
Conjunctive Query Inseparability in OWL 2 QL
is ExpTime-hard

Roman Kontchakov1, Vladislav Ryzhikov2, and Michael Zakharyaschev1

1 Department of Computer Science and Information Systems,
Birkbeck, University of London, U.K.

2 Faculty of Computer Science, Free University of Bozen-Bolzano, Italy

Abstract. We settle an open question on the complexity of the following
problem: given two OWL 2 QL TBoxes and a signature, decide whether
these TBoxes return the same answers to any conjunctive query over
any data formulated in the given signature. It has been known that
the complexity of this problem is between PSpace and ExpTime. Here
we show that the problem is ExpTime-complete and, in fact, deciding
whether two OWL 2 QL knowledge bases (each with its own data) give
the same answers to any conjunctive query is ExpTime-hard.

Keywords: Query inseparability, OWL 2 QL, complexity.

1 Introduction

In this paper, we show that the problem of deciding whether two given OWL 2 QL
ontologies return the same answers to any conjunctive query in a given signature
is ExpTime-hard. The notion of conjunctive query inseparability has recently
been used in two settings: ontology engineering and maintenance, and knowledge
base exchange.

It has been argued [6, 8, 4, 5] that conjunctive query inseparability is funda-
mental for many ontology engineering and maintenance tasks in the context of
ontology-based data access (OBDA). Indeed, suppose we want to query data via
some ontology T , and the set of concepts and roles we are interested in com-
prises a signature Σ. From our point of view, any operations with T such as
refining T , extracting a smaller module, importing a module, updating T to a
new version, etc. should preserve answers to conjunctive queries formulated in
Σ. In other words, all such transformations of T should result in ontologies that
are Σ-query inseparable from T .

In the knowledge exchange framework [2], the problem of inseparability by
the unions of conjunctive queries (UCQ) for two OWL 2 QL knowledge bases
(KBs) appears in the context of computing a universal UCQ-solution. Let Σ1

and Σ2 be a source and a target signature, respectively. The two signatures are
disjoint and connected by means of a declarative mapping specification, which is
a TBox T12 relating concepts and roles in Σ1 and Σ2. A KB K2 = (T2,A2) in the
target signature Σ2 is called a universal UCQ-solution for a KB K1 = (T1,A1)

in the source signature Σ1 under T12 if (T1 ∪T12,A1) and (T2,A2) give the same
answers to any UCQ formulated in Σ2. Thus, in this case we are interested in
Σ-query inseparability for OWL 2 QL KBs.

The Σ-query inseparability problem for ontologies (TBoxes) in the fragment
of OWL 2 QL without role inclusions proves to be quite simple: it is NLogSpace-
complete and can be solved in practice using various existing reasoners [6, 4]. The
addition to this language conjunctions in the left-hand side of concept inclusions
and (unqualified) number restrictions makes the problem coNP-complete [6].
But for the full OWL 2 QL the problem unexpectedly turned out to be much
more challenging and required new logical tools compared to the previously
analysed ontology languages. It was shown [4] that the interaction between role
inclusions and inverse roles makes this problem PSpace-hard; on the other hand,
the established upper bound was obtained by a reduction to the emptiness prob-
lem for alternating two-way automata, which belongs to ExpTime [9]. The proof
of PSpace-hardeness mentioned above was also adapted to query inseparability
of OWL 2 QL KBs [1].

In this paper, we prove, by encoding alternating Turing machines with poly-
nomial tape, that the Σ-query inseparability problem for both OWL 2 QL KBs
and ontologies is ExpTime-hard.

2 Σ-Query Entailment and Inseparability

We use the following (somewhat simplified) syntax of OWL 2 QL. It contains
individual names ai, concept names Ai, and role names Pi (i ≥ 1). Roles R and
basic concepts B are defined by the grammar:

R ::= Pi | P−i , B ::= ⊥ | Ai | ∃R.

A TBox, T , is a finite set of inclusions of the form

B1 v B2, B1 uB2 v ⊥, R1 v R2, R1 uR2 v ⊥.

