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Signal Recovery From Random Measurements
Via Orthogonal Matching Pursuit

Joel A. Tropp, Member, IEEE, and Anna C. Gilbert

Abstract—This paper demonstrates theoretically and empiri-
cally that a greedy algorithm called Orthogonal Matching Pursuit
(OMP) can reliably recover a signal with m nonzero entries in
dimension d given O(m ln d) random linear measurements of
that signal. This is a massive improvement over previous results,
which require O(m2) measurements. The new results for OMP
are comparable with recent results for another approach called
Basis Pursuit (BP). In some settings, the OMP algorithm is faster
and easier to implement, so it is an attractive alternative to BP for
signal recovery problems.

Index Terms—Algorithms, approximation, basis pursuit, com-
pressed sensing, group testing, orthogonal matching pursuit, signal
recovery, sparse approximation.

I. INTRODUCTION

LET be a -dimensional real signal with at most non-
zero components. This type of signal is called -sparse.

Let be a sequence of measurement vectors in
that does not depend on the signal. We use these vectors to col-
lect linear measurements of the signal

where denotes the usual inner product. The problem of
signal recovery asks two distinct questions.

1) How many measurements are necessary to reconstruct the
signal?

2) Given these measurements, what algorithms can perform
the reconstruction task?

As we will see, signal recovery is dual to sparse approximation,
a problem of significant interest [1]–[5].

To the first question, we can immediately respond that no
fewer than measurements will do. Even if the measurements
were adapted to the signal, it would still take pieces of in-
formation to determine the nonzero components of an -sparse

Manuscript received April 20, 2005; revised August 15, 2007. The work of
J. A. Tropp was supported by the National Science Foundation under Grant
DMS 0503299. The work of A. C. Gilbert was supported by the National Sci-
ence Foundation under Grant DMS 0354600.

J. A. Tropp was with the Department of Mathematics, The University of
Michigan, Ann Arbor, MI 48109-1043 USA. He is now with Applied and Com-
putational Mathematics, MC 217-50, The California Institute of Technology,
Pasadena, CA 91125 USA (e-mail: jtropp@acm.caltech.edu).

A. C. Gilbert is with the Department of Mathematics, The University of
Michigan, Ann Arbor, MI 48109-1043 USA (e-mail: annacg@umich.edu).

Communicated by A. Høst-Madsen, Associate Editor for Detection
Estimation.

Color versions of Figures 1–6 in this paper are available online at http://iee-
explore.ieee.org.

Digital Object Identifier 10.1109/TIT.2007.909108

signal. In the other direction, nonadaptive measurements al-
ways suffice because we could simply list the components of
the signal. Although it is not obvious, sparse signals can be re-
constructed with far less information.

The method for doing so has its origins during World War
II. The U.S. Army had a natural interest in screening soldiers
for syphilis. But syphilis tests were expensive, and the Army
realized that it was wasteful to perform individual assays to de-
tect an occasional case. Their solution was to pool blood from
groups of soldiers and test the pooled blood. If a batch checked
positive, further tests could be performed. This method, called
group testing, was subsequently studied in the computer science
and statistics literatures. See [6] for a survey.

Recently, a specific type of group testing has been proposed
by the computational harmonic analysis community. The idea
is that, by randomly combining the entries of a sparse signal,
it is possible to generate a small set of summary statistics that
allow us to identify the nonzero entries of the signal. The fol-
lowing theorem, drawn from the papers of Candès–Tao [7] and
Rudelson–Vershynin [8], describes one example of this remark-
able phenomenon.

Theorem 1: Let , and draw vectors
independently from the standard Gaussian dis-

tribution on . The following statement is true with probability
exceeding . It is possible to reconstruct every -sparse
signal in from the data .

We follow the analysts’ convention that upright letters ( , ,
, etc.) indicate positive, universal constants that may vary at

each appearance.
An important detail is that a particular choice of the Gaussian

measurement vectors succeeds for every -sparse signal
with high probability. This theorem extends earlier results of
Candès–Romberg–Tao [9], Donoho [10], and Candès–Tao [11].

All five of the papers [9]–[11], [8], [7] offer constructive
demonstrations of the recovery phenomenon by proving that
the original signal is the unique solution to the mathematical
program

subject to

for (BP)

This optimization can be recast as an ordinary linear program
using standard transformations, and it suggests an answer to our
second question about algorithms for reconstructing the sparse
signal. Note that this formulation requires knowledge of the
measurement vectors.

