the staircase inequalities
for the purpose of �nding an IP formulation for WSC1P consisting of facets only.

In the simultaneous case the staircase inequalities F1k Æ x � 2k + 3 (k � 1), F2k Æ x �
2k + 3 (1 � k � 3) and FT

2k
Æ x � 2k + 3 (1 � k � 3) are even suÆcient to cut o� all

forbidden Tucker matrices. This can be veri�ed easily with the help of �gures 3.3 and 4.1.
We will now show that all of them and their transposes are facet-de�ning for Pm;n

C1S .

Theorem 4.33 The staircase inequalities

F1k Æ xIJ � 2k + 3
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and their transposes
FT
1k
Æ xIJ � 2k + 3;

for k � 1 and all (k + 2; k + 2)-index sets, are facet-de�ning for Pm;n
C1S for all m � k + 2

and n � k + 2.

Proof. Due to the symmetry of Pm;n
C1S we do not have to consider the transposed versions

of the staircase inequalities separately and due to lifting theorem 4.28, we only need to show
that this class of inequalities is facet-de�ning for Pm;n

C1S with m = n = k + 2. Moreover,
we only need to consider the canonical ordered index sets I = f1; 2; : : : ; mg and J =
f1; 2; : : : ; ng. Let aTx � a0 denote this inequality and let F = fx j aTx = a0g \ Pm;n

C1S

denote the induced face.
The validity of the inequality follows from its validity for the nonsimultaneous case (see

theorem 3.8) and lemma 4.30.
Since Pm;n

C1S is full-dimensional, facet-de�ning inequalities de�ning the same facet only
di�er by multiplication with a positive scalar. Now let bTx � b0 be a facet-de�ning in-
equality for Pm;n

C1S such that F � fx j bTx = b0g \ Pm;n
C1S . If we can show that b = �a, for

some � > 0, then it is proven that aTx � a0 is facet-de�ning. We will show this in three
steps. Let � = b11. We call C1PS matrices x that satisfy aTx = a0 solutions.

Every 0/1-matrix with 2k + 3 1's in the \+" positions of F1k and 0's otherwise is a
solution. We call such matrices standard solutions in the following. Let x1 and x2 be two
standard solutions where x111 = 0 and x221 = 0. Then we have

0 = bTx1 � bTx2 = b21 � b11

and therefore b21 = b11 := �. By using appropriate matrices we can thus show that bij = �
for all \+"-positions ij.

Consider the standard solution x1 with x1;k+2 = 0. Let x2 be a matrix which is identical
to x1 except for an additional 1 in a \0"-position next to an \+"-position in any row i and
next to an \+"-position in any column j � k + 1. Then x2 is a solution and we obtain

0 = bTx1 � bTx2 = �bij;

i.e., bij = 0. Extending the chain of 1's to the next \0"-positions eventually shows that
bij = 0 for all \0"-positions ij of F1k .

Finally let x1 be any standard solution, say the one with x11 = 0. Further, after
exchanging the last two columns of F1k and inserting row 1 before row k+1 we obtain the
following matrix. 0

BBBBBBB@

+ + �
. . . . . .

...
+ + �

+ + �
+ � +

� + +

1
CCCCCCCA
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Now let x2 be the C1PS matrix constructed by setting all entries inside the boundary to
1 and to 0 outside. Since there is only one \�"-entry inside and no \+"-entry outside the
boundary, x2 is a solution. Note that the \�"-entry inside originally belongs to row k + 1
and column k+2. Since the coeÆcients corresponding to all \0"-entries are already proven
to be 0 we receive

0 = bTx1 � bTx2 = �b11 � bk+1;k+2;

and therefore bk+1;k+2 = ��. Using similar arguments we eventually obtain bij = �� for
all \�"-positions ij.

Thus we have shown that b = �a. It is clear that � > 0 since if we change a \1"-entry
in a standard solution to \0" then we obtain another C1PS matrix which would violate
the inequality if � < 0. ut

Theorem 4.34 The staircase inequalities

F2k Æ xIJ � 2k + 3

respectively their transposes

FT
2k
Æ xIJ � 2k + 3;

for k � 1 and all (k+2; k+3)-index sets, resp. all (k+3; k+2)-index sets, are facet-de�ning
for Pm;n

C1S , resp. for P
n;m
C1S , for all m � k + 2 and n � k + 3.

Proof. The proof is very similar to the previous one. It is suÆcient to consider the
standard form of this inequality and to set m = k + 2, n = k + 3, I = f1; 2; : : : ; mg and
J = f1; 2; : : : ; ng. Furthermore the validity follows from theorem 3.10 and lemma 4.30.

Now let bTx � b0 de�ned as before. Again we want to compute the coeÆcients of b to
show that b is a multiple of F2k . Starting with the standard solution (de�ned as before)
where xk+2;k+3 = 0 we can construct a chain of C1PS matrices to the matrix where in
addition xij = 1 for all \0"-entries ij. As in the previous proof we can construct this chain
in such a way that two consecutive matrices only di�er in one of these entries showing that
bij = 0 for all \0"-entries ij.

Now we have to show that for all \+"- and all \�"-positions ij of F2k there is a solution
with 1's at the \+"-positions and 0's at the \�"-positions and xij being the only exception
(we call these solutions (ij)-solutions in the following). For this purpose the following
picture is helpful. It shows the matrix F2k where row k+2 is inserted after row 1 and
column k+3 after column 1.0

BBBBBBB@

+ � + �
� + + �

� + + �
...

. . . . . .
...

� + + �
� � + +

1
CCCCCCCA
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The matrix consisting of 1's inside and 0's outside the boundary is a (11)-solution. Extend-
ing the boundary in the picture to the entries 11 and 12 we get a (1; k+3)-solution (note
that column k+3 was mapped to column 2). Changing the matrix according to x11 = 1
and x1j = 0 for 2 � j � k + 3 gives a (12)-solution (column 2 was mapped to column 3).

Furthermore if we take F2k and insert row k+1 after row 1 and column k+2 after column
1 we get the same matrix as shown above. Therefore we can construct a (1; k+2)-solution
with the same procedure. Thus we have constructed (1j)-solutions for all nonzero entries
of the �rst row of F2k .

After permuting F2k in di�erent ways, for example inserting row k+2 (k+1 resp.) after
row i and column k+3 (k+2 resp.) after column i we eventually can construct (ij)-solutions
for all nonzero entries ij of F2k .

The remainder of the proof follows along the same lines as for F1k . ut
The fact that all these staircase inequalities de�ne facets for P n;m

C1S and the nontransposed
versions also for P n;m

C1R as well as the close relationship to the forbidden Tucker matrices
make them a good choice for separating procedures. Indeed, we will see in 5.3.1 that both
kinds of staircase inequalities can be separated in polynomial time.

Now we are able to formulate an IP formulation with facets.

4.3.2 IP formulation with facets

As in the standard case we can obtain an integer programming formulation for the WSC1P
by cutting all forbidden matrices occurring in �gure 4.1. Since the staircase inequalities
de�ne facets also in the simultaneous case we can derive an IP formulation for the problem
that consists only of facets of Pm;n

C1S . The inequalities F1k Æ x � 2k + 3 cut o� the Tucker
matrices M1k(k � 1), M21 ,M

T
21
,M22 and MT

22
. Note that the matrices M1k are symmet-

ric. Therefore no transposed versions of the inequalities are required. Furthermore the
inequalities F2k Æ x � 2k + 3 cut o� M3k and FT

2k
Æ x � 2k + 3 cut o� MT

3k
for 1 � k � 3.

Summarizing these facts we obtain the following IP formulation of WSC1P.

min cTx
F1k Æ xIJ � 2k + 3 for all (k + 2; k + 2)-tuples (I; J), k � 1,
F2k Æ xIJ � 2k + 3 for all (k + 2; k + 3)-tuples I; J), 1 � k � 3,
FT
2k
Æ xIJ � 2k + 3 for all (k + 3; k + 2)-tuples I; J), 1 � k � 3,
xij 2 f0; 1g for all i = 1; : : : ; m, j = 1; : : : ; n.

As in the standard case (see section 3.4) the number of inequalities is exponential but
they can be separated in polynomial time in the number of rows and columns of the input
matrix.



Chapter 5

A Branch-and-Cut Approach

This chapter shows how to use the theoretical knowledge developed in the previous chapters
to construct an eÆcient branch-and-cut code for the WC1P and the WSC1P. Note that,
if not stated otherwise, all algorithms described in the following can be used both in
the standard and in the simultaneous case. Computational results of our branch-and-cut
implementation will be given in chapter 7.

5.1 Feasibility test

Usually, in the �rst phases of the cutting plane procedure the solution x� of the LP re-
laxation is integral but infeasible. As already introduced in section 2.3, feasibility can be
tested by the PQ-tree algorithm in linear time. In the simultaneous case the algorithm has
to be performed both for the actual integral matrix and for its transposes.

If x� is feasible, the PQ-tree algorithm also generates all permutations �� that establish
the consecutive ones property of x�. Therefore with �nding all optimal matrices one also
obtains all optimal permutations.

The other way around, if x� is not feasible (but binary), we would be interested in
constructing a cutting plane which cuts o� the point x� but is satis�ed by all 0=1-vectors
di�erent from x�. Given the eÆcient PQ-tree algorithm we would not even need an IP
formulation of the problem to implement a branch-and-cut approach.

5.1.1 Integer vector separation

We only have to make sure that all integral LP but infeasible solutions are cut o� by a
valid cutting plane. Let P = fi j x�i = 1g and Z = fi j x�i = 0g, thenX

i2P

xi �
X
i2Z

xi � jP j � 1

obviously is a cutting plane with the desired properties.

63
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Usually this cutting plane will be a very weak one, but it can be strengthened by
removing rows and columns of the LP relaxation as long as the remaining matrix remains
infeasible. This can be done in the time O((m+ n)mn).

A heuristic version of this separation idea can even be performed if the LP relaxation
x� is fractional. First we have to make it integral. One possibility is to round entry x�ij
to 1 with probability x�ij and to 0 otherwise. Now for each row and for each column the
total sum of di�erences between the LP values and the rounded values is calculated. Rows
and columns with high value of total rounding are chosen earlier to be removed from the
matrix. Again this is repeated as long as the remainder stays infeasible. And if the total
amount of rounding in the remaining matrix is less than 1 we can construct a cutting plane.