An ABox, A, is a finite set of atoms of the form Ak(ai) or Pk(ai, aj). The set
of individual names in A is denoted by ind(A). T and A together form the
knowledge base (KB) K = (T ,A). The semantics for OWL 2 QL is defined in
the usual way based on interpretations I = (∆I , ·I) [3]. We use S1 ≡ S2 as
a shortcut for S1 v S2 and S2 v S1 (for both concepts and roles), and write
I |= α to say that an inclusion or assertion α is true in I. An interpretation I
is a model of a KB K = (T ,A) if I |= α for all α ∈ T ∪A; in this case we write
I |= K. K is consistent if it has a model. A concept B is said to be T -consistent
if (T , {B(a)}) has a model. K |= α means that I |= α for all models I of K.

A conjunctive query (CQ) q(x) is a formula ∃y ϕ(x,y), where ϕ is a con-
junction of atoms of the form Ak(z1) or Pk(z1, z2) with zi ∈ x ∪ y. A tuple
a ⊆ ind(A) is a certain answer to q(x) over K = (T ,A) if I |= q(a) for all
I |= K; in this case we write K |= q(a). If x = ∅, the CQ q is called Boolean; a
certain answer to such a q over K is ‘yes’ if K |= q and ‘no’ otherwise.

To define the main notions of this paper, consider two KBs K1 = (T1,A) and
K2 = (T2,A). For example, the Ti are different versions of some ontology, or one
of them is a refinement of the other by means of new axioms. The question we
are interested in is whether they give the same answers to CQs formulated in a
certain signature, say, in the common vocabulary of the Ti or in a vocabulary
relevant to an application. More precisely, by a signature, Σ, we understand
any finite set of concept and role names. A concept (inclusion, TBox, etc.) all
concept and role names of which are in Σ is called a Σ-concept (inclusion, etc.).
We say that K1 Σ-query entails K2 if, for all Σ-queries q(x) and all a ⊆ ind(A),
K2 |= q(a) implies K1 |= q(a). In other words: any certain answer to a Σ-query
given by K2 is also given by K1. We call K1 and K2 Σ-query inseparable if they
Σ-query entail each other, in which case we write K1 ≡Σ K2.

As the ABox is typically not fixed or known at the ontology design stage,
we may have to compare the TBoxes over arbitrary Σ-ABoxes rather than a
fixed one, which gives the following definition. Let T1 and T2 be TBoxes and
Σ a signature. T1 Σ-query entails T2 if (T1,A) Σ-query entails (T2,A) for any
Σ-ABox A. T1 and T2 are Σ-query inseparable if they Σ-query entail each other,
in which case we write T1 ≡Σ T2.

In the remainder of this section, we recap the semantic criteria of Σ-query
entailment established in [4]. Recall first that to compute certain answers to any
CQ q over a consistent KB K = (T ,A), it is enough to find answers to q in the
canonical model CK of K.

Let [R] = {S | T |= R ≡ S}. We write [R] ≤T [S] if T |= R v S; thus, ≤T
is a partial order on the set {[R] | R a role in T }. For each [R], we introduce a
witness w[R] and define a generating relation K on the set of these witnesses
together with ind(A) by taking:

a K w[R] if a ∈ ind(A) and [R] is ≤T -minimal such that K |= ∃R(a) and
K 6|= R(a, b) for any b ∈ ind(A);

w[S] K w[R] if [R] is ≤T -minimal with T |= ∃S− v ∃R and [S−] 6= [R].

Clearly, K can be computed in polynomial time in |K|. A K-path is a finite
sequence aw[R1] · · ·w[Rn], n ≥ 0, such that a ∈ ind(A) and, if n > 0, then
a K w[R1] and w[Ri] K w[Ri+1], for i < n. Denote by tail(σ) the last element

in the path σ. The canonical model CK of K is defined by taking ∆CK to be the
set of all K-paths and setting:

aCK = a, for all a ∈ ind(A),

ACK = {a ∈ ind(A) | K |= A(a)} ∪
{σ · w[R] | T |= ∃R− v A}, for all concept names A,

P CK = {(a, b) ∈ ind(A)× ind(A) | R(a, b) ∈ A with [R] ≤T [P]} ∪
{(σ, σ · w[R]) | tail(σ) K w[R], [R] ≤T [P]} ∪
{(σ · w[R], σ) | tail(σ) K w[R], [R] ≤T [P−]}, for all role names P.