When researchers talk about (BP), we often say that the linear
program can be solved in polynomial time with standard scien-
tific software. In reality, commercial optimization packages tend
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not to work very well for sparse signal recovery because the so-
lution vector is sparse and the measurement matrix is dense. In-
stead, it is necessary to apply specialized techniques.

The literature describes a bewildering variety of algorithms
that perform signal recovery by solving (BP) or a related
problem. These methods include [3], [12]–[16]. The algorithms
range widely in empirical effectiveness, computational cost,
and implementation complexity. Unfortunately, there is little
guidance available on choosing a good technique for a given
parameter regime.

As a result, it seems valuable to explore alternative ap-
proaches that are not based on optimization. Thus, we adapted
a sparse approximation algorithm called Orthogonal Matching
Pursuit (OMP) [17], [18] to handle the signal recovery problem.
The major advantages of this algorithm are its speed and its ease
of implementation. On the other hand, conventional wisdom on
OMP has been pessimistic about its performance outside the
simplest settings. A notable instance of this complaint appears
in a 1996 paper of DeVore and Temlyakov [19]. Pursuing their
reasoning leads to an example of a nonrandom ensemble of
measurement vectors and a sparse signal that OMP cannot
identify without measurements [3, Sec. 2.3.2]. Other negative
results, such as Theorem 3.10 of [20] and Theorem 5 of [21],
echo this concern.

But these negative results about OMP are deceptive. In-
deed, the empirical evidence suggests that OMP can recover
an -sparse signal when the number of measurements is
nearly proportional to . The goal of this paper is to present
a rigorous proof that OMP can perform this feat. In particular,
the following theorem holds.

Theorem 2 (OMP With Gaussian Measurements): Fix
, and choose . Suppose that is an

arbitrary -sparse signal in . Draw measurement vectors
independently from the standard Gaussian dis-

tribution on . Given the data ,
OMP can reconstruct the signal with probability exceeding

. The constant satisfies . For large values of , it can
be reduced to .

In comparison, earlier positive results, such as Theorem 3.6
from [20], only demonstrate that OMP can recover -sparse
signals when the number of measurements is roughly .
Theorem 2 improves massively on this earlier work.

Theorem 2 is weaker than Theorem 1 for several reasons.
First, our result requires somewhat more measurements than the
result for (BP). Second, the quantifiers are ordered differently.
Whereas we prove that OMP can recover any sparse signal given
random measurements independent from the signal, the result
for (BP) shows that a single set of random measurement vectors
can be used to recover all sparse signals. We argue in Section VI
that OMP remains nevertheless a valuable tool. Indeed, we be-
lieve that the advantages of OMP make Theorem 2 extremely
compelling.

II. OMP FOR SIGNAL RECOVERY

This section describes how to apply a fundamental algorithm
from sparse approximation to the signal recovery problem.
Suppose that is an arbitrary -sparse signal in , and let

be a family of measurement vectors. Form an
matrix whose rows are the measurement vectors, and

observe that the measurements of the signal can be collected
in an -dimensional data vector . We refer to as the
measurement matrix and denote its columns by .

As we mentioned, it is natural to think of signal recovery as
a problem dual to sparse approximation. Since has only
nonzero components, the data vector is a linear com-
bination of columns from . In the language of sparse ap-
proximation, we say that has an -term representation over
the dictionary .

Therefore, sparse approximation algorithms can be used for
recovering sparse signals. To identify the ideal signal , we need
to determine which columns of participate in the measurement
vector . The idea behind the algorithm is to pick columns in
a greedy fashion. At each iteration, we choose the column of

that is most strongly correlated with the remaining part of
. Then we subtract off its contribution to and iterate on the

residual. One hopes that, after iterations, the algorithm will
have identified the correct set of columns.

Algorithm 3 (OMP for Signal Recovery):
INPUT:

• An measurement matrix
• An -dimensional data vector
• The sparsity level of the ideal signal

OUTPUT:
• An estimate in for the ideal signal
• A set containing elements from
• An -dimensional approximation of the data
• An -dimensional residual

PROCEDURE:
1) Initialize the residual , the index set , and

the iteration counter .
2) Find the index that solves the easy optimization

problem

If the maximum occurs for multiple indices, break the
tie deterministically.