The same method of shrinking the LP relaxation is also used in subsection 5.3.4 where
it is explained in more detail.

5.2 Heuristics

Section 2.4.3 shows how we can solve WC1P in linear time if the column permutation is
�xed (actually we have to solve a WPEP). Therefore it is suÆcient to have heuristics for
a good choice of the column permutation. There are di�erent ideas for this purpose.

5.2.1 Hamming distance heuristic

One idea is to compute a Hamming distance Hamiltonian path directly on the input matrix
B. The Hamming distance of two columns c1 and c2 of B is de�ned as

hd(c1; c2) =
mX
i=1

jaic1 � aic2 j:

Now we are looking for an ordering c�1; c�2; : : : ; c�n of the columns such that

n�1X
j=1

hd(c�j ; c�j+1
)

is minimized. Since in a C1PR matrix usually two consecutive columns do not di�er much,
we can hope to obtain an ordering in which the permuted matrix is nearly C1PR and
therefore not many entries have to be switched. Obviously this problem is equivalent to
�nding a Hamiltonian path of minimal weight in a complete undirected graph where the
columns correspond to the nodes and where the edge connecting columns c1 and c2 has
weight hd(c1; c2). By adding one additional node this problem can be transformed to a
TSP instance. After �xing the column permutation of the cost matrix C according to the
Hamiltonian path found, the obtained WPEP can be solved by algorithm 2.21.
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Algorithm 5.1 (hammingDistanceHeuristic(input matrix B, cost matrix C))

(1) For each pair of columns c1 and c2 of B compute the Hamming distance hd(c1; c2)

(2) Compute a minimum Hamiltonian path by solving a TSP

(3) Permute the columns of C according to the optimal ordering

(4) Use algorithm 2.21 for each row of C to solve the WPEP

(5) Return the WPEP solution

The following example shows a run of this heuristic.

Example 5.2 Let the input matrix B and the cost matrix be C given as follows:

B =

0
BBBB@

1 1 1 0 0
0 0 1 1 1
1 1 0 1 1
0 0 0 1 0
0 1 0 1 1

1
CCCCA C =

0
BBBB@

2 3 1 �2 �4
�3 �1 4 2 2
2 4 �2 1 1

�1 �3 �1 3 �2
�1 1 �3 1 4

1
CCCCA

Note that, according to 2.4.2, if bij = 1, then cij denotes the penalty for switching entry
bij, otherwise the penalty is �cij. Therefore all costs are positive in this example.

After computing the Hamming distances between the columns of B, we obtain the fol-
lowing weighted graph.

3

2

3

1

1

2

43

3

4

5

1

2

3

4

It is easy to verify that (31254) and its reverse are the Hamiltonian paths with minimum
total weight 6. If we permute C due to this column permutation we obtain

C 0 =

0
BBBB@

1 2 3 �4 �2
4 �3 �1 2 2

�2 2 4 1 1
�1 �1 �3 �2 3
�3 �1 1 4 1

1
CCCCA :
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Performing the scan-line algorithm 2.21 for all rows of C 0 we get the permuted solution

A0 =

0
BBBB@

1 1 1 0 0
1 0 0 0 0
0 1 1 1 1
0 0 0 0 1
0 0 1 1 1

1
CCCCA :

And after retransforming we see that the heuristic solution A di�ers from B only in 2
entries and has a total switching cost C Æ A� C ÆB of 4.

5.2.2 Rounding heuristic

The Hamming distance heuristic described above does not use any information of the
current LP solution. But because we expect the LP relaxation somehow to re
ect the
structure of the problem, we are very interested in using the relaxation to obtain better
column permutations. It seems reasonable to use the PQ-tree algorithm for this purpose.
Firstly this algorithm is very eÆcient and secondly it terminates with a set of permutations.

The only problem is that the PQ-tree algorithm needs a binary matrix as input. As
already mentioned before, we need to round the entries of the LP solution. Again it turned
out to be a good choice to set an entry x�ij with probability x�ij to 1 and to 0 otherwise.

Now we can perform the PQ-tree algorithm on the rounded LP matrix x by adding the
rows of x in an arbitrary way. The reduction procedure is performed as long as either all
rows have been added or the algorithm terminates with the null tree, which corresponds
to the empty set of permutations. In the �rst case we take permutations compatible to the
last PQ-tree in the second case we take them from the last but one.

Note that we are free in the choice of the order of the added rows. There is a heuristic
argument that says that rows where few rounding has been performed should be added
earlier than rows with much rounding. The reason is that we assume that the less rounding
is performed for a row the better the structure of an optimal solution is re
ected by that
row.

The complete algorithm looks as follows:

Algorithm 5.3 (roundingHeuristic(lpSolution x�, cost matrix C))

(1) Round the matrix x� to a matrix x by setting an entry xij to 1 with probability x�ij
and to 0 otherwise

(2) For each row i compute a measure of rounding m(i) =
P

j jxij � x�ijj

(3) Create a PQ-tree and reduce it by the rows of x in increasing order of m(i)

(4) Take the last PQ-tree with a nonempty set S of column permutations

(5) For each � 2 S (or � 2 S 0 � S, if jSj is too large) do:
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(5.1) Permute the columns of C according to �

(5.2) Use algorithm 2.21 for each row of C to solve the WPEP

(6) Return the best WPEP solution found

Also this algorithm is illustrated by an example.

Example 5.4 The cost matrix is chosen as in example 5.2, the LP relaxation looks as
follows:

x� =

0
BBBB@

0:7 0:4 1:0 0:0 0:2
0:0 0:0 1:0 1:0 1:0
0:8 1:0 0:5 1:0 1:0
0:0 0:6 0:0 1:0 0:7
0:0 0:9 0:0 1:0 1:0

1
CCCCA

After rounding we get

x =

0
BBBB@

1 1 1 0 0
0 0 1 1 1
1 1 0 1 1
0 0 0 1 1
0 1 0 1 1

1
CCCCA :

The computed measures of rounding are m(1) = 1:1, m(2) = 0, m(3) = 0:7, m(4) = 0:9
and m(5) = 0:1 for the 5 rows. Now we perform the PQ-tree algorithm by adding the rows
of x in increasing order of m(:), that is 2; 5; 3; 4; 1. We start with the universal tree.

P

1 2 3 4 5

After reducing with row 2, which corresponds to the column set S1 = f3; 4; 5g we obtain
the following tree.

P

1 2 3 4 5

P

The next reducing column set S2 = f2; 4; 5g, coming from row 5, gives
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P

1 2 34 5

Q

P

Now we have to take row 3 and reduce with respect to S3 = f1; 2; 4; 5g.

1 2 34 5

Q

P

Reducing with respect to S4 = f4; 5g, the 1-entries of row 4, does not change the current
PQ-tree, since the columns 4 and 5 already are forced to occur consecutively.

The last reducing step with respect to S5 = f1; 2; 3g results in the null tree. Therefore we
have to extract all represented permutations from the previous tree. These are �1 = (12453),
�2 = (12543) and their reverses. With the two permutations we proceed as in example 5.2.
Taking the reverse permutations gives no additional solution, since the scan-line algorithm
has the same output for a permutation and its reverse. Both orderings �1 and �2 lead to
the following solution:

A =

0
BBBB@

1 1 0 0 0
0 0 1 1 1
1 1 0 1 1
0 0 0 1 0
0 1 0 1 1

1
CCCCA

The switching cost from B to this C1PR matrix is 1. For this solution value it is easy to
prove optimality, since B is not C1PR and all switching penalties are at least 1.

This rounding heuristic works very well. We will see in sections 7.1 and 7.2 that in most
times the optimal solution is found long before the branch-and-cut procedure proves its
optimality.

However, both heuristic ideas described before are not a good choice for the simultane-
ous problem. This is due to the fact that in the simultaneous case the weighted problem is
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already NP-hard for �xed row and column permutation (see section 4.2.3). We modi�ed
the rounding heuristic in such a way that after obtaining a C1PR solution the matrix is
scanned row by row and made C1PS by switching certain entries. But in section 7.4 we will
see that the result were not as good as in the standard case. In addition we implemented a
simulated annealing procedure. It starts with any feasible solution, for example the matrix
consisting of ones only. After that it goes from one feasible solution to another by changing
only one entry. If the new matrix is also feasible and the objective function has at least
the value of the previous solution, the change is accepted. If the new matrix is feasible but
its objective function is worse, then it is accepted only with a certain probability. This
probability decreases with an increasing di�erence of the values and an increasing current
running time of the algorithm. This is the usual procedure of a simulated annealing algo-
rithm. A disadvantage of this algorithm is its running time for big instances, say more than
10000 entries of the matrix, since in each step two PQ-tree tests have to be performed,
both for C1PR and for C1PC.

5.3 Separation procedures

Chapter 3 and section 4.3 provided us with more insight into the structure of Pm;n
C1R and Pm;n

C1S .
Now we are interested in using these informations in a practical way, namely to improve
our branch-and-cut approach by constructing associated separation procedures. We will
not go into using the relation to the betweenness problem for separation purposes, since the
concept of patterns which will be introduced in section 5.3.3 is somehow a generalization.
But note that the results of section 3.5 can be used to construct a separation procedure
for the WC1P from any separation procedure for the WBWP.

5.3.1 Separation of staircase inequalities

First we consider the separation procedure of the staircase inequalities introduced in sec-
tion 3.3. These two classes of inequalities F1k and F2k are very important for both the
standard and the simultaneous problem, since they do not only de�ne facets of the associ-
ated polytopes but also cut o� most of the forbidden Tucker matrices. In the simultaneous
case the staircase inequalities are even suÆcient for the IP formulation.

Actually, in the case of the staircase inequalities F1k , we will separate a more general
class of inequalities. These inequalities can be obtained by observing that the \�" entry
in the last row of the coeÆcient matrix F1k can be moved to any position changing the
�rst and last column in an appropriate way (see �gure 3.3).

The corresponding F 1k -inequalities can also be shown to be facet-de�ning for Pm;n
C1R and

Pm;n
C1S . The proofs follow along the same line as those of theorems 3.8 and 4.33.

