
STaR: a Reconfigurable and Transparent
middleware for WSNs security

Roberta Daidone, Gianluca Dini, and Marco Tiloca

Department of Information Engineering
University of Pisa, Pisa, Italy

{roberta.daidone, gianluca.dini, marco.tiloca}@iet.unipi.it

Abstract. Wireless Sensor Networks (WSNs) are prone to security at-
tacks. In order to protect the network from potential adversaries, it is
necessary to secure communications between sensor nodes. Also, if we
consider a network of heterogeneous objects including WSNs, security re-
quirements may be far more complex. In particular, a single application
may deal with multiple different traffic flows, each one of which may have
different security requirements, that possibly change over time. In this
paper, we present STaR, a software component which provides security
transparency and reconfigurability for WSNs programming. STaR allows
for securing multiple traffic flows at the same time according to specified
security policies, and is totally transparent to the application, i.e. no
changes to the original application or the communication protocol are
required. Also, STaR can be easily reconfigured at runtime, thus coping
with changes of security requirements. Finally, we present our prelim-
inary implementation of STaR for Tmote Sky motes, and evaluate its
impact on performance, in terms of memory occupancy, communication
overhead, and energy consumption.

Keywords: WSNs, security, middleware

1 Introduction

In the recent years, Wireless Sensor Networks (WSNs) have received an increas-
ing amount of attention and have been adopted in many application scenarios,
from environmental to healthcare monitoring applications. In such scenarios, sen-
sor nodes typically collect environmental data, and transmit them to a central
base station through a wireless network. Sensor nodes are resource constrained
devices that are deployed in unattended, possibly hostile environments.

Given the nature of WSNs, it is an easy task for an adversary to eavesdrop
messages as well as alter or inject fake ones. It follows that secure communication
is vital in order to assure messages confidentiality, integrity, and authenticity.

So far, deployment of WSNs have been used chiefly for scientific purposes,
where an adversary has little incentive to attack the sensors [1]. As a result,
notwithstanding the large body of academic research on WSNs security, only a
few real deployments comprise security solutions.



74 R. Daidone, G. Dini, and M. Tiloca

Now things are changing. Recently, WSNs have been employed in Cooperat-
ing Objects Systems (COS) where mobile physical agents share the same envi-
ronment to fulfill their tasks, either in group or in isolation [7, 22]. In this kind of
systems, agents not only sense the environment, being a WSN the interface to the
real world, but also act on it. Therefore, these COS become a tempting target for
an adversary, because a security infringement may easily translate into a safety
infringement, with possible consequences in terms of damages to things and in-
jures to people. Similar considerations hold when WSNs are used in Critical
Infrastructures [16, 18]. As an example, in [22] we consider a Highly Automated
Airfield scenario where some static sensors monitor the airfield perimeter and
communicate with an Unmanned Ground Vehicle (UGV ) which is responsible
for further investigations on alarms triggered by sensors. In such a scenario, it
is fundamental to guarantee integrity and authenticity of messages exchanged
within the network. In the asbsence of any alarm, it is reasonable to use a
lightweight authentication mechanism. Instead, in the presence of an attack,
it becomes necessary to increase the security level by introducing encryption.
To supoport dymanic changes in a scenario like this one, reconfigurability is a
mandatory feature for the security middleware.

In this paper, we present STaR, a modular, reconfigurable and transparent
software component for secure communications in WSNs. STaR guarantees confi-
dentiality, integrity, and authenticity by means of encryption and/or authentica-
tion. STaR is modular because it separates interfaces from their implementations.
This makes STaR easily portable on different hardware [9, 19], system software
[8, 27] and network stacks [14, 30]. Also, modularity makes it possible to easily
load/unload different STaR modules to match different security requirements,
add new features, or extend existing ones.

By means of STaR, it is possible to protect multiple traffic flows at the same
time, according to different security policies. STaR is reconfigurable because it
allows to change security policies on a per packet basis at runtime. That is, it
assures a fine grained adaptability to possible changes in security requirements.

STaR is also transparent, because the application can still rely on the com-
munication interface already in use. Also, the application does not have to be
redesigned or recoded in order to exploit a certain security policy. This clearly
separates the implementation of the application from the STaR component.
STaR characteristics allow for easily reusing application components in appli-
cation scenarios where security becomes relevant. Also, STaR allows unskilled
people to secure their applications, by simply selecting security policies to be
applied. Besides, application developers need neither to implement complex se-
curity procedures, nor to configure unfriendly tools, such as network firewalls.