3) Augment the index set and the matrix of chosen atoms:
and . We use the

convention that is an empty matrix.
4) Solve a least squares problem to obtain a new signal

estimate:

5) Calculate the new approximation of the data and the new
residual

6) Increment , and return to Step 2 if .
7) The estimate for the ideal signal has nonzero indices at

the components listed in . The value of the estimate
in component equals the th component of .
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Steps 4, 5, and 7 have been written to emphasize the concep-
tual structure of the algorithm; they can be implemented more
efficiently. It is important to recognize that the residual is al-
ways orthogonal to the columns of . Provided that the residual

is nonzero, the algorithm selects a new atom at iteration
and the matrix has full column rank. In which case the so-
lution to the least squares problem in Step 4 is unique. (It
should be noted that the approximation and residual calculated
in Step 5 are always uniquely determined.)

The running time of the OMP algorithm is dominated by
Step 2, whose total cost is . At iteration , the least
squares problem can be solved with marginal cost . To do
so, we maintain a factorization of . Our implementation
uses the modified Gram–Schmidt (MGS) algorithm because the
measurement matrix is unstructured and dense. The book [22]
provides extensive details and a survey of alternate approaches.
When the measurement matrix is structured, more efficient im-
plementations of OMP are possible; see the paper [23] for one
example.

According to [24], there are algorithms that can solve
(BP) with a dense, unstructured measurement matrix in time

. We focus on the case where is much larger than
or , so there is a substantial gap between the theoretical

cost of OMP and the cost of BP. We compare their empirical
costs in Section VI.

A prototype of the OMP algorithm first appeared in the statis-
tics community at some point in the 1950s, where it was called
stagewise regression. The algorithm later developed a life of its
own in the signal processing [1], [17], [18] and approximation
theory [25], [5] literatures.

III. RANDOM MEASUREMENT ENSEMBLES

This paper demonstrates that OMP can recover sparse
signals given a set of random linear measurements. The two
obvious distributions for the measurement matrix
are 1) Gaussian and 2) Bernoulli, normalized for mathematical
convenience.

1) Independently select each entry of from the
distribution. For reference, the density

function of this distribution is

for

2) Independently select each entry of to be with
equal probability.

Indeed, either one of these distributions can be used to collect
measurements. More generally, the measurement ensemble can
be chosen from any distribution that meets a few basic require-
ments. We abstract these properties even though we are pri-
marily interested in the foregoing examples.

A. Admissible Measurement Matrices

An admissible measurement matrix for -sparse signals in
is an random matrix with four properties.

(M0) Independence: The columns of are statistically
independent.

(M1) Normalization: for .

(M2) Joint correlation: Let be a sequence of vectors
whose norms do not exceed one. Let be a column
of that is independent from this sequence. Then

(M3) Smallest singular value: For a given submatrix
from , the th largest singular value

satisfies

Some remarks may help delineate the range of this definition.
First, note that the columns of need not have the same distri-
bution. Condition (M0) only requires independence of columns;
the entries within each column may be correlated. The unit nor-
malization in (M1) is chosen to simplify our proofs, but it should
be obvious that the signal recovery problem does not depend
on the scale of the measurement matrix. The property (M2) de-
pends on the tail behavior of the random variables . Prop-
erty (M3) controls how much the matrix is likely to shrink a
sparse vector.

In the two susequent subsections, we explain why the
Gaussian and Bernoulli ensembles both yield admissible
measurement matrices. We make no effort to determine the
precise value of the constants. See the technical report [26] for
a detailed treatment of the Gaussian case, including explicit
constants. Afterward, we compare admissible measurement
matrices with other types of measurement ensembles that have
appeared in the literature.

B. Joint Correlation

The joint correlation property (M2) is essentially a large de-
viation bound for sums of random variables. For the Gaussian
and Bernoulli measurement ensembles, we can leverage clas-
sical concentration inequalities to establish this property.

Proposition 4: Let be a sequence of vectors whose
norms do not exceed one. Independently, choose to be

a random vector with independent and identically distributed
(i.i.d.) entries. Then

Proof: Observe that the probability only decreases as
the length of each vector increases. Therefore, we may
assume that for each . Suppose that is a random
vector with i.i.d. entries. Then the random
variable also has the distribution. A
well-known Gaussian tail bound (see [27, p. 118] for example)
yields

Owing to Boole’s inequality

This bound is complementary to the one stated.
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For Bernoulli measurements, we simply replace the Gaussian
tail bound with

(III.1)

This is a direct application of the Hoeffding inequality. (See [28]
for example.) For other types of measurement matrices, it may
take some effort to obtain the quadratic dependence on . We
omit a detailed discussion.