Theorem 1. For all consistent OWL 2 QL KBs K = (T ,A), CQs q(x) and
tuples a ⊆ ind(A), we have K |= q(a) iff CK |= q(a).

Thus, to decide Σ-query entailment between KBs K1 and K2, it suffices to
check whether CK2

|= q(a) implies CK1
|= q(a) for all Σ-queries q(x) and tuples

a. This relationship between CK2
and CK1

can be characterised semantically in
terms of finite Σ-homomorphisms.

For an interpretation I and a signature Σ, the Σ-types tIΣ(x) and rIΣ(x, y),
for x, y ∈ ∆I , are given by:

tIΣ(x) = {Σ-concept B | x ∈ BI}, rIΣ(x, y) = {Σ-role R | (x, y) ∈ RI}.

A Σ-homomorphism from an interpretation I to I ′ is a function h : ∆I → ∆I
′

such that h(aI) = aI
′
, for all individual names a interpreted in I,

tIΣ(x) ⊆ tI
′

Σ (h(x)) and rIΣ(x, y) ⊆ rI
′

Σ (h(x), h(y)), for all x, y ∈ ∆I .

It is known that answers to Σ-CQs are preserved under Σ-homomorphisms.
Thus, if there is a Σ-homomorphism from CK2 to CK1 , then K1 Σ-query entails
K2. However, it was observed [4] that the converse does not hold in general and
a more subtle notion of homomorphism is required. We say that I is finitely
Σ-homomorphically embeddable into I ′ if, for every finite sub-interpretation I1
of I, there exists a Σ-homomorphism from I1 to I ′.

Theorem 2 ([4]). Let K1 and K2 be consistent OWL 2 QL KBs. Then K1 Σ-
query entails K2 iff CK2 is finitely Σ-homomorphically embeddable into CK1 .

To obtain a similar criterion for TBoxes (rather than KBs), we use the fact
that inclusions in OWL 2 QL, different from disjointness axioms, involve only
one concept or role in the left-hand side and making sure that the TBoxes entail
the same Σ-inclusions, one can show that it is enough to consider singleton
Σ-ABoxes of the form {B(a)}.

Theorem 3 ([4]). Let T1 and T2 be OWL 2 QL TBoxes. Then T1 Σ-query en-
tails T2 iff the following conditions hold :

(p) T2 |= α implies T1 |= α, for all Σ-inclusions α;
(h) C(T2,{B(a)}) is finitely Σ-homomorphically embeddable into C(T1,{B(a)}), for

all T1-consistent Σ-concepts B.

It was shown [4] that checking Σ-query entailment for OWL 2 QL TBoxes is
PSpace-hard and can be done in ExpTime.

3 ExpTime-hardness

Our main result is the following theorem:

Theorem 4. The Σ-query entailment and Σ-query inseparability problems are
ExpTime-hard for OWL 2 QL KBs.

Proof. The proof is by encoding alternating Turing machines with polynomial
tape and using the well-known fact that APSpace = ExpTime. For more details
on alternating Turing machines the reader is referred to [7].

Suppose we are given an alternating Turing machine M = (Γ,Q, q0, q1, δ),
where Γ is a tape alphabet, Q a set of states partitioned into existential Q∃ and
universal Q∀ states, q0 ∈ Q∃ an initial state, q1 ∈ Q an accepting state, and

δ : (Q \ {q1})× Γ → (Q× Γ × {−1, 0,+1})2

is a transition function that, for any q ∈ Q and a ∈ Γ , gives two alternative
transitions. We assume that existential and universal states strictly alternate,
that is, any transition from an existential state results in a universal state, and
vice versa. We also assume that M terminates on every input and there is a
polynomial function f such that M uses at most f(m) tape cells on any input
of length m. It will be convenient to extend the transition function δ by the
instructions δ(q1, a) = ((q1, a, 0), (q1, a, 0)), for all a ∈ Γ , which have an effect
of going into an infinite loop if M reaches the accepting state. Thus, M accepts
an input w iff there is a run of the modified machine M ′ on w such that all
branches of the run are infinite.