We present our preliminary implementation of STaR [23] for TinyOS [27],
and provide a performance evaluation on Tmote Sky motes [19], in terms of
memory occupancy, communication overhead, and energy consumption. How-
ever, STaR features a generic architecture, and can be implemented for other
hardware platforms and operating systems tailored to WSNs, such as Contiki [8]
and ERIKA Enterprise [11].



STaR: a Reconfigurable and Transparent middleware for WSNs security 75

The rest of this paper is organized as follows. In Section 2 we present some
related work. Section 3 presents the STaR architecture. In Sections 4 and 5
we describe STaR interfaces providing communication and configuration ser-
vices, respectively. Section 6 presents our prototype implementation of STaR for
the TinyOS platform, and discusses our performance evaluation on Tmote Sky
motes. In Section 7 we draw our conclusive remarks.

2 Related work

Many solutions have been devised for WSNs security, including [4] for secure
communication, [3, 13, 15, 25, 29] for key management, and [21, 24] for secure code
dissemination. Particular attention has been paid to component-based security
architectures tailored to WSNs.

In [20] the authors propose a middleware that includes security. The tool
is mostly focused on the opportunity to include security during application de-
velopment. In [12] a reconfigurable security middleware is presented. The main
difference between this work and STaR is that in STaR the security processing
is part of the architecture itself, while in [12] security policies are preocessed
by a module external to the middleware. Also, our work has been implemented
and evaluated in terms of memory occupancy, network performance and power
consumption. In [6] SMEPP Light is presented. It features group management,
group level security policies and mechanisms for query injection and data collec-
tion for WSNs. SMEPP Light is tailored on subscribe/event scenarios. Also, it
considers peers configured by means of XML which cannot dinamically change
their behavior. Finally, SM-Sens [17] is a secure middleware that helps in bridging
the gap between high-level application requirements and WSN. This middleware
provides the application with an API to be used when introducing security.

3 STaR architecture

STaR assumes the presence of multiple traffic flows, and allows for securing
them in different ways, according to different security policies. Possible security
policies include packet encryption, packet authentication, or both of them.

STaR considers each application packet as belonging to one specific traffic
flow. In order to do that, each packet belonging to a traffic flow f is associated to
a specific label Lf . Also, each label refers to a specific security policy SPf . Then,
STaR processes every packet belonging to flow f according to the security policy
SPf associated to label Lf . As shown in Figure 1, the STaR component stays
between the application and the rest of communication stack. STaR intercepts
both incoming and outgoing traffic, segments it into flows, and secures them
according to the corresponding security policies.

STaR assures reconfigurability by allowing users to dynamically change secu-
rity policies. Furthermore, STaR provides transparency of security with respect
to the application. That is, STaR exports the same interface as that of the un-
derlying communication stack to the application. Therefore, in order to exploit



76 R. Daidone, G. Dini, and M. Tiloca

Fig. 1. STaR component overview.

the security services provided by STaR, it is not necessary to either re-design or
re-code the application.

Fig. 2. Example of packet processed by STaR.

The STaR component consists in five sub-components, namely StarToAppli-
cation, StarToCommunication, StarLabelling, StarConfig, and StarEngine. The
StarToApplication component provides the application with the same commu-
nication interface exported by the communication stack. The StarToCommuni-
cation component makes it possible to connect STaR to the underlying commu-
nication stack. The StarLabelling component classifies packets into traffic flows,
and determines the associated label. The StarConfig component allows users
to enable/disable security policies, and change their association to traffic flows,
thus providing reconfigurability at runtime. Finally, the StarEngine component
actually processes packets, according to the security policy associated to the
traffic flow they belong to. Figure 2 shows a packet processed by STaR, with the
Label field prepended to the packet payload. So far, the StarEngine component
relies on standard security algorithms and does not consider any key manage-
ment mechanism. We assume that key management is provided by an external
component. In other words, STaR focuses on securing communication, assuming
keys have been already deployed and are properly managed.

Note that the modularity of STaR simplifies the porting of STaR onto differ-
ent communication stacks. Actually, a different communication stack requires
to customize the StarToCommunication and StarToApplication components,
whereas the other components remain unmodified.



STaR: a Reconfigurable and Transparent middleware for WSNs security 77

Although the application developer is not required to change the applica-
tion code and/or behavior, he/she has certain obligations in order to exploit
STaR, namely i) implementation of security policieres; ii) traffic segmentation;
iii) association of security policies to traffic segments; and, finally, iv) STaR
initialization. We deal with these issues in the next sections.