C. Smallest Singular Value

It requires more sophistication to develop the lower singular
value property. Using a clever combination of classical argu-
ments, Baraniuk et al. establish the following result [29].

Proposition 5 (Baraniuk et al.): Suppose that is an
matrix whose entries are all i.i.d. or else i.i.d.
uniform on . Then

for all

with probability at least

We conclude that Property (M3) holds for Gaussian and
Bernoulli measurement ensembles, provided that .

D. Other Types of Measurement Ensembles

It may be interesting to compare admissible measurement
matrices with the measurement ensembles introduced in other
works on signal recovery. Here is a short summary of the types
of measurement matrices that have appeared in the literature.

• In one of their papers [11], Candès and Tao define random
matrices that satisfy the Uniform Uncertainty Principle
and the Exact Reconstruction Principle. Gaussian and
Bernoulli matrices both meet these requirements. In an-
other paper [7], they study a class of matrices whose
“restricted isometry constants” are under control. They
show that both Gaussian and Bernoulli matrices satisfy
this property with high probability.

• Donoho introduces the deterministic class of compressed
sensing (CS) matrices [10]. He shows that Gaussian
random matrices fall in this class with high probability.

• The approach in Rudelson and Vershynin’s paper [8] is
more direct. They prove that, if the rows of the measure-
ment matrix span a random subspace, then (BP) succeeds
with high probability. Their method relies on the geometry
of random slices of a high-dimensional cube. As such, their
measurement ensembles are described intrinsically, in con-
trast with the extrinsic definitions of the other ensembles.

IV. SIGNAL RECOVERY WITH OMP

If we take random measurements of a sparse signal using an
admissible measurement matrix, then OMP can be used to re-
cover the original signal with high probability.

Theorem 6 (OMP With Admissible Measurements): Fix
, and choose where is an absolute

constant. Suppose that is an arbitrary -sparse signal in ,
and draw a random admissible measurement matrix

independent from the signal. Given the data , OMP can
reconstruct the signal with probability exceeding .

For Gaussian measurements, we have obtained more precise
estimates for the constant. In this case, a very similar result
(Theorem 2) holds with . Moreover, when the number

of nonzero components approaches infinity, it is possible to
take for any positive number . See the technical
report [26] for a detailed proof of these estimates.

Even though OMP may fail, the user can detect a success
or failure in the present setting. We state a simple result for
Gaussian measurements.

Proposition 7: Choose an arbitrary -sparse signal from
, and let . Suppose that is an Gaussian

measurement ensemble, and execute OMP with the data
. If the residual after iterations is zero, then OMP has

correctly identified with probability one. Conversely, if the
residual after iterations is nonzero, then OMP has failed.

Proof: The converse is obvious, so we concentrate on the
forward direction. If but , then it is possible to
write the data vector as a linear combination of columns
from in two different ways. In consequence, there is a linear
dependence among columns from . Since is an
Gaussian matrix and , this event occurs with prob-
ability zero. Geometrically, this observation is equivalent with
the fact that independent Gaussian vectors lie in general posi-
tion with probability one. This claim follows from the zero–one
law for Gaussian processes [30, Sec. 1.2]. The kernel of our ar-
gument originates in [21, Lemma 2.1].

For Bernoulli measurements, a similar proposition holds with
probability exponentially close to one. This result follows from
the fact that an exponentially small fraction of (square) sign ma-
trices are singular [31].

A. Comparison With Prior Work

Most results on OMP rely on the coherence statistic of the
matrix . This number measures the correlation between dis-
tinct columns of the matrix:

The next lemma shows that the coherence of a Bernoulli matrix
is fairly small.

Lemma 8: Fix . For an Bernoulli measure-
ment matrix, the coherence statistic with
probability exceeding .

Proof: Suppose that is an Bernoulli measurement
matrix. For each , the Bernoulli tail bound (III.1) estab-
lishes that

Choosing and applying Boole’s inequality

This estimate completes the proof.
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A typical coherence result for OMP, such as Theorem 3.6 of
[20], shows that the algorithm can recover any -sparse signal
provided that . This theorem applies immediately to the
Bernoulli case.