The new left hand side matrix F1k is visualized in �gure 5.1. As in the original form
the size of the matrix is (k+2; k+2) and the right hand side of the inequality is 2k+3.

We obtain the original F1k -inequalities, if there are no columns c2; : : : ; cd, i.e., if d = 1.
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0
BBBBBBBBBBBBB@

i j c2 : : : cd h

+ + �
0 + + �
...

. . .
. . .

...
0 + + �

r1 � + + 0
...

...
. . . . . .

...
rd�1 � + + 0
rd � + +
l + 0 : : : 0 � 0 : : : 0 +

1
CCCCCCCCCCCCCA
Æ x � 2k + 3

Figure 5.1: F 1k-inequality

The main task of the separation algorithm is to identify the row l and the columns i,
j, and h and to sum appropriate coeÆcients for rows and columns in between.

We proceed as follows. For every column i = 1; : : : ; n we create the complete undirected
bipartite graph Gi with the n columns and m rows representing the two node sets. With
every edge cr we associate the weight wi

cr = 1�x�rc+
1
2
x�ri, where x

� is the given LP solution
to be cut o�.

In every weighted graph Gi we now compute for every pair j; j 6= i and h; h 6= i; h 6= j
of columns a shortest path between j and h with respect to the assigned edge weights.
This way we obtain shortest lengths pijh.
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Figure 5.2: Path between columns j and h

For every quadruple i, j, h, l of columns i, j, h and rows l we evaluate

pijh + phji � x�li + x�lj � x�lh = 2k + 2�F1k Æ x
�:
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For every expression that has value less than �1 we can construct a violated F 1k-inequality
using the shortest paths computed above to include columns c2; : : : ; cd and rows r1; : : : ; rd.
If none of these values is less than �1, then no violated F 1k -inequality and thus no violated
F1k -inequality exists.

In the following this separation algorithm is summarized.

Algorithm 5.5 (separateStaircase1(lpSolution x�))

(1) For each column i of x� do:

(1.1) Create the weighted bipartite graph Gi with the columns and rows of x� as node
set and with edge weights wi

cr = 1� x�rc +
1
2
x�ri.

(1.2) Compute shortest paths for all pairs of columns j 6= i and h 6= i. The corre-
sponding lengths pijh are stored in an array.

(2) For each triple i,j,h of columns and each row l do:

(2.1) If pijh + phji � x�li + x�lj � x�lh < �1 then construct the corresponding violated
inequality.

The all-pairs shortest path computations in step (1) take the time O(n4). Step (2) takes
the time O(n3m). Summarizing we obtain the time complexity O(n3(n +m)). Therefore
the F1k -inequalities can be separated in polynomial time.

The separation procedure for the F2k -inequalities (see �gure 3.3) works very similarly.
The corresponding algorithm looks as follows .

Algorithm 5.6 (separateStaircase2(lpSolution x�))

(1) For each pair of columns i and j of x� do:

(1.1) Create the weighted bipartite graph Gij with the columns and rows of x� as node
set and with edge weights wij

cr = 1� x�rc +
1
2
(x�ri + x�rj).

(1.2) Compute shortest paths for all pairs of columns g =2 fi; jg and h =2 fi; jg. The
corresponding lengths pijgh are stored in an array.

(2) For each quadruple i,j,g and h of columns and each pair of rows k and l do:

(2.1) If pijgh � x�kg + x�kh + x�ki � x�lj � x�lg + x�lh � x�li + x�lj < �1 then construct the
corresponding violated inequality.

Step (1) takes the time O(n5), step (2) takes O(n4m2). Usually we have at least as many
rows as columns. Therefore the overall running time is dominated by the second term
O(n4m2).

Taking into account that the F3- and F4-inequalities (see �gure 3.12) have �nite size and
therefore can be separated in polynomial time just by enumerating all possible mappings,
we have shown that all inequalities constituting the LP relaxations of our IP formulations
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3.4 and 4.3.2 can be separated in polynomial time. Nevertheless for practical reasons
enumeration of the F3- and F4-inequalities is not performed at all and since the running
times of the algorithms 5.5 and 5.6 highly depend on the number of columns, we use
submatrices of the LP relaxation x� with at most 90 columns. Section 5.3.4 will show one
possibility for a good choice of these submatrices.

5.3.2 Separation of SIR-cuts

As proven in sections 3.1.2 and 4.3 all facet-de�ning inequalities of Pm;n
C1R and Pm;n

C1S can
be trivially lifted to facets of polytopes with higher dimensions. We assume that we are
given a facet class of a \small" polytope, say C Æ x � c0 is a facet class of P 4;4

C1R. Now
we want to know whether there is any inequality of this type which is violated by the
current LP solution x�. Let m be the number of rows and n be the number of columns of
x�. Speaking of the combinatorial structure of the consecutive ones problems, all rows are
indistinguishable and so are all columns. Therefore C Æ x � c0 is facet-de�ning for P

m;n
C1R if

x is any (4; 4) submatrix of x�. There are
�
m
4

�
possibilities to choose the rows of x and

�
n
4

�
possibilities to choose the columns. For all these mapping possibilities we are interested
in the value of C Æ x. If it exceeds c0 we have found a violated inequality. Finding the
maximum of all these left hand sides directly leads to the problem

max
I�f1;:::;mg;jIj=4
J�f1;:::;ng;jJj=4

C ÆX�
IJ :

This problem is a variant of the NP-hard quadratic assignment problem, which can be
tackled by di�erent heuristics [PRW94]. Having computed the complete description of low-
dimensional polytopes, we solve this quadratic assignment problem for all facet classes using
the so-called Grasp (Greedy Randomized Adaptive Search Procedure) heuristic [LPR94].
Because of the running time the computations of the complete outer descriptions is only
practicable for polytopes according to small instances. Therefore we call the generated
cutting planes SIR-cuts (small instance relaxation cuts). See Christof [Chr97] for
details on the theory and practice of SIR-cuts.

Appendices A.2 and A.3 show the complete outer description of P 4;4
C1R and P 4;4

C1S. Fur-
thermore we have computed partial descriptions of P 4;5

C1R with 225 classes of facets and
P 5;4
C1R with 42 classes. All these facet classes are used with the above approach.
Similarly to the separation of the staircase inequalities, it turned out to be much more

eÆcient not to work on the whole LP solution x�, but only on a submatrix of x� with
the property that the probability to �nd a violated inequality inside this submatrix is
reasonably high. Section 5.3.4 describes a heuristic for �nding such submatrices.

5.3.3 Separation by patterns

The separation idea described in this section is based on the principle of maximal feasible
sets of columns and rows (see sections 3.6 and 4.2.4).
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We assume the LP solution contains a set of integer column-vectors or row-vectors
which is not feasible. Then, just as in section 5.1.1, one can construct a cutting plane
by cutting o� the submatrix building up this infeasible set. But usually the LP solution
contains fractional entries whereas the columns or rows of an infeasible set only have binary
entries. Therefore we are interested in a kind of indicator, that speci�es not only if a binary
column or row (in the following we will call them patterns ) is contained in an LP solution,
but that also measures how well this pattern �ts to the LP matrix x�. In the case of an
integral LP relaxation this indicator would be de�ned to be 1 if the pattern is contained
anywhere in x� and 0 otherwise. In the fractional case this behavior can be modeled by
making use of the Manhattan distances (the Manhattan distance between two vectors
v and w of the same size is

P
i jvi � wij) between a pattern and the columns or rows of

x�. To be more exact, let p = (p1; : : : ; pn) be a row-pattern and x� a submatrix of the LP
matrix consisting of n columns. Then we compute the indicator

y�p = 1�min

(
nX

j=1

jpi � x�ijj j 1 � i � m

)
:

This indicator is computed for all patterns (in the case of column-patterns the roles of
column indices and row indices have to be switched) and we try to derive a violated
inequality from their values . How this may be performed will be shown in the following.

Example 5.7 We consider the 4 column-patterns

p1 =

0
@ 1

1
1

1
A ; p2 =

0
@ 0

0
1

1
A ; p3 =

0
@ 0

1
0

1
A and p4 =

0
@ 1

0
0

1
A :

The submatrix of the LP solution looks as follows:

x� =

0
@ 1:0 0:1 0:8 1:0 0:3 0:0 0:0

1:0 0:2 0:0 0:9 0:4 0:6 1:0
0:4 1:0 0:0 1:0 0:1 0:2 0:1

1
A

According to the formula above we compute for each of the 4 patterns the best �tting
columns. These are column 4 for pattern p1, column 2 for pattern p2, column 7 for pattern
p3, and column 3 for pattern p4. The corresponding values of the indicators are y

�
p1 = 0:9,

y�p2 = 0:7, y�p3 = 0:9, and y�p4 = 0:8
Since the 0=1 matrix built up by the 4 patterns is not C1PR, we know that at most 3

out of the 4 patterns are included in an C1MR set. Therefore

yp1 + yp2 + yp3 + yp4 � 3

is a valid inequality on the indicator variables. This inequality is violated by y�. Moreover
according to our computation of y� we have



74 A Branch-and-Cut Approach

y�p1 = x�14 + x�24 + x�34 � 2; y�p2 = �x�12 � x�22 + x�32;

y�p3 = �x�17 + x�27 � x�37 , and y�p4 = x�13 � x�23 � x�33:

Besides, by testing all integer possibilities the validity of the linking constraints

yp1 � x14 + x24 + x34 � 2; yp2 � �x12 � x22 + x32;

yp3 � �x17 + x27 � x37 , and yp4 � x13 � x23 � x33

can be veri�ed. After inserting these inequalities into the violated indicator-based inequality
we get 0

@ 0 �1 1 1 0 0 �1
0 �1 �1 1 0 0 1
0 1 �1 1 0 0 �1

1
A Æ x � 5:

Due to our construction and being consistent with appendix A.2 this inequality is valid for
WC1P, but violated by x�.