4 Secure communication services

As described in Section 3, STaR assumes that each packet belongs to a specific
traffic flow. That is, each packet is logically associated to a specific label that
represents a particular traffic flow.

STaR relies on packet labels in order to protect multiple traffic flows at the
same time. All packets belonging to a given packet flow can be associated to a
common label, and secured before transmission, according to a specified secu-
rity policy. Conversely, incoming packets can be unsecured upon being received,
according to the security policy associated to the traffic flow they belong to.

STaR is responsible for both securing/unsecuring packets and mapping flow
labels into security policies. As shown in Section 3, these tasks are totally trans-
parent to the application. In fact, the application can still rely on the original
communication interface provided by the available communication stack, and
does not require to be modified. In order to manage associations between traffic
flows and security policies, STaR maintains two tables: i) a Security Policy Table
(SPT ), and ii) a PolicyDB.

The SPT is formatted as follows. The Label field is one byte in size and can
range from 0 to 255. That is, STaR is able to manage up to 256 different traffic
flows at the same time. The PolicyID field specifies the security policy to be
adopted for a given traffic flow. PolicyID entries in the SPT refer to security
policies specified in the PolicyDB by the specific STaR implementation. Finally,
the Active field indicates whether the security policy associated to a given label
has to be applied or not to packets belonging to such traffic flow. The Active
field is set to TRUE by default in all entries. Also, SPT s of all network nodes are
supposed to be initialized in the same way at the network startup. In order to
manage the SPT at runtime, STaR provides the user with a set of configuration
functions, which are described in Section 5. Table 1 shows an example of SPT.
Note that different labels can be associated to the same security policy. That is,
packets belonging to different traffic flows can be secured in the same way.

The PolicyDB is formatted as follows. PolicyID values in the PolicyDB have
to match PolicyID entries of the SPT, in order to correctly retrieve the secu-
rity policy implementation provided by STaR. The EntryPoint field contains a
reference to the code section which implements the policy (e.g. a C++ function
pointer). If we consider an environment which allows for dynamically loading
new security modules [8], the set of available security policies can be changed
dynamically. Otherwise, if we consider a static environment like TinyOS [27], also
such a set must be statically initialized before devices bootstrap takes place.



78 R. Daidone, G. Dini, and M. Tiloca

Label PolicyID Active

0 SP005 TRUE
1 SP013 TRUE
2 SP152 FALSE
... ... ...

254 SP152 TRUE
255 SP020 FALSE

Table 1. Example of Security Policy Table.

PolicyID EntryPoint

SP005 errCode (*encrypt)(buffer)
... ...

SP152 errCode (*authenticate)(buffer)
Table 2. Example of PolicyDB Table.

Table 2 shows an example of PolicyDB. As the SPT, PolicyDBs of all network
nodes are supposed to be initialized in the same way at the network startup. Note
that the EntryPoint field format changes according to the specific STaR imple-
mentation and can be considered the bridge between the StarConfig and the
StarEngine components.

4.1 STaR communication support

STaR provides the user with four communication functions, namely send, receive,
retrieveLabel, and retrievePolicy. In the following, we describe such functions in
terms of their parameters and behavior.

bool send(packet, size);

Provide packet of size size to STaR. Return TRUE in case of success.

bool receive(packet, size);

Provide packet of size size to the application. Return TRUE in case of success.

These two functions are responsible for communication between the applica-
tion and the lower layers. Note that the signatures reported above change their
implementation according to the adopted communication protocol. As specified
in Section 3, the application developer has to implement both traffic segmenta-
tion into flows and the association between security policies and traffic flows.

The retrieveLabel function implements traffic segmentation whereas the op-
eration retrievePolicy implements the association between security policies and
traffic flows as follows.

int retrieveLabel(packet);

Return the label associated to the traffic flow which packet belongs to.



STaR: a Reconfigurable and Transparent middleware for WSNs security 79

Policy retrievePolicy(label);

Return the security policy associated to the label label. Firstly, access the
SPT to retrieve the PolicyID associated to label label. Then, access the Poli-
cyDB to retrieve the policy. Return an error code in case the Active field in the
SPT is set to FALSE, or the policy is not present in the PolicyDB.

The application developer must determine the best security policy to protect
each traffic flow, and bind each one of them to a specific label value. Specifically,
the retrieveLabel function must implement the criteria according to which it is
possible to infer which traffic flow a given packet belongs to.