Proposition 9: Fix . Let , and
draw an Bernoulli measurement matrix . The following
statement holds with probability at least . OMP can re-
construct every -sparse signal in from the data .

Very similar coherence results hold for Gaussian matrices,
but they are messier because the columns of a Gaussian ma-
trix do not have identical norms. We prefer to omit a detailed
discussion.

There are several important differences between Proposition
9 and Theorem 6. The proposition shows that a particular choice
of the measurement matrix succeeds for every -sparse signal.
In comparison with our new results, however, it requires an enor-
mous number of measurements.

Remark 10: It is impossible to develop stronger results by
way of the coherence statistic on account of the following ob-
servations. First, the coherence of a Bernoulli matrix satisfies

with high probability. One may check this
statement by using standard estimates for the size of a Hamming
ball. Meanwhile, the coherence of a Gaussian matrix also satis-
fies with high probability. This argument pro-
ceeds from lower bounds for Gaussian tail probabilities.

B. Proof of Theorem 6

Most of the argument follows the approach developed in [20].
The main difficulty here is to deal with the nasty independence
issues that arise in the random setting. The primary novelty is a
route to avoid these perils.

We begin with some notation and simplifying assumptions.
Without loss of generality, assume that the first entries of the
original signal are nonzero, while the remaining entries
equal zero. Therefore, the data vector is a linear combination
of the first columns from the matrix . Partition the matrix
as so that has columns and has

columns. Note that the vector is statistically
independent from the random matrix .

Consider the event where the algorithm correctly iden-
tifies the signal after iterations. We only decrease the prob-
ability of success if we impose the additional requirement that
the smallest singular value of meets a lower bound. To that
end, define the event

Applying the definition of conditional probability, we reach

(IV.1)

Property (M3) controls , so it remains to develop a lower
bound on the conditional probability.

To prove that occurs conditional on , it suffices to
check that the algorithm correctly identifies the columns of

. These columns determine which entries of the signal are

nonzero. The values of the nonzero entries are determined by
solving a least squares problem, which has a unique solution
because the event implies that has full column rank. In
other words, there is just one explanation for the signal using
the columns in .

Now we may concentrate on showing that the algorithm lo-
cates the columns of . For a vector in , define the
greedy selection ratio

where the maximization takes place over the columns of . If
is the residual vector that arises in Step 2 of OMP, the algorithm
picks a column from whenever . In case ,
an optimal and a nonoptimal column both achieve the maximum
inner product. The algorithm has no cause to prefer one over
the other, so we cannot be sure it chooses correctly. The greedy
selection ratio was first isolated and studied in [20].

Imagine that we could execute iterations of OMP with the
input signal and the restricted measurement matrix to ob-
tain a sequence of residuals and a sequence of
column indices . The algorithm is deterministic,
so these sequences are both functions of and . In partic-
ular, the residuals are statistically independent from . It is also
evident that each residual lies in the column span of .

Execute OMP with the input signal and the full matrix to
obtain the actual sequence of residuals and the
actual sequence of column indices . Conditional
on , OMP succeeds in reconstructing after iterations if
and only if the algorithm selects the columns of in some
order. We use induction to prove that this situation occurs when

for each .
The statement of the algorithm ensures that the initial resid-

uals satisfy . Clearly, the condition en-
sures . It follows that the actual invocation chooses
the column from whose inner product with has the
largest magnitude (ties broken deterministically). Meanwhile,
the imaginary invocation chooses the column from
whose inner product with has largest magnitude. Evidently,

. This observation completes the base case.
Suppose that, during the first iterations, the actual execution

of OMP chooses the same columns as the imaginary execution.
That is, for . Since the algorithm cal-
culates the new residual as the (unique) best approximation of
the signal from the span of the chosen columns, the actual and
imaginary residuals must be identical at the beginning of iter-
ation . In symbols, . An obvious consequence is that

implies . Repeat the argument of the last
paragraph to establish that .

We conclude that the conditional probability satisfies

(IV.2)

where is a sequence of random vectors that fall in
the column span of and that are statistically independent
from .
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Fig. 1. The percentage of 1000 input signals correctly recovered as a function of the number N of measurements for different sparsity levels m in dimension
d = 256.