The example shows that we can reduce the problem of �nding a cutting plane for the WC1P
LP solution x� to �nd an inequality violating the pattern-based \virtual LP solution" y�.
Now, in terms of patterns with �xed length 3 � m � 6, we are able to compute all feasible
pattern combinations. Each of these combinations corresponds to a C1FC or C1FR set
and for each of these sets we consider the vector of the pattern indicators (yp). Now a
violated inequality can be constructed if and only if y� lies outside the convex hull of these
binary indicator vectors. This method was used by Applegate et al. [ABCC01] for the
TSP based on the so-called delayed column generation, introduced by Ford and Fulkerson
[FJF58] and Jewel [Jew58]. Since the virtual LP solution y� is projected on a facet of the
convex hull of all feasible indicator vectors, we call this method \projection-cut method".
Essentially it needs to solve one linear program.

In the case of column-patterns the complete algorithm looks like follows. Of course the
row-pattern separation procedure follows along the same line.

Algorithm 5.8 (separateColumnPatterns(lpSolution x�))

(1) Specify a subset I of the rows of x� with 3 � jIj = m � 5.

(2) For each of the 2m di�erent column-patterns p = (pi) scan the best �tting column of
x� by setting:

y�p = 1:0�min

(X
i2I

jpi � x�ijj j 1 � j � n

)

(3) Having generated a complete list of all C1FC sets, try to �nd a valid inequality on
the pattern variables violated by y� by making use of the projection-cut method.
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(4) If a cutting plane is found, use this inequality to construct a valid inequality for the
WC1P which is violated by the current LP solution x�.

Similar to the SIR-approach, the pattern-based separation procedure needs a submatrix
of x� with few rows or columns as input to work eÆciently. The question, how such a
submatrix can be determined will be discussed in the next section.

Computational comparisons of the SIR and the pattern-based separation will be made
in section 7.2. We will see that the separation by patterns is much more e�ective in the
sense of the total running time and generated cuts in the branch-and-cut approach. Note
that in our implementation we restricted the length m of the patterns to be 3; 4 and 5
for column-patterns and 3-6 for row-patterns. Besides we do not only use the 2m patterns
consisting of \0"s or \1"s only, but also consider patterns with \�" entries, which means
that both zeros and ones are allowed in these positions.

5.3.4 Heuristics for �nding violated submatrices

The complexity of the separation procedures described in the previous sections highly
depends on the size of the LP matrix. To an extremely high degree this holds for the
separation procedure of patterns. As described before it can only be performed for matrices
with at most 5 rows or at most 6 columns in an acceptable amount of time. Therefore
we are interested in a heuristic that �nds a submatrix of the LP relaxation with a high
probability that this submatrix contains a violated inequality. Similar to the rounding
heuristic in section 5.2.2 we are interested in using the PQ-tree algorithm. Again we need
to make the current LP solution integer to use PQ-trees. For this purpose we apply the
same probabilistic method as described in 5.2.2.

Since the di�erent separation procedures described in the previous sections need di�er-
ent sizes of the input matrix, we present an algorithm trying to compute a violated (m0; n0)
submatrix of x�, where m0 and n0 are part of the input. The main idea is that columns and
rows are deleted as long as the remainder stays infeasible. If a deletion leads to a feasible
matrix, this step is undone. Rows and columns with a high Manhattan distance between
LP matrix and rounded matrix are chosen to be deleted earlier. Note that feasibility of
the rounded matrix means it is C1PR or C1PS depending on the considered problem.

Algorithm 5.9 (findViolatedSubmatrix(lpSolution x�, m0, n0)

(1) Round the LP matrix x� to an integer matrix x by setting xij to 1 with probability x�ij
and to 0 otherwise

(2) For each row i calculate ri =
Pn

j=1 jxij � x�ijj

For each column j calculate cj =
Pm

i=1 jxij � x�ijj

(3) All rows and columns of x are labeled to be deletable

(4) While there are deletable rows or columns of x and m + n > m0 + n0 do:
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(4.1) If n > n0

(4.1.1) Delete the deletable column of x with the maximum value of ci
(4.1.2) Check feasibility of the remaining matrix of x by the PQ-tree algorithm

(4.1.3) If the submatrix is not feasible

(4.1.3.1) n = n� 1

(4.1.3.2) Update the values of ri
(4.1.4) else undelete the previous deleted column and label it to be undeletable

(4.2) If m > m0

(4.2.1) Delete the deletable row of x with the maximum value of ri
(4.2.2) Check feasibility of the remaining matrix of x by the PQ-tree algorithm

(4.2.3) If the submatrix is not feasible

(4.2.3.1) m = m� 1

(4.2.3.2) Update the values of ci
(4.2.4) else undelete the previous deleted row and label it to be undeletable

Below an example of the algorithm for the standard problem is given with m0 = n0 = 3.
These are the smallest values that make sense, since all matrices with less than 3 rows or
columns are both C1PR and C1PS.

Example 5.10 The LP matrix before and after the probabilistic rounding looks as follows:

x� =

0
BBBB@

1:0 1:0 1:0 0:0 0:0
0:0 0:0 1:0 1:0 1:0
0:0 1:0 0:5 1:0 1:0
0:0 0:0 0:2 1:0 0:5
0:0 0:0 0:0 0:8 0:4

1
CCCCA x =

0
BBBB@

1 1 1 0 0
0 0 1 1 1
0 1 0 1 1
0 0 0 1 1
0 0 0 1 1

1
CCCCA

Computing the Manhattan distances of corresponding rows and columns we get:

r1 = 0 r2 = 0 r3 = 0:5 r4 = 0:7 r5 = 0:8
c1 = 0 c2 = 0 c3 = 0:7 c4 = 0:2 c5 = 1:1

Thus we start with deleting column 5 of x and receive:0
BBBB@

1 1 1 0
0 0 1 1
0 1 0 1
0 0 0 1
0 0 0 1

1
CCCCA

This matrix is not C1PR. Therefore we proceed with updating the row distances:

r1 = 0 r2 = 0 r3 = 0:5 r4 = 0:2 r5 = 0:2
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Now row 3 has to be deleted: 0
BB@

1 1 1 0
0 0 1 1
0 0 0 1
0 0 0 1

1
CCA

Obviously this matrix is feasible, therefore we undelete and mark row 3 to be undeletable.
The same holds after deleting column 3. But after deleting row 4 we get the matrix0

BB@
1 1 1 0
0 0 1 1
0 1 0 1
0 0 0 1

1
CCA ;

which is still not feasible. Deleting column 4 leads to a feasible matrix. But the deletions
of row 5 and column 1 are possible and the algorithm terminates with a submatrix of x,
which is not feasible, namely the submatrix consisting of the column set f2; 3; 4g and the
row set f1; 2; 3g.

Now a separation procedure can be processed on the corresponding submatrix of x�,
which is 0

@ 1:0 1:0 0:0
0:0 1:0 1:0
1:0 0:5 1:0

1
A :

In this case any of the separation procedures described in the previous sections would �nd
the violated inequality 0

@ 1 1 �1
�1 1 1
1 �1 1

1
A Æ x � 5:

This cutting plane can be generated and added to the current LP.

As already mentioned in 5.1.1, a cutting plane can even directly be constructed from the
created submatrix of the previous example without any additional separation procedure.
This is because the Manhattan distance of this submatrix and its rounded counterpart is
less than 1. Therefore the idea of section 5.1.1 to cut o� an integer vector would also be
suitable in this case. Consequently this algorithm can also be used as a heuristic standalone
separation procedure. Its running time is very eÆcient. Since O(m+ n) PQ-trees have to
be built, we get O((m+ n)mn) as total running time.
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Chapter 6

Applications

In this chapter we present some applications of the WC1P and the WSC1P. The following
sections will show that there is a huge variety of �elds where the concept of \consecutive
ones" occurs. We will start with an application in computational biology.

6.1 The physical mapping problem

6.1.1 Biological background

The main goal of the Human Genome Project is to reconstruct the linear sequence of the
human chromosome consisting of roughly 109 bases. One step leading to that goal is the
construction of so-called physical maps that enable us to localize important features along
the chromosome, such as clones which are small DNA fragments. Each clone corresponds
to an interval of the chromosome. Now a library of clones is given, all of them being
subsets of the same larger piece of the DNA. The goal is to reconstruct the relative order
of these clones occurring in the DNA piece. For this purpose the concept of probes is
introduced. The probes also are subintervals of the DNA. Each probe is tested against the
clone library. Testing means that for each clone-probe pair a hybridization experiment
is performed. A positive result (the probe hybridizes to the clone) is an indicator that the
probe and the clone overlap, a negative result indicates that probe and clone do not have
a common substring. Let m denote the number of clones and n the number of probes then
all these results can be written down in an (m;n) binary matrix A with

aij =

�
1 : if probe j hybridizes to clone i
0 : otherwise.

This matrix is called hybridization matrix.
The physical mapping problem is to reconstruct the order of the probes (corre-

sponding to the columns of the matrix) in which they occur in the chromosome. From this
probe order one can easily derive the order of the clones. Now assume that the columns of
A are ordered in the correct way and there were no errors in the hybridization experiments.
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Then for each pair of probes overlapping with the same clone all probes lying between this
pair also must hybridize to this clone. In other words the \1"s in the hybridization matrix
would occur consecutively in each row and therefore A would be C1PR. The PQ-tree
algorithm could be used to �nd all admissible probe orders.

Unfortunately, hybridization experiments are highly in
uenced by errors. The error
that a probe hybridizes to a clone though they do not overlap is called false positive and
the other way round, an error is called false negative if a probe-clone pair has a common
substring of the DNA but they do not hybridize to each other. A third type of error is the
so called chimerism. A chimeric clone does not represent a single interval of the DNA but
contains two or more unrelated substrings. In the following we want to tackle the physical
mapping problem in the presence of false positive and false negative errors but we do not
consider chimerism.

In practice there are di�erent ways to select the set of probes. One possibility is to
extract the probes from both ends of the clones. This procedure is known as physical
mapping with end probes and leads to a weighted betweenness problem (see [COR98]
and section 3.5). Note that for each probe it is known from which clone it has been
extracted. Figure 6.1 gives an example of the hybridization experiments for the physical
mapping problem with end probes.

1a 2a 1b 2b 3a 3b 4b

Clone 1

Clone 2

Clone 4

Clone 3

false pos. corr. neg. false neg. corr. pos.