Of course, a base version of retrieveLabel can behave according to a default
set of criteria. For instance, it can consider all packets as belonging to a single
common traffic flow, and associate them a common label value. By doing so, all
packets would be protected according to the same security policy.

4.2 STaR communication scheme

In the presence of STaR, the transmission of a packet P takes place accord-
ing to the following steps. First, the application provides STaR with packet
P , through the send function. Then, STaR retrieves the label L associated to
packet P through the retrieveLabel function, and the associated security policy
SP through the retrievePolicy function.

After that, STaR builds a one byte field, fills it with the label L, and inserts
it between the header and the payload of packet P . Then, packet P is secured,
according to the security policy SP . Finally, STaR provides the secured packet
P to the communication stack, and delivers it to the scheduled recipient nodes.

Note that the additional label byte must never be encrypted, in order to
assure that packet P is correctly unsecured at the recipient side. However, the
label byte can be authenticated, in order to guarantee that it has been actually
generated by the STaR component. Figure 3(a) shows how an outgoing packet
is processed in the presence of STaR.

Conversely, the reception of a packet P takes place according to the following
steps. STaR receives the secured packet P from the communication stack, and
retrieves the label L from the additional label byte, which can then be removed.

After that, STaR retrieves the security policy SP associated to label L,
through the retrievePolicy function, and unsecures packet P , according to SP .
Finally, STaR provides the unsecured packet to the application, that receives
it through the receive function. Figure 3(b) shows how an incoming packet is
processed in the presence of STaR.

5 STaR configuration services

STaR allows users to dynamically change security settings at runtime, and pro-
vides a specific configuration interface aimed at changing how security policies
are used, as well as their association to traffic flows.



80 R. Daidone, G. Dini, and M. Tiloca

(a) (b)

Fig. 3. a) Outgoing packet processing and b) incoming packet processing.

If the operating system allows for changing some program modules at run-
time, it is possible to add and remove policies and traffic flows, in order to match
new security requirements more effectively. STaR provides seven configuration
functions, namely enablePolicy, disablePolicy, changePolicy, addPolicy, remove-
Policy, addFlow, and removeFlow. In the following, we describe such functions
as to their parameters and behavior.

void enablePolicy(label);

Set to TRUE the Active field of the SPT entry related to label label. Then
STaR starts applying such security policy to all packets belonging to the traffic
flow associated to label label.

void disablePolicy(label);

Set to FALSE the Active field of the SPT entry related to label label. Then
STaR stops applying such security policy to all packets belonging to the traffic
flow associated to label label.

void changePolicy(label, newPolicy);

Write newPolicy in the PolicyID field of the SPT entry related to label label.
The Active field of the SPT entry remains unchanged.

Thanks to the STaR configuration interface, the application is allowed to
change security settings at runtime. To change a security policy, a specific con-
trol message is needed. Such a message is injected into the network as a common



STaR: a Reconfigurable and Transparent middleware for WSNs security 81

message, but belongs to a specific flow used for STaR management. Messages
belonging to this flow are processed by STaR in a special manner and not for-
warded to the rest of communication stack, because their purpose is to change
the behavior of the StarEngine component.

Also, STaR can dynamically change its behavior even in software platforms
which does not allow for dynamically loading/unloading modules, such as TinyOS
[27]. This is possible by filling all the implemented SPT entries and activat-
ing/deactivating them, by simply calling the configuration interface functions.

The following four functions can be implemented only if the operating system
allows for dinamically changing the program loaded on sensor nodes.

void addPolicy(PolicyID, EntryPoint);

Add the policy identified by PolicyID to the PolicyDB. EntryPoint specifies
the code section to be executed to apply the specified policy.

void removePolicy(PolicyID);

Remove the policy identified by PolicyID from the PolicyDB.

void addFlow(label);

Add a flow with ID label to the SPT. Firstly, verify it is not a copy of another
flow, then set the PolicyID field to UNDEFINED and the Active field to FALSE.
These fields will be set by a policy association.

void removeFlow(label);

Remove the flow identified by label from the SPT.

6 STaR TinyOS implementation

We implemented the STaR component [23] for TinyOS 2.1.1, which is currently
available at [27]. We have implemented the security features described in Sec-
tion 4 and Section 5, with reference to the Tmote Sky motes [19] and the
CC2420 chipset [26]. At the moment, we have implemented the Skipjack en-
cryption module [28] and the SHA-1 module for integrity hashing [10], and are
working to allow users to choose among more standard security protocols.