Assume that occurs. For each index ,
we have

Since is an -dimensional vector

To simplify this expression, define the vector

The basic properties of singular values furnish the inequality

for any vector in the range of . The vector falls in this
subspace, so . In summary

for each index . On account of this fact

Exchange the two maxima and use the independence of the
columns of to obtain

Since every column of is independent from and from ,
Property (M2) of the measurement matrix yields a lower bound
on each of the terms appearing in the product. It emerges
that

Property (M3) furnishes a bound on , namely

Introduce the latter two bounds into (IV.2), then substitute the
result into (IV.1) to reach

To complete the argument, we need to make some numerical
estimates. Apply the inequality , valid for

and . This step delivers
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Fig. 2. The percentage of 1000 input signals correctly recovered as a function of the sparsity level m for different numbers N of measurements in dimension
d = 256.

Next, observe that holds. Absorb the third
term into the second term, altering the constants if necessary.
We see that

In conclusion, the choice is sufficient to re-
duce the failure probability below . To ensure that the logarithm
exceeds one for all values of , we require that .

V. EXPERIMENTS

This section illustrates experimentally that OMP is a powerful
algorithm for signal recovery. It also shows that the theoretical
bounds of the last section are qualitatively correct even though
they are slightly pessimistic.

The main empirical question is to determine how many mea-
surements are necessary to recover an -sparse signal in
with high probability. Let us describe the experimental setup.
In each trial, we generate an -sparse signal by choosing
components (out of ) at random and setting them equal to one.1

We draw an Gaussian measurement matrix and execute
OMP with the data vector . Finally, we check whether
the recovered signal is identical with the original signal by

1The analysis suggests that this is a challenging case for OMP, and our ex-
perience has shown that other methods for choosing coefficients lead to similar
results.

comparing their supports. Proposition 7 implies that, if the sup-
ports match, then the algorithm has succeeded with probability
one. For each triple , we perform 1000 independent
trials.

The first plot, Fig. 1, describes the situation in dimension
. It shows what percentage (of the 1000 trial signals)

were recovered correctly as a function of , the number of mea-
surements. Each curve represents a different sparsity level . As
expected, when the number of nonzero components increases,
more measurements are necessary to guarantee signal recovery.

Fig. 2 presents another view of the same data. It displays the
percentage of signals recovered correctly as a function of the
sparsity level. We discover that, for a fixed sparsity level, the
recovery probability increases as we take more measurements.
This figure also exhibits a point that is important in applications.
Suppose that we have only enough space to store mea-
surements or we have only enough time to measure and process

pieces of data. In dimension , we should ex-
pect to recover a signal with 16 terms in 90% of instances and a
signal with 20 terms in about 50% of instances.

Pursuing this idea, let us see how many measurements are
required to identify a sparse signal with a fixed rate of suc-
cess. Fig. 3 displays the relationship between and nec-
essary to achieve a recovery probability of 95% in dimension

. The data exhibit a clear trend .
Table I examines the relationship between and to achieve a
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Fig. 3. The number N of measurements necessary to recover an m-sparse signal in dimension d = 256 at least 95% of the time. The regression line has equation
N = 1:5m ln 256 + 15:4.

TABLE I
THE NUMBER N OF MEASUREMENTS NECESSARY TO RECOVER AN m-SPARSE

SIGNAL AT LEAST 99% OF THE TIME IN DIMENSIONS d = 256; 1024

recovery probability of 99% in dimensions . For
this error rate, we have in both cases. In compar-
ison, our best theoretical bound for the Gaussian case is about

if we want a 99% probability of success
[26].

Fig. 4 provides a graphical comparison between the empirical
results and theoretical bounds from the technical report [26].
This chart matches three theoretical error curves against the
corresponding empirical curves in dimension . Ob-
serve that the shape of the theoretical curves is very similar to
the shape of the empirical curves, even though the theoretical
bounds are somewhat too pessimistic.

In the first set of experiments, we used Gaussian measure-
ment matrices. We repeated the same body of experiments with
Bernoulli measurement matrices and obtained strikingly similar
results. For the sake of brevity, we include just one graphic for
Bernoulli measurements. Fig. 5 shows the number of Bernoulli
measurements necessary for OMP to recover an -sparse signal

in dimension . Comparing this chart with Fig. 1, we dis-
cover that OMP performs almost identically with Gaussian and
Bernoulli measurements.