4a

end probe

hybridization matrixz }| {0
BB@
� 0 1 � 0 0 0 0
0 � 1 1 � 0 1 0
0 0 0 0 0 � � 0
1 0 � 1 0 1 1 �

1
CCA

corrected matrixz }| {0
BB@
� 1 1 � 0 0 0 0
0 � 1 1 � 0 0 0
0 0 0 0 0 � � 0
0 0 � 1 1 1 1 �

1
CCA

Figure 6.1: Hybridization experiments for the physical mapping problem
with end probes, errors are marked \red"
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In the following we deal with another way for obtaining the probes, namely they are
chosen as a certain subset of the clone library. Therefore no end probe information is
known. Figure 6.2 shows an example how the results of the hybridization experiments
could look like in this case.

P1 P2 P3 P4 P5 P6 P7

Clone 1

Clone 2

Clone 3

Clone 4

Clone 5

false pos.corr. neg. false neg. corr. pos.

hybridization matrixz }| {0
BBBB@

1 0 1 0 0 0 0
0 0 1 1 0 1 0
0 1 0 0 1 1 0
0 0 0 1 1 1 0
0 0 1 0 0 1 1

1
CCCCA

corrected matrixz }| {0
BBBB@

1 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 1 0
0 0 0 1 1 1 0
0 0 0 0 1 1 1

1
CCCCA

Figure 6.2: Physical mapping without end probe information

Our goal is now to reconstruct the corrected matrix on the right-hand side from the
hybridization matrix on the left-hand side. In this case the two matrices di�er by 5 entries
each corresponding to an error. This problem of constructing a C1PR matrix by switching
some entries of an input matrix reminds us of the weighted consecutive ones problem.
Indeed, we will see in the following that making use of the maximum-likelihood idea leads
to a WC1P with the objective function depending on the error rates.

6.1.2 Modeling as WC1P

Alizadeh et al. [AKNW95] were the �rst to introduce a maximum-likelihood approach
to the physical mapping problem. The idea is to �nd the C1PR matrix B that maximizes
p(BjA), where p(BjA) is the probability that B is the correct matrix if A is the observed
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hybridization matrix. Using Bayes' Theorem and assuming that A is the hybridization
matrix (p(A) = 1) we get

p(BjA) = p(AjB)p(B);

where p(AjB) is the probability that A is observed if B is the correct matrix and p(B)
is the probability that B is the true matrix. Without any information of hybridization
experiments we assume B to be uniformly distributed over all C1PR matrices. Therefore
p(B) has the same value for all C1PR matrices B. Thus it remains to maximize p(AjB).
Now let pfp (pfn) be the probability of a false positive (false negative) error and nfp(B)
(nfn(B)) be the number of 1's (of 0's) in positions of A where the correct matrix B has a
0 (a 1). Further let n be the total number of entries in the matrices A and B. Assuming
that all hybridization experiments are independent of each other we have

p(AjB) =

�
pfp

1� pfp

�nfp(B)
�

pfn
1� pfn

�nfn(B)

(1� pfp)
n(1� pfn)

n:

After logarithmizing and taking into account that the two terms on the right-hand side
do not depend on B we want to maximize

nfp(B) log

�
pfp

1� pfp

�
+ nfn(B) log

�
pfn

1� pfn

�

over all C1PR matrices B. Due to the de�nition of nfp(B) and nfn(B) this is equivalent
to the WC1P

maxC ÆB
s:t: B is C1PR;

with

cij =

8<
: log

�
pfn

1�pfn

�
: aij = 0

� log
�

pfp
1�pfp

�
: aij = 1:

If the false positive and false negative rates are not known, they can be estimated by
the following procedure. We �rst assume pfp = pfn and solve the resulting WC1P (in this
case we have jcijj = 1, 8i; j). From the di�erence between the optimal solution and the
hybridization matrix we can make a second estimation for the error rates. This process
can be repeated until the error rates do not change any more.

Section 7.1 will give computational results on real world data and a comparison between
the WC1P and a Hamming distance approach.

6.2 Seriation in archaeology

Seriation or sequence dating in archaeology was �rst formulated in 1899 by Flinders
Petrie (see Kendall [Ken69]). In this problem we are given a set of graves (corresponding
to the columns of our matrix) and a set of artifacts (corresponding to the rows of the
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matrix) which were found (1-entry in the matrix) or not (0-entry in the matrix) in a
certain grave. Assuming that the artifacts were in use over a certain time-interval, we can
try to reconstruct the chronology of the graves from the \grave/artifact" matrix. Indeed, if
our assumption would be true, then the PQ-tree algorithmwould give all possible seriations
of the graves. Again, as in the physical mapping problem one has to deal with errors. For
example, one artifact was not found in a certain grave though it was in use at that time.
Given estimations for the probability of such errors we can obtain the sequence dating by
solving a WC1P similar to the previous section.

6.3 Making movies

A further application of the WC1P arises when making a movie. Normally the actors
of a movie have to be paid from their �rst shooting day up to their last. Assume we are
given the binary matrix which says for each actor and each scene of the �lm whether the
actor is involved in that scene or not. In addition we know the honorarium per day for
each actor. To save money the �lm company is interested in organizing the shooting in
such a way that the actors have as few days without work as possible. To be more exact,
taking the di�erent honorariums into account, we have to determine the optimal order of
the scenes to be shot. This can be done by solving a WC1P, where the objective function
depends on the payments per day for the actors. In addition variables associated with a
1 in the \actor/scene" matrix must be �xed to 1 to enforce that an actor is present if he
is involved in a scene. The reference to this interesting application was given by Pochet
[Poc03].

6.4 Analyzing inorganic crystal structure types

6.4.1 Computing clusters

Assume a set S of elements is given and in addition a distance matrix D where dij denotes
the distance between elements i and j. We now want to compute clusters. Clusters are
(not necessarily disjoint) subsets of S with \small" distances inside the subsets.

This problem arises whenever one wants to classify certain objects into groups given
a measure of \similarity" speci�ed by a distance for each pair of the objects. The values
should be nonnegative and a distance value of 0 means that the objects are nearly identical.

Figure 6.3 for example shows a symmetric distance matrix for 25 representatives of
inorganic crystal structure types. We do not elaborate on the mineralogical background
and how the di�erences dij between the structures are calculated, but refer to Bergerho�
et al. [BBBD99]. The rows and columns of the matrix were permuted in such a way that
symmetrical submatrices with small distances arise. They correspond to clusters of related
crystal structure types.
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Figure 6.3: Distance matrix with clusters from Bergerho� et al. [BBBD99]

6.4.2 Modeling as WSC1P

The shape of the matrix in �gure 6.3 resembles a matrix being C1PS. Indeed, if the entries
inside the submatrices are assumed to be 1 and the entries outside to be 0, the resulting
binary matrix is C1PS. Distances inside should have small values, those outside higher
values. This leads to the idea to use a WSC1P to �nd the clusters. Note that C1PS
matrices are not necessarily symmetric, therefore we have to enforce this separately. In the
branch-and-cut code this is done by identifying the variables xij and xji.

minC Æ A
s:t: A is C1PS and A = AT :

Of course the objective function matrix C should depend on the distance matrix D.
We use the following transformation. Assume a user speci�ed bound b is given with the
property that two elements should lie inside a common cluster if their distance is less than
b. Therefore cij should be negative if dij < b and positive if dij > b and it suggests itself
to set cij = dij � b.

We applied these ideas to the distance matrix of �gure 6.4. Note that for convenience
the original values of the distances are multiplied by 100 and rounded to the next integers.
Using b = 0:10 we obtained �gure 6.5 as optimal solution of the WSC1P. A comparison of
both �gures shows that the computed clusters are almost the same as the \hand-optimized"
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ones. Most of the di�erences are due to the fact that an entry ij with dij = b can lie both
in- and outside a cluster if both possibilities are feasible.

This problem was solved in the root node of the branch-and-cut tree and took about
20 CPU seconds on a SUN Ultra 80 with UltraSparc IIi 450 CPU. Section 7.4 gives more
computational results on distance matrices with di�erent sizes using di�erent bounds.

6.5 Identifying blocks of matrices

As seen in the previous section we are able to �nd submatrices with certain properties,
such as low di�erences inside the submatrices, with the help of a WSC1P.

An application arising from integer and linear programming is to decompose a matrix
into so-called bordered block diagonal form (see Bornd�orfer et al. [BFM98]). That is,
every row of the matrix is assigned to at most one of � blocks, each block contains at most
� rows, and no two rows in di�erent blocks have a common nonzero entry in a column.
The set of rows that are not assigned to a block is called the border. Such a form of an
LP or MIP matrix (mixed integer programming) is helpful for speeding up the solution
process.

Except for the border, matrices of this form are C1PS. Therefore one way to identify
the block structure of a matrix could be to solve a WSC1P. The objective function values of
the nonzero entries should be positive and those of the zero entries negative. Furthermore
the absolute values of the nonzero entries should be chosen bigger than the others. We
tried to apply this idea to the LP and MIP matrices of [BFM98] but overall we were not
able to solve them to optimality. Maybe the reason is, that we do not handle the border
so far.

But the following example shows that this approach is promising. We created a
(200; 100) binary matrix including 15 blocks at random. The entries inside the blocks
are set to \nonzero" with probability 90%, all the other entries are set to \0". The objec-
tive function value was 10 for the nonzero entries and �1 for the remainder. In contrast to
the last section we are maximizing. Figure 6.6 shows the generated matrix on the left-hand
side. The right-hand side shows the decomposition into blocks according to the optimal
WSC1P solution. All the 15 blocks were found by this solution. The branch-and-cut tree
required 47 nodes. The total running time was almost 7 hours on a SUN Ultra 80 with
UltraSparc IIi 450 CPU.
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Figure 6.6: Randomly generated block matrix and the WSC1P solution



Chapter 7

Computational Results

We implemented a branch-and-cut code for the WC1P and the WSC1P using the software
framework ABACUS [Thi95, JT97a, JT97b] with CPLEX 6.5.3 as LP-Solver. In addition
we used an implementation of the PQ-tree algorithm as Template Class in C++ provided by
Leipert [Lei97]. The feasibility test, the rounding heuristic, and all separation procedures
described in chapter 5 were implemented in C++.