Fig. 4. Application packet modified by STaR.



82 R. Daidone, G. Dini, and M. Tiloca

Figure 4 shows an example of secured application packet. STaR inserts the
Label field in the application packet, between the packet header and the original
payload. Note that, thanks to STaR, application developers can secure applica-
tion packets without having a deep security knowledge. In fact, they are just
required to i) know the meaning of each policy; ii) associate each traffic flow to
the chosen policy; and, of course, iii) include the STaR component in the source
code. As a consequence, STaR allows security non-experts to secure applications
in a simple and reconfigurable manner, without changing either the application
or the communication protocol.

6.1 STaR memory footprint

The amount of ROM memory available on Tmote Sky motes is 48 kB, and
may represent a severe constraint while dealing with complex modules like those
composing STaR.

In order to evaluate memory consumption on Tmote Sky motes, we consid-
ered the TinyOS image size wiring the STaR submodules separately.

– S is the image size in bytes of the original TinyOS stack and the Radio-
CountToLeds application, which is one of the demo applications provided
with TinyOS.

– Ĉ = S + C is the image size in bytes of the original TinyOS stack and the
RadioCountToLeds application (S), wired to the StarConfig module (C).
C = Ĉ− S is the memory occupancy of the StarConfig module.

– Ê = S + C + E is the image size in bytes of the original TinyOS stack and
the RadioCountToLeds application (S), wired to the StarConfig module (C)
and the Skipjack submodule of the StarEngine module (E). E = Ê− Ĉ is the
memory occupancy of the Skipjack submodule of the StarEngine module.

– Â = S + C + A is the image size in bytes of the original TinyOS stack and
the RadioCountToLeds application (S), wired to the StarConfig module (C)
and the SHA-1 submodule of the StarEngine module (A). A = Â− Ĉ is the
memory occupancy of the SHA-1 submodule of the StarEngine module.

Memory Memory
occupancy (B) occupancy (%)

Application and
13372 27.86

TinyOS stack

StarConfig 854 1.78

StarEngine (Skipjack) 2046 4.26

StarEngine (SHA-1) 3900 8.12

Available memory 27828 57.98
Table 3. Detailed memory occupancy.



STaR: a Reconfigurable and Transparent middleware for WSNs security 83

Table 3 provides more detailed information on memory occupancy. As ex-
plained above, we considered the original TinyOS stack together with the Ra-
dioCountToLeds application, each STaR module separately, and the amount of
memory still available. If we sum the contributions of the StarConfig, Skipjack
and SHA-1 modules, we observe that our STaR implementation totally requires
the 14.16% of the overall memory available on a Tmote Sky mote. Since the
application together with the TinyOS stack requires the 27.86% of the avail-
able memory, we have the 57.98% of 48 kB still available for other uses. We
believe that the amount of memory required by STaR is reasonable with respect
to the available memory. Also, STaR modular implementation allows for saving
memory by loading only a few of the available modules, provided that the spe-
cific software platform makes it possible, and it is well known what modules are
needed.

6.2 STaR performance evaluation

In our analysis, we assumed that STaR is operating on top of the 2.4 GHz
physical layer, with a 250 Kb/s bit rate [26]. Then, we modeled the impact of
security considering two main aspects: i) the network performance degradation
due to security processing and extra trasmissions overhead, and ii) the extra
energy consumption, due to extra processing and extra transmissions.

We evaluated the security processing overhead by means of experiments,
while the extra transmission overhead has been computed analytically, consider-
ing the bit rate and the packet size. Also, energy consumption has been evaluated
analytically, considering single energy contributions.

Fig. 5. Send and Secure events nesting.

Figure 5 shows the sequence of events which take place when we transmit
a secured packet with STaR, according to the TinyOS Send/SendDone schema.
The time interval named STaR processing overhead is the extra time required to
process the packet according to the chosen security policy. This time has been
evaluated experimentally.



84 R. Daidone, G. Dini, and M. Tiloca

Policy dproc (µs)
Standard

deviation (µs)

NONE 142 0
ENC 1239.70 1.96

HASH 32853.50 2.53
ENC + AUTH 33948.65 3.01

Table 4. STaR dproc contributions overview.

In our experiments, we observed one sender device at a time transmitting
secured packets whose payload is 8 bytes in size. In order to increase the ac-
curacy of our results, we performed 10 repetitions of 20 transmissions for each
experiment. The results shown in Table 4 are averaged over all the different rep-
etitions. We also report the standard deviation we derived from the independent
replication method.