To deliver some intuition about the execution cost of running
OMP, we present Fig. 6, which displays execution times (as op-
posed to processor times) for several experiments with Bernoulli
measurement matrices. Timings for Gaussian matrices are sim-
ilar. Let us emphasize that the chart displays the clock time
required for 1000 complete trials, which includes the time to
generate 1000 sparse signals and 1000 random measurement
matrices in addition to the time required by 1000 invocations
of the OMP algorithm. For the most computationally intensive
experiment ( , , and ), each trial takes
an average of 0.20 s.

While the absolute execution time for a particular parameter
setting is impossible for others to duplicate (nor is it especially
meaningful), the asymptotic growth of execution time as a func-
tion of the sparsity level , the number of measurements,
and the dimension provides a useful and reproducible curve.
The graph clearly demonstrates that the execution time grows
linearly with . Unfortunately, we do not have enough data to
determine the empirical dependence of the execution time on
and .

VI. DISCUSSION

This section addresses several major issues that arise from our
work. First, we describe how the analysis might be extended to
match the empirical results better. Afterward, we discuss more
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Fig. 4. The probability of recovering an m-sparse signal in dimension d = 1024 from N measurements. The marked lines display empirical data, while the
unmarked lines show the theoretical bounds from [26, Theorem 6].

Fig. 5. The percentage of 1000 input signals correctly recovered as a function of the number N of Bernoulli measurements for different sparsity levels m in
dimension d = 256.



4664 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 12, DECEMBER 2007

Fig. 6. The processor time, as a function of the sparsity level m, for 1000 complete trials in dimension d = 256; 1024 with N = 250;400 Bernoulli measure-
ments. The regression curves are linear polynomials calculated with least squares.

realistic models for input signals and the prospect of applying
OMP to recover signals that are not perfectly sparse. Next, we
comment on the role of randomness in our theory. Then, we
describe another basic type of measurement ensemble. Finally,
we discuss the relationship between our work and results on the
linear program (BP).

A. Theory Versus Practice

Although it appears that our theory correctly describes
the qualitative performance of OMP for the signal recovery
problem, our experiments demonstrate that the number of
measurements required in practice is somewhat smaller than
we predict.

Let us describe several technical reasons that the analysis is
loose. The most significant problem is that the vectors con-
structed during the analysis may have large mutual inner prod-
ucts. As a result, Property (M2) yields a pessimistic assessment
of the maximum correlation with . A secondary issue is that

is somewhat smaller than one because these vectors are
unlikely to be aligned with the smallest singular subspace of

. It does not seem easy to account for these factors. In addi-
tion, the term in the estimate for can be improved
to . The effect of this change, however, seems to be
minimal.

B. Nonsparse Signals

Our assumption that signals are precisely sparse is not likely
to obtain in most applications. Therefore, it would be valuable
to develop results for signals that are “nearly sparse” in some
sense. One potential model contaminates the -sparse signals

with additive white noise. We might also consider signals whose
sorted components decay in magnitude according to a power
law. Candès and Tao [11] argue that the second model is appro-
priate for many types of natural signals. Of course, the correct
model must match the application domain.

Unfortunately, the strategy we used to prove Theorem 6
depends heavily on the fact that the input signals are exactly
sparse. When the ideal signals are not sparse, the nonoptimal
columns of the matrix are statistically correlated with the
residual vectors generated by the imaginary invocation of the
algorithm. This fact creates serious difficulties in the analysis.

The literature does contain a body of results on the stability
of OMP for nonsparse signals. For example, Theorem 5.3 of
[32] can be used to establish that OMP identifies signal compo-
nents above the noise level, provided that the number of mea-
surements is on the order of . We consider it likely
that a stability result also holds in the same regime as Theorem
6. At present, we do not know exactly what such a result should
look like, nor do we know a promising method of proof.

C. Randomness

Like computation time and storage space, randomness is an
expensive resource that should be used sparingly. At present, all
approaches to signal recovery using (BP) or OMP involve some
degree of randomness. For now, it is an open question whether
a truly deterministic measurement matrix exists for any (stable)
recovery algorithm.

Our result for OMP, Theorem 6, requires that the measure-
ment matrix be statistically independent from the signal. Un-
fortunately, it takes random bits to select a Bernoulli mea-
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surement ensemble, and a Gaussian measurement ensemble de-
mands even more. Since the failure probability of OMP is poly-
nomially small in the dimension , it follows that a polynomially
large collection of input signals can be recovered reliably with a
single random measurement ensemble. Therefore, we can amor-
tize the randomness over a moderately large set of input signals.
Still, this amount of randomness is far from ideal.