All computations were performed on a SUN Ultra 80 with UltraSparc IIi 450 CPU. For
the separation of cutting planes de�ned on small submatrices we �rst used the SIR-cut
separation procedure. But as section 7.2 will show, the separation procedure based on
the pattern principle is much more e�ective. Therefore our current code only uses the
separation by patterns and the exact separation of the staircase inequalities. As already
mentioned in chapter 5 the running times of both separation procedures strongly depend on
the size of the submatrix they were performed on. Therefore we called them in a hierarchical
fashion, i.e., �rst on small submatrices and, if no cuts were found, the submatrices were
increased up to a maximal column-pattern length of 5, row-pattern length of 6 resp., and
up to a maximal number of 90 columns for the staircase separation. The submatrices were
chosen heuristically as described in section 5.3.4.

The rounding heuristic (as described in section 5.2.2) was performed after every solution
of an LP. Normally the number of permutations represented by the generated PQ-tree is
too large to be enumerable. Therefore only a few permutations are selected at random.
Whenever a new solution increasing the primal bound is found, the number of permutations
to be checked is increased.

Almost all parts of the branch-and-cut implementation can be used both for solving the
WC1P and for solving the WSC1P. Of course, for testing if the the current LP solution is
feasible for WSC1P, we have to perform the PQ-tree algorithm both for the LP matrix and
its transpose. In this case also the separation of the staircase inequalities is extended to the
transposed LP solution. For the pattern separation we only need to use di�erent feasible
sets for the standard and the simultaneous problem. The remainder of this separation
procedure can be applied to both cases.

As mentioned in section 5.2.2 the rounding heuristic works very e�ectively only in the
standard case. We tried a modi�ed version also for the simultaneous case but mostly the
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optimum was found by a feasible LP solution (see section 7.4).

7.1 Physical mapping results

We applied our code on the physical mapping problem arising from the Xylella fastidiosa
genome project (see Silvestri et al. [SSdS+00] and Frohme et al. [FCH+00]). The
hybridization matrix was obtained from Frohme [Fro00].

The data contains 1037 clones and 181 probes and the objective function was computed
as described in section 6.1. It was not possible to solve the WC1P associated to the whole
hybridization matrix to optimality in reasonable time. Therefore we additionally worked on
smaller submatrices. These submatrices were chosen in such a way that they also represent
complete subintervals of the chromosome (the original solution was known).

Table 7.1 shows the computational results for the physical mapping problems de�ned
on 6 submatrices including the whole hybridization matrix. As usual m and n denote the

m n ttot tbest nsub nlp lb ub hd

230 30 0:01:09 0:00:29 3 12 16999 16999 16394
267 40 0:02:29 0:00:45 3 14 20805 20805 20200
310 50 0:04:26 0:01:36 5 21 25813 25813 25496
320 60 0:05:20 0:01:49 3 19 28527 28527 27881
430 70 >200:00:00 0:12:24 >172 >2000 40259 40316 39523
1037 181 >200:00:00 � 50:00:00 >14 >500 104573 105702 103910

Table 7.1: Experiments on submatrices of the Xylella fastidiosa hybridiza-
tion matrix, the times are given in hours:minutes:seconds

number of rows and columns of the submatrices. The total running time of the branch-
and-cut process is denoted by ttot. tbest is the time required to �nd the best known feasible
solution. This solution was always found by the rounding heuristic. nsub, nlp resp., are the
number of subproblems, LPs resp., to be solved. The value of the global lower bound is
denoted by lb. Since we have a maximization problem this value corresponds to the best
feasible solution. The global upper bound obtained by the maximal LP relaxation value
of all open subproblems is denoted by ub. The last column is the value of the Hamming
distance heuristic described in section 5.2.1. Figure 7.1 shows the whole hybridization
matrix where the columns are permuted according to the optimum solution of the Hamming
distance TSP. The objective function value corresponding to the arising WPEP is 103910.
This Hamming distance approach is widely used by biologists in practice (see [AKWZ94,
AKNW95, GI95, Heb01]). But in contrast to these approaches we solve the arising TSP
problems exactly with the help of the branch-and-cut code from J�unger et al. [JRT94,
JRR95].

On the one hand the computational results show that huge problems take very long
to be solved to optimality. This can be done only for problems up to 60 columns in a
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Figure 7.1: Hamming distance solution

reasonable amount of time. But on the other hand the rounding heuristic works very well.
In all cases the optimum solution, or at least a solution clearly dominating the Hamming
distance value, was found very early in the branch-and-cut process. Here \dominating"
means that, assuming the correctness of the mathematical model of section 6.1, the best
solutions we found have a higher probability to be the real hybridization matrices than the
Hamming distance ones. Figure 7.2 displays the hybridization matrix permuted along the
best known solution with an objective function value of 104573.
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Figure 7.2: Best known solution

7.2 Random matrices

For a given randomly generated (n; n) binary matrix we are interested in the expected
value of the minimal number of entries that have to be switched to obtain a C1PR matrix.
Or in other words we want to investigate, how far a random 0=1 matrix is away from being
C1PR. In addition we want to compare the eÆciency of the SIR separation and the pattern
based separation procedure, both described in chapter 5.

To this end we made the following computational tests. We generated binary (n; n)-
matrices for n = 5; : : : ; 19 at random with densities of the \1"-entries varying between
10% and 90%. For every problem we computed the minimal number of entries to be
switched to obtain a C1PR matrix. All problems are solved twice, �rst using the SIR
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separation and second using the pattern separation. Staircase inequalities are separated in
both approaches.

For every size and density we created 10 instances. Up to n = 12 all instances could be
solved in reasonable time with both the SIR and the pattern approach. Larger problems
turned out to be more diÆcult depending on their density. Table 7.2 displays the average
percentage of entries that have to be switched for the various problem sizes. The most
entries apparently have to be switched for densities around 60%. These problems also are
the most diÆcult ones for our branch-and-cut algorithm.

10% 20% 30% 40% 50% 60% 70% 80% 90%

(5; 5) 0.0 0.0 1.2 2.0 0.8 0.8 0.4 0.8 0.0
(6; 6) 0.0 0.3 2.5 2.2 1.9 3.3 2.5 1.9 0.6
(7; 7) 0.2 0.6 3.1 3.7 4.9 5.9 4.9 2.9 0.6
(8; 8) 0.0 0.3 1.6 3.9 5.2 7.5 6.3 4.4 2.7
(9; 9) 0.1 1.1 3.6 5.4 6.3 7.4 5.9 5.2 2.2
(10; 10) 0.3 1.9 4.3 6.2 7.4 8.4 8.0 6.6 2.7
(11; 11) 0.2 2.5 5.1 6.9 9.6 10.1 9.3 6.9 3.7
(12; 12) 0.4 3.2 6.0 8.5 10.1 11.7 10.7 8.8 5.0
(13; 13) 0.4 3.6 6.3 11.1 11.1 10.5 8.2 4.4
(14; 14) 0.6 4.3 11.3 8.8 4.8
(15; 15) 0.8 4.1 9.6 5.3
(16; 16) 0.9 4.6 9.3 5.3
(17; 17) 0.9 5.6
(18; 18) 1.4 5.3
(19; 19) 1.5 6.0

Table 7.2: Percentage of entries to be switched.

Tables 7.3 and 7.4 show the average computation times for n � 19. Only problem series
that were solved within 24 hours are displayed. For example, for n = 14 and density 50%
it can even take several days to solve one problem.

The variance of CPU times for problems of the same size and density is very high. For
example, for the problems of size (12; 12) and density 50% the fastest computation took
34 seconds and the slowest 76 minutes using the SIR separation. For the pattern-based
approach the gap is even more remarkable, it took 6 seconds in the fastest and 70 minutes
in the slowest case.

The comparison of tables 7.3 and 7.4 show that the average execution times for the
pattern-based runs are almost always faster than for the SIR runs. The speed up is sig-
ni�cant, especially for problems with a high density of 90%. Without illustration we want
to mention that the number of branch-and-bound nodes decreases in a similar way. In the
next section we will see that the separation of patterns provides us an exact separation
procedure for inequalities with at most 4 rows or columns. On the other hand in the SIR
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10% 20% 30% 40% 50% 60% 70% 80% 90%

(5; 5) 0:01 0:01 0:01 0:01 0:01 0:01 0:01 0:01 0:01
(6; 6) 0:01 0:01 0:01 0:01 0:01 0:01 0:01 0:01 0:01
(7; 7) 0:01 0:01 0:01 0:01 0:02 0:02 0:01 0:01 0:01
(8; 8) 0:01 0:01 0:01 0:01 0:02 0:04 0:02 0:02 0:01
(9; 9) 0:01 0:01 0:05 0:05 0:06 0:07 0:03 0:02 0:01
(10; 10) 0:01 0:01 0:21 0:21 0:23 0:39 0:16 0:16 0:01
(11; 11) 0:02 0:07 2:26 9:14 8:01 7:10 3:07 0:15 0:02
(12; 12) 0:02 0:09 4:21 25:26 28:16 12:29 4:23 0:13
(13; 13) 0:02 1:15 48:00 63:04 5:55 0:22
(14; 14) 0:02 13:34 17:16 0:45
(15; 15) 0:02 10:21 84:33 3:04
(16; 16) 0:03 5:52
(17; 17) 0:11 18:47
(18; 18) 1:01 21:06
(19; 19) 1:26 66:57

Table 7.3: Average execution time over 10 instances using SIR separation.

10% 20% 30% 40% 50% 60% 70% 80% 90%

(5; 5) 0:01 0:01 0:01 0:01 0:01 0:01 0:01 0:01 0:01
(6; 6) 0:01 0:01 0:01 0:01 0:01 0:01 0:01 0:01 0:01
(7; 7) 0:01 0:01 0:01 0:01 0:01 0:01 0:01 0:01 0:01
(8; 8) 0:01 0:01 0:01 0:01 0:01 0:02 0:01 0:01 0:01
(9; 9) 0:01 0:01 0:02 0:03 0:05 0:03 0:02 0:01 0:01
(10; 10) 0:01 0:01 0:17 0:14 0:16 0:27 0:17 0:06 0:01
(11; 11) 0:01 0:03 0:48 3:21 4:45 12:53 1:53 0:03 0:02
(12; 12) 0:01 0:04 1:44 16:40 23:20 11:07 3:16 0:06
(13; 13) 0:02 0:31 24:21 45:36 3:28 0:05
(14; 14) 0:02 3:21 7:05 0:06
(15; 15) 0:02 4:37 76:53 0:46
(16; 16) 0:03 1:06
(17; 17) 0:08 13:18
(18; 18) 0:41 3:46
(19; 19) 1:46 10:10

Table 7.4: Average execution time using pattern-based separation
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separation facet classes of these sizes are only separated heuristically by solving a quadratic
assignment problem. Supposedly this is the reason for the speed up.