The first line shows the delay associated to the NONE policy, i.e. packets
just cross the STaR component, which adds the label corresponding to neither
encryption nor authetication. In this case we have a constant delay because
STaR always performs the same simple sequence of operations.

The second line shows the delay associated to the ENC policy. In this case
packets are labelled in order to be encrypted. Then, the label is recognized by
the StarEngine module, which encrypts packets using Skipjack. We notice a
considerable increase in the delay due to the block encryption operations. If we
consider Cipher-block chaining (CBC ) Skipjack, we can use this algorithm also
for authentication.

The third line shows the delay associated to the HASH policy. In this case,
packets are labelled in order to be hashed. Then, the label is recognized by the
StarEngine module, which applies SHA-1 on packets.

Finally, the fourth line shows the delay associated to the ENC + AUTH
policy. In this case, packets are labelled in order to be encrypted by Skipjack as
well as authenticated by means of SHA-1 hashing. This delay should be close
to dENC + dHASH − dNONE because it combines the behaviors of the encryption
policy and the hashing policy. We subtract the delay due to labelling (dNONE),
because we consider it twice when summing dENC and dHASH, but it is actually
performed just once.

If we consider values in Table 4 we have dENC + dHASH − dNONE = 33951.2 µs
with a standard deviation of 3.20 µs. Thus, we think the reported delay is co-
herent, and the error acceptable. Note that considerable delays are due to the
standard encryption and authentication algorithms, while the actual STaR con-
tribution to the processing delay is just 142 µs. This is the additional time
required to add the label field to packets, thus assuring that each one of them
is correctly processed according to the associated security policy. We believe
that this delay is negligible if compared to the ones introduced by standard
cryptographic computations, such as those performed by Skipjack and SHA-1.



STaR: a Reconfigurable and Transparent middleware for WSNs security 85

The transmission overhead has been evaluated analytically, with a bit rate
equal to 250 Kb/s [26]. Specifically, we have considered the time required to
transmit the additional bytes added by STaR, according to the specific security
policy. The size of the original application packet, including the header and the
Cyclic Redundancy Check (CRC ) is 21 bytes. We computed the time dtx required
to transmit the original application packet as the ratio between the packet size
in bits and the bit-rate: dtx = 21×8

0.250 = 672 µs.

Policy dtx (µs) Increase (%)

NONE 32 4.76
ENC 32 4.76

HASH 672 100
ENC + AUTH 672 100

Table 5. STaR dtx contributions overview.

Table 5 provides an overview of the transmission overhead, considering differ-
ent security policies. Note that the extra transmission delay of the ENC policy
is 32 µs if the packet payload is a multiple of the encryption block size (8 bytes,
in our case). In this case, the packet is just extended with the one byte label.
Instead, if we use a block encryption scheme which requires padding and the
payload size is not a multiple of the encryption block size, the packet payload
has to be padded in order to have an overall size which is a multiple of the
encryption block size. The maximum padding size is 8 bytes, which would result
in an additional 256 µs delay. In order to avoid this, it is possible to adopt a
block encryption scheme like Ciphertext Stealing (CTS ) [2], which does not rely
on padding.

As already observed for the processing overhead, the considerable delays of
the HASH and ENC + AUTH policies are due to the standard SHA-1 hashing
output size, which is 20 bytes long. In fact, the actual STaR contribution to
the transmission delay is just 32 µs, that is the time required to transmit the
one byte label field added to the original packet. We believe that this delay is
affordable, since it is due to the increase of just one byte to the original packet
size.

On the other hand, if the application developer finds unaffordable a 100%
increase in the transmission delay of the HASH and ENC + AUTH policies,
it is possible to define security policies which truncate the hashing field to 4, 8
or 16 bytes in size. This would save 512 µs, 384 µs and 256 µs during packet
transmission, respectively. Hash field truncation is a widely adopted method
in WSNs, because it allows for increasing performance without serious risks of
collisions [5, 14].

As to energy consumption, we considered that each contribution has the
form Ei = Pi × di. We define di the delay due to the considered operation i.
Pi = Vi × Ii is the single power contribution, expressed as the product between



86 R. Daidone, G. Dini, and M. Tiloca

voltage and current of the MSP430 microcontroller and the CC2420 chipset,
which are responsible for processing and transmission, respectively [19].