D. OMP With Frequency Measurements

The work in this paper focuses on rather generic measurement
ensembles, such as Bernoulli and Gaussian matrices. From an
algorithmic point of view, it is preferable to employ a structured
measurement ensemble that can be stored and processed effi-
ciently. For this reason, the literature on (BP) advocates the use
of random frequency measurements. That is, the rows of the
measurement matrix are drawn at random from the rows of
the -dimensional DFT matrix.

For OMP, random frequency measurements offer several spe-
cific advantages. Most significantly, it is possible to compute the
maximum correlation between a signal and the columns of the
matrix in time using a fast Fourier transform (FFT).
Second, the matrix can be constructed and stored using only

bits because it is only necessary to choose rows
from a -row matrix.

Kunis and Rauhut have studied the performance of OMP for
signal recovery from random frequency measurements [23].
Their empirical work suggests that measurements
are sufficient for OMP to recover an -sparse signal in .
Moreover, OMP often produces signal approximations that are
superior to (BP). They also find that OMP executes faster than
several algorithms for solving (BP).

Kunis and Rauhut were able to provide a partial theoretical
explanation of their empirical work [23]. In particular, they
show that the first iteration of OMP is likely to choose a correct
column from the measurement matrix, given mea-
surements of an -sparse signal in . Unfortunately, since the
columns of the measurement matrix are no longer statistically
independent, it is difficult to analyze subsequent iterations of
the algorithm. It remains an open problem to ascertain whether
a result analogous to Theorem 6 holds for random frequency
measurements.

Extremely recently, Needell and Vershynin have shown that
a variant of OMP, called Regularized OMP (ROMP), can, with
high probability, recover all -sparse signals from
random frequency measurements [33]. This development is
based on the Restricted Isometry Property [11] of random
frequency measurements, and it should be considered a major
step forward.

E. Comparison With Basis Pursuit

This subsection offers a brief comparison between known re-
sults for the greedy algorithm and results for the convex relax-
ation approach.

First, we note that there are situations where (BP) is prov-
ably more powerful than OMP. For example, with a Gaussian or
Bernoulli measurement matrix, (BP) can, with high probability,
recover all sparse signals. In the same setting, OMP recovers

each sparse signal with high probability but with high proba-
bility fails to recover all sparse signals. One may infer the latter
statement from [20, Theorem 3.10] along with a somewhat in-
volved probability estimate.

Since OMP is inherently more difficulty to analyze than (BP),
the literature on the convex relaxation also contains a richer va-
riety of results. Right now, we understand the stability of (BP)
much better than the stability of OMP. More research in this di-
rection would be valuable.

Greedy pursuit gains some advantages when we ask about
computational cost. In certain parameter regimes, OMP is faster
than standard approaches for completing the minimization (BP).
OMP is especially efficient when the signal is highly sparse al-
though homotopy methods for (BP) are competitive here [14].
When the signal is not very sparse, OMP may be a poor choice
because the cost of orthogonalization increases quadratically
with the number of iterations. In this setting, other types of
greedy algorithms, such as StOMP [34] or ROMP [33], can alle-
viate the computational burden by reducing the number of least
squares problems that need to be solved.

Since we first announced our results on OMP in April 2005,
there has been a significant amount of work on algorithms for
(BP) and related problems. In consequence, it appears that the
performance differences between the greedy approach and the
optimization approach are becoming smaller.

Finally, note that greedy algorithms, such as OMP, are typi-
cally much easier to implement than algorithms for (BP). One
should not underestimate the difficulties inherent in software
engineering, so implementation complexity is a relevant point
of comparison between algorithms. (As evidence, see the
paper [35], which discusses software engineering challenges in
optimization.)

F. Conclusion

The theoretical and empirical work in this paper demon-
strates that OMP is an effective alternative to (BP) for signal
recovery from random measurements. Our results offer a
tremendous improvement over previous work on OMP, and
they significantly narrow the gap between the theoretical per-
formance of the greedy algorithm and the linear programming
approach. On account of the fact that OMP may be faster and
easier to implement, it offers an attractive alternative. In other
words, greed is still good.
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