Table 7.5 and table 7.6 display some statistics about the number and type of generated
cuts of both branch-and-cut runs for a (19; 19)-matrix with density 10%. The running
time was about 2 minutes for both approaches. 113 LPs had to be solved in 45 branch-
and-bound nodes in the SIR case and 31 subproblems with 93 LPs in the pattern-based
case.

(m;n) 3 4 5 6

3 2 29 0 14
4 0 8 15 176
5 0 11 0 0

k 1 2 3 4 5 6 7 8

F1k 13 62 77 62 34 16 3 2
F2k 93 253 103 21 2 0 0 0

Table 7.5: Number and types of generated cuts in the SIR case.

The right-hand side of table 7.5 shows the number of generated staircase cuts, the left-
hand side the number of SIR-cuts of size (m;n). This separation of inequalities from small
instances proved to be very helpful. Many of them are identi�ed quickly by our heuristic.
But, as table 7.6 shows, the pattern principle is even more e�ective.

(m;n) 3 4 5 6 7 8

3 35 71 15 3 0 0
4 14 26 29 133 21 6
5 0 2 8 9 0 0
6 0 0 2 3 0 0
7 0 0 1 1 0 0

k 1 2 3 4 5 6 7

F1k 62 111 108 80 81 6 0
F2k 492 330 159 50 23 8 0

Table 7.6: Number and types of generated cuts in the pattern case.

The left-hand side displays the number of violated inequalities of size (m;n) constructed
from a violated pattern-based inequality (see section 5.3.3). Note that in contrast to the
SIR approach not all of these cutting planes are facet-de�ning. But the number and
variety of di�erent sizes is de�nitely greater than in the previous �gure. Furthermore also
the number of generated staircase cuts on the right-hand side exceeds the �rst approach.
Probably this is because the LP structure is modi�ed by the di�erent pattern-based cuts
in such a way that the staircase separation works more e�ectively.

At last we want to mention the primal heuristic described in section 5.2.2, which turned
out to be very good. Considering the average time over both approaches, it took only about
6 minutes to �nd the optimal solutions for the (12; 12)-matrices with density 50%. But
proving optimality took additional 20 minutes. For 8 of the 20 instances the optimal primal
bound was found within 6 seconds, in 13 cases within 1 minute.
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7.3 Problems with few columns or rows

In section 3.6 we have shown that the number of facets of Pm;n
C1R is polynomial in n if m is

�xed and polynomial in m if n is �xed. The WC1P is even solvable in linear time for a
�xed number of columns or rows but as also shown in 3.6 the constant is very huge.

In this section we want to verify that also our branch-and-cut code shows a \good be-
havior" in solving these kind of problems. To this end we �rst generated random objective
function matrices for the the WC1P with 3� 7 columns, doubling the number of rows step
by step from 10 to 2560. The values of the objective function are uniformly distributed
from �10 to 10. Since the separation by patterns is much more adequate for solving such
problems than the staircase separation procedure, we dropped down the latter one for
the purpose of saving time. Table 7.7 shows the average execution times and the average
number of created subproblems over 10 instances. This data is only displayed for problem
series that were solved within 24 hours.

(m;n) 3 4 5 6 7

10 2 2 2 5 7
20 2 2 2 4 29
40 2 3 3 5 394
80 3 3 5 12 460
160 4 7 16 533
320 13 26 100
640 51 208 1273
1280 250 1790
2560 1275

(m;n) 3 4 5 6 7

10 1.0 1.0 1.0 1.0 1.4
20 1.0 1.0 1.0 1.0 1.6
40 1.0 1.0 1.0 1.2 3.2
80 1.0 1.0 1.2 4.6 5.0
160 1.0 1.0 2.0 13.2
320 1.0 1.0 3.8
640 1.0 1.0 12.6
1280 1.0 1.0
2560 1.0

Table 7.7: Average execution time in seconds and average number of sub-
problems over 10 instances with small n

The �rst striking observation is that all problems with 3 or 4 columns were solved at
the root node of the branch-and-cut tree. This indicates that the separation procedure
based on the row-patterns of length 3 and 4 is an exact one in the sense that all violated
inequalities of sizes (m; 3) and (m; 4) were detected. Unfortunately this does not hold for
row-patterns of length 5 and 6. One of very few facet-de�ning inequalities of size (5; 5)
that were neither separated by row patterns nor by column patterns is0

BBBB@
1 �1 1 �1 1
1 1 0 �1 0
0 �1 1 1 �1
0 �1 �1 1 1

�1 1 0 1 0

1
CCCCA Æ x � 9:

Being compatible with the theory the running times show a polynomial behavior for
n � 4. For n = 3 the quotients of the running times of two consecutive problem sizes
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seem to be bounded by about 5. This indicates a polynomial running time of O(m
log(5)
log(2) ) �

O(m2:3). Similarly for n = 4, in this case 9 is such a bound, leading to a experimentally
derived time complexity of about O(m3:2).

Problems where the number of columns is �xed to a value greater than 4 were more
diÆcult to solve. Because the pattern-based separation provides no exact separation pro-
cedure in this case, the number of subproblems to be solved increase signi�cantly, and so
do the total running times. Consequently no polynomial behavior is visible for n � 5.

Now we consider problems with few number of rows. The number of rows varies from
3 to 6, the number of columns from 10 to 640. As in the previous experiments for each
problem size 10 objective function matrices are created at random with entries uniformly
distributed from �10 to 10.

The computational results are displayed in table 7.8. Again we only considered problem
series with a total running time less than 24 hours.

(m;n) 10 20 40 80 160 320 640

3 2 2 3 7 65 408 3317
4 2 3 6 22 213 2188
5 3 12 41 443
6 4 11 95

(m;n) 10 20 40 80 160 320 640

3 1.0 1.0 1.0 1.0 1.0 1.0 1.0
4 1.0 1.0 1.0 1.0 1.0 1.0
5 1.0 1.2 1.2 8.6
6 1.0 1.4 3.2

Table 7.8: Average execution time in seconds and average number of sub-
problems over 10 instances with small m

Both the table of the running times and the table of the number of subproblems to be
solved shows similar results to the previous case. Again all problems with at most 4 rows
were solved to optimality without any branching whereas for solving problems with 5 or 6
rows more and more subproblems were required. With similar arguments to the previous
case we can estimate the running times to grow approximatively like O(n3) for m = 3 and
approximatively like O(n3:4) for m = 4. But note that for all problems discussed in this
section theorem 3.38 even provides a linear time algorithm. The main purpose for using our
branch-and-cut code to solve these problems is to demonstrate the ability of the separation
by patterns which provides an exact separation procedure for violated inequalities with not
more than 4 rows or columns.
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7.4 Computing clusters of crystal structure types

According to our model described in section 6.4 we want to present some computational
results arising in determining clusters of crystal structure types. As input we used 4
distance matrices of di�erent sizes obtained from Bergerho� [Ber99]. The problems are
named \167EB", \136FA", \62DC5", and \62DC4A" and their sizes vary from (28; 28) to
(162; 162). The smallest problem \167EB" has already been discussed in section 6.4 using
a bound of 0:100.

We solved each problem using 4 di�erent bounds from 0:025 up to 0:200. Figure 7.3
displays the computational results.

name size d b ttot topt nsub nlp npat nstc
0:025 0:05 0:05 1 2 109 718
0:050 0:05 0:02 1 2 124 1753

167EB (28; 28) 0:083
0:100 0:16 0:09 1 3 822 5364
0:200 0:02 0:02 1 1 0 0
0:025 1:42 1:42 1 5 2416 10728
0:050 1:31 1:31 1 2 683 2682

136FA (54; 54) 0:088
0:100 0:02 0:02 1 1 0 0
0:200 0:02 0:02 1 1 0 0
0:025 0:14 0:13 1 2 14 29
0:050 64:01 52:50 5 76 6135 85120

62DC5 (85; 85) 0:095
0:100 5:55 5:54 1 11 5544 26820
0:200 2:31 2:30 1 7 546 14751
0:025 209:24 209:22 13 60 4831 107467
0:050 133:33 133:08 3 40 13731 95515

62DC4A (162; 162) 0:028
0:100 828:56 827:37 43 233 24767 459340
0:200 6:25 6:24 1 2 10 56

Figure 7.3: Statistics on WSC1P runs arising in cluster �nding of crystal
structure types. All times are given in minutes:seconds

d denotes the average distance value in the matrix and b the used bound. The objective
function value for entry ij is cij = dij � b. The total running time of the branch-and-cut
algorithm is denoted by ttot and topt is the time required to �nd the optimum solution.
nsub, nlp resp., are the number of subproblems, LPs resp., to be solved and the number of
generated pattern-based cuts, staircase cuts resp., is denoted by npat, by nstc resp.

The computational results for these WSC1P problems were somehow contrary to the
physical mapping WC1P runs in section 7.1. One the one hand, up to two exceptions the
optimal solutions were always found by feasible LP solutions. As already mentioned in
section 5.2.2 this is because the rounding heuristic does not work well in the simultaneous
case, since the weighted problem remains NP-hard for �xed row and column permutation
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(see section 4.2.3). On the other hand, in spite of the worse primal heuristic even problems
of size (162; 162) could be solved to optimality. This fact quali�es the WSC1P approach as
a possibility for determining clusters of a given distance matrix. As shown in section 6.4
the optimal solutions were very similar to the expected clusters.

The huge number of generated cutting planes show that both the pattern-based and the
staircase separation procedure works also eÆciently in the simultaneous case. As expected,
problems with a big di�erence of d and b are easy to solve and require only few cutting
planes. For some of the problems even the initial LP solution is feasible. Take for example
the problem \167EB" displayed in �gure 6.4 with a bound of 0:200 (note that the entries in
the matrix are multiplied by 100). If all entries less than 0:200 are set to \1" and the other
entries set to \0", the resulting matrix is already C1PS and therefore the branch-and-cut
process terminates after the �rst solved LP.
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Chapter 8

Discussion

In this work we have made intensive investigations on weighted consecutive ones problems
with the aim of both getting more theoretical knowledge and developing an eÆcient branch-
and-cut algorithm solving the NP-hard WC1P to optimality.