Policy

Processing Transmission
Pproc = 1.08mW Ptx = 31.32mW

dproc Eproc dtx Etx

(µs) (nJ) (µs) (nJ)

NONE 142 153.4 32 1002.2
ENC 1239.7 1338.9 32 1002.2

HASH 32853.5 35481.8 672 21047.0
ENC +

33948.7 36664.6 672 21047.0
AUTH

Table 6. STaR energy consumption contributions.

Table 6 provides an overview of such contributions. Considerable increases in
energy consumption per packet are due to the standard encryption and authen-
tication algorithms, while the actual STaR contribution to energy consumption
is the one reported in the NONE policy entry: Eproc + Etx = 1155.6 nJ that is
the energy consumed to add the label field to the original packet and transmit
it. We believe that this additional energy consumption is affordable, if compared
to the contributions introduced by standard security mechanisms like SHA-1.

7 Conclusion

We have presented STaR, our security software component for WSNs. It allows
for protecting multiple traffic flows at the same time, according to different secu-
rity policies. STaR is transparent to the application, which can rely on the same
communication interface already in use. Also, STaR allows the user to reconfig-
ure security policies and their association to traffic flows at runtime. Finally, we
have considered our preliminary implementation of STaR for Tmote Sky motes,
and provided a performance evaluation in terms of memory occupancy, com-
munication overhead, and energy consumption. Our results show that STaR is
efficient as well as affordable even in the considered resource scarce hardware
platform. In fact, the heaviest impact on performance is due to the adopted
standard security algorithms, and not to the presence of STaR. Future works
will extend STaR interfaces and services, and aim at implementing and evaluat-
ing STaR for different architectures and platforms. Also we will include a Key
Manager component for distribution and management of cryptographic keys.

Acknowledgment

This work has been supported by the EU FP7 Network of Excellence CONET
(Grant Agreement no. FP7-224053); the EU FP7 Integrated Project PLANET



STaR: a Reconfigurable and Transparent middleware for WSNs security 87

(Grant agreement no. FP7-257649); the TENACE PRIN (n. 20103P34XC) funded
by the Italian Ministry of Education, University and Research; and the Re-
gione Toscana POR CReO 2007 - 2013, LINEA DI INTERVENTO 1.5.a - 1.6,
BANDO UNICO R&S ANNO 2012, Piattaforma Integrata per la Gestione delle
Operazioni Aeroportuali - PITAGORA. We would also like to thank Davide Di
Baccio for his help during the implementation phase of our work.

References

1. A. A. Cardenas, T. Roosta and S. Sastry: Rethinking security properties, threat
models, and the design space in sensor networks: a case study in SCADA systems.
Ad Hoc Networks 7(8), 1434–1447 (2009)

2. A.J. Menezes, P.C. van Oorschot and S.A. Vanstone: Handbook of Applied Cryp-
tography. CRC Press (2001)

3. C. K. Wong, M. Gouda and S.S. Lam: Secure group communications using key
graphs. IEEE J NET 8(1), 16–30 (February 2000)

4. C. Karlof, D. Sastry and D. Wagner: Tinysec: a link layer security architecture for
wireless sensor networks. In: Proceedings of the 2nd international conference on
Embedded networked sensor systems. pp. 162–175. SenSys ’04, ACM, New York,
NY, USA (2004)

5. C. Karlof, D. Sastry and D. Wagner: TinySec: A Link Layer Security Architec-
ture for Wireless Sensor Networks. In: Second ACM Conference on Embedded
Networked Sensor Systems (SenSys 2004). pp. 162–175 (November 2004)

6. C. Vairo, M. Albano and S. Chessa: A secure middleware for wireless sensor net-
works. In: Proceedings of the 5th Annual International Conference on Mobile and
Ubiquitous Systems: Computing, Networking, and Services. pp. 59:1–59:6. Mobiq-
uitous ’08, ICST (Institute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering), ICST, Brussels, Belgium (2008)

7. CONET: Cooperating objects network of excellence, european commission, 7th
framework programme, grant agreement n. 224053. http://www.cooperating-
objects.eu/ (2008)

8. Contiki: Contiki: The open source operating system for the internet of things.
http://www.contiki-os.org/ (2012)

9. Crossbow Technology Inc.: MPR-MIB Users Manual (June 2007),
http://bullseye.xbow.com:81/Support/

10. D. Eastlake and P. Jones: RFC 3174 - US Secure Hash Algorithm 1 (SHA1)
(September 2001), http://tools.ietf.org/html/rfc3174

11. ERIKA Enterprise: Erika Enterprise and RT-Druid (2009)
12. G Dini and I.M. Savino: A Security Architecture for Reconfigurable Networked