For these purposes we �rst addressed the facial structure of the associated polytope.
Besides showing useful properties, such as lifting and melting of valid inequalities, we
constructed an IP formulation of the WC1P consisting only of facet-de�ning inequalities
for the corresponding polytope Pm;n

C1R. We �rst used a characterization of Tucker to derive
a weak IP formulation, after that the inequalities were strengthened to obtain facets. This
strengthened formulation served as a basis for our branch-and-cut code, which turned out
to be very eÆcient, since we could show later on that the separation problem for this IP
formulation can be solved in polynomial time.

We also showed that there is a close relationship between the consecutive ones and the
betweenness problem in the sense that we can derive facets for Pm;n

C1R from all non-trivial
facets of the betweenness polytope P n

BW. By generalizing this method and introducing the
concept of maximal feasible sets of columns and rows we were able to show that the number
of facets of Pm;n

C1R grows only polynomially inm if n is �xed and grows polynomially in n ifm
is �xed with the consequence that for these cases the WC1P can be solved in polynomial
time. This result is surprising since it contrasts with many combinatorial optimization
problems which are polynomially solvable, but the corresponding polytope of which has an
exponential number of facets.

The following part of the work is dedicated to the simultaneous consecutive ones prob-
lem. Here we dealt with matrices that have both the consecutive ones property for rows and
for columns. Most of the complexity results concerning the standard problem can be trans-
ferred to the simultaneous problem. In both cases the weighted problems are NP-hard in
general and become polynomially solvable if the number of rows or the number of columns
is �xed. But a remarkable di�erence arises if we consider the weighted problems with �xed
column and row permutations. The WC1P becomes linearly solvable in this case, whereas
the WSC1P remains NP-hard. For the latter we proved the NP-completeness of a suitable
augmentation version of the decision problem by a transformation to the Hamiltonian path
problem.
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Polyhedral investigations of the simultaneous polytope Pm;n
C1S results similar to the stan-

dard polytope. Most of the properties could be transferred though their proofs turned
out to be harder. In this context the staircase inequalities have to be mentioned. They
were shown to be facet-de�ning also in the simultaneous case and therefore provided an IP
formulation consisting of facets only.

In the following we addressed the question of how the theoretical knowledge obtained
before could be used for an eÆcient branch-and-cut approach for both the WC1P and
the WSC1P. The fact that the WC1P is linearly solvable for a �xed column permutation
provided us with a very e�ective primal heuristic. Suitable candidates for this column
permutation can be obtained by a heuristic based on the PQ-tree algorithm performed on
a rounded LP solution. Computational results have shown that usually this primal heuristic
�nds the optimal solution early in the branch-and-cut process, long before its optimality
has been proven. Unfortunately this heuristic cannot be transferred to the simultaneous
problem since the WSC1P for �xed column and row permutation remains NP-hard. We
tried a modi�ed version of the WC1P heuristic and also implemented a simulated annealing
heuristic for the WSC1P, but the results of both approaches were not good in the sense
that in most of the branch-and-cut experiments there was a big gap between the best
solution found by the primal heuristic and the optimal solution. Therefore a development
of a new e�ective WSC1P heuristic remains to be done in future research.

Furthermore we presented polynomial separation procedures for the two classes of stair-
case inequalities which play the most important role in the IP formulation of both the
WC1P and the WSC1P. Since the running times of both separation algorithms are highly
dependent on the number of columns, we had to restrict ourselves to problems up to about
90 columns using the exact separation. For bigger problems we worked on submatrices of
that size that were chosen heuristically.

In addition we wanted to make use of the fact, that the complexity of both the WC1P
and the WSC1P is polynomial if the number of rows or columns is �xed. Therefore we
introduced a separation procedure based on the concept of patterns of a �xed length. The
computational results have shown that for a pattern length up to 4 all violated inequalities
are found by this procedure. Also for higher pattern lengths the separation procedure
worked very eÆciently, though it provided no exact separation in this case. Closing this
gap by introducing new patterns of length 5 and 6 as well as proving theoretically that
all facets of the corresponding size are separated remains an interesting subject for further
research.

Finally we have shown that our branch-and-cut code provides a useful tool for tack-
ling WC1P and WSC1P problems occurring in practice. Although we were not able to
solve real world physical-mapping problems to optimality, our solutions obtained by the
rounding heuristic clearly outperform the optimal solutions of the Hamming distance TSP
approach which is widely used in computational biology and, moreover, solved only ap-
proximately there. WSC1P problems occurring in analyzing clusters of crystal structures
showed a slightly di�erent behavior. The primal heuristic usually gave no good solutions,
nevertheless the problems could be solved to optimality and the results were very similar
to the ones expected in crystallography.



Appendix A

Outer Descriptions of Polytopes

A.1 Complete description of P
3;6
C1R

xij � 0 xij � 1

0
@ 1 1 �1

1 �1 1
�1 1 1

1
A Æ x � 5

0
@ 1 1 �1 �1

1 �1 1 �1
1 �1 �1 1

1
A Æ x � 5

0
@ 1 1 1 0 �1 �1

1 0 �1 1 1 �1
0 1 �1 1 �1 1

1
A Æ x � 8

0
@ 1 1 1 0 �1 �1

1 0 �1 1 1 �1
0 �1 1 �1 1 1

1
A Æ x � 8

0
@ 1 1 1 0 �1 �1

1 1 �1 �1 1 0
1 �1 �1 1 �1 1

1
A Æ x � 8
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A.2 Complete description of P
4;4
C1R

xij � 0 xij � 1

0
@ 1 1 �1

1 �1 1
�1 1 1

1
A Æ x � 5

0
@ 1 1 �1 �1

1 �1 1 �1
1 �1 �1 1

1
A Æ x � 5

0
BB@

1 1 0 �1
1 0 1 �1
0 1 �1 1
0 �1 1 1

1
CCA Æ x � 7

0
BB@

1 1 0 �1
1 1 �1 0
1 �1 1 �1
1 �1 �1 1

1
CCA Æ x � 7

0
BB@

1 1 0 �1
1 0 �1 1

�1 1 1 �1
�1 1 0 1

1
CCA Æ x � 7

0
BB@

1 1 1 �1
1 �1 �1 1

�1 1 �1 1
�1 �1 1 1

1
CCA Æ x � 7

0
BB@

1 1 1 �1
1 0 �1 1
0 �1 1 1

�1 1 0 1

1
CCA Æ x � 8

0
BB@

1 1 1 �1
1 1 �1 1
1 �1 1 1

�1 1 1 1

1
CCA Æ x � 10

0
BB@

2 2 �1 �2
2 �1 2 �2
2 �2 �2 2

�2 1 1 2

1
CCA Æ x � 13

0
BB@

2 2 2 �2
1 1 �2 2
1 �2 1 2

�2 1 1 2

1
CCA Æ x � 15

0
BB@

2 2 2 �2
2 �1 �1 2

�1 2 �1 2
�1 �1 2 2

1
CCA Æ x � 15
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A.3 Complete description of P
4;4
C1S

xij � 0 xij � 10
@ 1 1 �1

1 �1 1
�1 1 1

1
A Æ x � 5

0
@ 1 1 �1 �1

1 �1 1 �1
1 �1 �1 1

1
A Æ x � 5

0
BB@

1 1 0 �1
1 1 �1 0
1 �1 1 �1
1 �1 �1 1

1
CCA Æ x � 7

0
BB@

1 1 0 �1
1 0 �1 1

�1 1 1 �1
�1 1 0 1

1
CCA Æ x � 7

0
BB@

1 1 1 �1
1 �1 �1 1

�1 1 �1 1
�1 �1 1 1

1
CCA Æ x � 7

0
BB@

1 1 0 �1
1 0 1 �1
0 1 �1 1
0 �1 1 1

1
CCA Æ x � 7

0
BB@

1 1 1 �1
1 0 �1 1
0 �1 1 1

�1 1 0 1

1
CCA Æ x � 8

0
BB@

1 1 1 �1
1 1 �1 1
1 �1 1 1

�1 1 1 1

1
CCA Æ x � 10

0
BB@
�1 �1 1 1
�1 2 1 1
2 �2 2 �1
2 2 �1 �1

1
CCA Æ x � 12

0
BB@

2 2 �1 �2
2 �1 2 �2
2 �2 �2 2

�2 1 1 2

1
CCA Æ x � 13

0
BB@

2 2 1 �1
�2 �2 2 1
�2 2 �2 2
2 �2 �2 2

1
CCA Æ x � 13

0
BB@

2 2 2 �2
2 �1 �1 2

�1 2 �1 2
�1 �1 2 2

1
CCA Æ x � 15

0
BB@

2 2 2 �2
1 1 �2 2
1 �2 1 2

�2 1 1 2

1
CCA Æ x � 15

0
BB@

2 3 �1 2
3 �3 3 �2

�2 3 3 �1
1 �1 �2 2

1
CCA Æ x � 19

With an inequality A Æ x � a0 also the transposed version AT Æ x � a0 is facet-de�ning.
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A.4 Complete description of P 5
BW

There are 11 classes of facet-de�ning inequalites for P 5
BW. Only the �rst also de�nes a

facet for P 4
BW. Each of the following 11 graphs shows a representative of these classes in

normal form (see de�nition 3.18). The way to construct the inequality from the graph is
the following. If nodes ij and jk are connected by a dashed edge, the variable xi(j)k has
coeÆcient 1. The same holds if ij and kj or ji and jk are connected by a solid edge. The
right hand side of the inequality equals the number of dashed edges. For example the �rst
graph corresponds to the inequality x1(2)3 + x1(3)2 + x2(1)4 + x3(1)4 � 1 and the last one to
x1(2)3 + x1(3)2 + x3(1)4 + x1(4)3 + x4(3)5 + x2(5)3 + x1(2)5 + x2(1)4 + x1(4)5 + x1(5)4 + x2(1)5 � 3.

14 13

12 23
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15

45

34
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