Embedded Systems. International Journal of Wireless Information Networks 17,
11–25 (2010)

13. G. Dini and M. Tiloca: Considerations on Security in ZigBee Networks. In: Pro-
ceedings of the IEEE International Conference on Sensor Networks, Ubiquitous,
and Trustworthy Computing. pp. 58–65 (June 2010)

14. Institute of Electrical and Electronics Engineers, Inc.: IEEE Std. 802.15.4-2006,
IEEE Standard for Information technology - Telecommunications and information
exchange between systems - Local and metropolitan area networks - Specific re-
quirements Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs).
New York (September 2006)



88 R. Daidone, G. Dini, and M. Tiloca

15. J. Maerien, S. Michiels, C. Huygens and W. Joosen: MASY: MAnagement of Secret
keYs for federated mobile wireless sensor networks. In: Proceedings of the 6th
IEEE International Conference on Wireless and Mobile Computing, Networking
and Communications. pp. 121–128 (October 2010)

16. L. Buttyan, D. Gessner, A. Hessler and P. Langendoerfer: Application of wireless
sensor networks in critical infrastructure protection: challenges and design options
[security and privacy in emerging wireless networks]. Wireless Communications,
IEEE 17(5), 44–49 (October 2010)

17. L.H. Freitas, K.A. Bispo, N.S. Rosa and P.R.F. Cunha: SM-Sens: Security middle-
ware for Wireless Sensor Networks. In: Proceedings of the Information Infrastruc-
ture Symposium, 2009. Global. pp. 1–7. GIIS ’09 (June 2009)

18. M. Albano, S. Chessa and R. Di Pietro: Information assurance in critical infras-
tructures via wireless sensor networks. In: Proceedings of the 4th International
Conference on Information Assurance and Security. pp. 305–310. ISIAS ’08 (2008)

19. Moteiv Corporation: Tmote iv low power wireless sensor module (November 2006),
http://www.snm.ethz.ch/snmwiki/pub/uploads/Projects/tmote sky datasheet.pdf

20. N. Matthys, C. Huygens, D. Hughes, S. Michiels and W. Joosen: A Component
and Policy-Based Approach for Efficient Sensor Network Reconfiguration. In: Pro-
ceedings of the 2012 IEEE International Symposium on Policies for Distributed
Systems and Networks. pp. 53–60 (July 2012)

21. P.E. Lanigan, R. Gandhi and P. Narasimhan: Sluice: Secure Dissemination of Code
Updates in Sensor Networks. In: Proceedings of the 26th IEEE International Con-
ference on Distributed Computing Systems. pp. 53–62 (July 2006)

22. PLANET: Platform for the deployment and operation of heterogeneous networked
cooperating objects, european commission, 7th framework programme, grant agree-
ment n. 257649. http://www.planet-ict.eu/ (2010)

23. R. Daidone, G. Dini and M. Tiloca: STaR source code.
http://www.iet.unipi.it/g.dini/download/code/star.zip (March 2013)

24. S. Hyun, P. Ning, A. Liu and W. Du: Seluge: Secure and DoS-Resistant Code
Dissemination in Wireless Sensor Networks. In: Proceedings of the 2008 Inter-
national Conference on Information Processing in Sensor Networks. pp. 445–456
(April 2008)

25. S. Zhong, L. Chuang, R. Fengyuan, J. Yixin and C. Xiaowen: An efficient scheme for
secure communication in large-scale wireless sensor networks. In: Communications
and Mobile Computing. WRI International Conference on. CMC ’09, vol. 3, pp.
333–337 (January 2009)

26. Texas Instruments: Texas instruments cc2420 2.4 ghz ieee 802.15.4 / zigbee ready
rf transceiver (2012), http://focus.ti.com/lit/ds/symlink/cc2420.pdf

27. TinyOS Working Group: Tinyos home page. http://www.tinyos.net/ (2012),
http://www.tinyos.net/

28. U.S. National Security Agency (NSA): SKIP-
JACK and KEA algorithm specifications (May 1998),
http://csrc.nist.gov/groups/ST/toolkit/documents/skipjack/skipjack.pdf

29. W. Gu, N. Dutta, S. Chellappan and B. Xiaole: Providing end-to-end secure com-
munications in wireless sensor networks. Network and Service Management, IEEE
Transactions on 8(3), 205–218 (September 2011)

30. ZigBee Alliance: ZigBee Document 053474r17, ZigBee Specification. ZigBee Al-
liance (January 2008)