Our aim is to construct, givenM and an input w, two TBoxes, T1 and T2, such
that M accepts w iff the canonical model C2 of K2 = (T2, {A(c)}) is finitely Σ-
homomorphically embeddable into the canonical model C1 of K1 = (T1, {A(c)}),
where Σ comprises the concept and role names in T2 (in fact, Σ can be any set
of concept and role names including those from T2).

In the definition of the TBox T1 (but not T2), we use inclusions of the form
B v ∃R.(C1u · · ·uCk) as an abbreviation for B v ∃R0, R0 v R and ∃R−0 v Ci,
for 1 ≤ i ≤ k, where R0 is a fresh role name. If Ci is a complex concept then
∃R−0 v Ci is also treated as an abbreviation for the respective concept and role
inclusions.

We define T1 and T2 in three steps. Let n = f(|w|).

Step 1. First we encode configurations and transitions of M ′ using T1. We
represent a configuration (that is, the contents of every cell on the tape, the
state and the position of the head) by a sequence of (n+ 1) R-arrows, for some
roles R, which will be called a block. More precisely, the first arrow in each block
is auxiliary; it is used to distinguish the type of the block. The range of the
remaining n arrows belongs to one of the concepts Ca, for a ∈ Γ . For example,
if the range of the (i+ 1)th arrow in the block belongs to Ca then the ith cell of
the tape contains a in the configuration defined by the block.

C1 A
Ca1 Ca2 Can−1 Can

Qn
q0,a1,1

P P P P

Fig. 1. Encoding a configuration by a P -block.

The initial block of (n+1)-many P -arrows represents the initial configuration,
that is, symbols a1, . . . , an written in the n cells of the tape (comprising the input
w in the first m cells padded with the blanks) and the initial state q0 (see Fig. 1):

A v ∃P.∃P.(Ca1 u ∃P.(Ca2 u ∃P.(. . . ∃P.(Can uQnq0,a1,1) . . .))). (T1-1)

The concepts Qjq,a,k, for 0 ≤ j ≤ n, define the remaining components of a
configuration: q ∈ Q is the current state and k, 1 ≤ k ≤ n, is the current position
of the head on the tape. In addition, a ∈ Γ specifies the contents of the cell
scanned by the head (this duplicates the information given by Ca but simplifies
the construction). Finally, the index j is required to propagate the current state
and head position along the points encoding the configuration. At the end of the
tape, the concept Qnq,a,k starts a separate branch for each of the two transitions:
we take, for q ∈ Q and a ∈ Γ with δ′(q, a) = ((q1, a1, d1), (q2, a2, d2)), where
d1, d2 ∈ {+1, 0,−1}, the inclusions

Qnq,a,k v ∃P.(X1 uB0
q1,a1,k,d1) u ∃P.(X2 uB0

q2,a2,k,d2), for 1 ≤ k ≤ n, (T1-2)

where X1 and X2 are two fresh concept names (distinguishing the two branches)
and the Bjq′,a′,k,d are fresh concepts encoding the next state q′ and the symbol
a′ to be placed to the kth cell in the next configuration with k being the current
position of the head and d indicating the direction in which the head moves.

For all cells before the head, that is, for all j with j+1 < k+d and j+1 < k,
we use the following inclusions to pass the information along the sequences of
arrows encoding the configuration:

Bjq,a,k,d v ∃P.(Cb uB
j+1
q,a,k,d), for b ∈ Γ (T1-3)

(these inclusions, in fact, generate, for each b ∈ Γ , a branch in C1 to represent
the same cell but with a different symbol, b, tentatively assigned to the cell—we
shall see later how the correct branch and the symbol are selected to match the
cell contents in the preceding configuration). If j+1 = k or j+1 = k+d then the
cell contents is changed according to the subscript of Bjq,a,k,d and the contents
of the cell scanned by the head is then recorded in the subscript of Qjq,a,k:

Bk−2q,a,k,−1 v ∃P.(Cb u ∃P.(Ca u ∃Sa,0 uQ
k
q,b,k−1)), for b ∈ Γ, (T1-4)

Bk−1q,a,k,0 v ∃P.(Ca u ∃Sa,0 uQ
k
q,a,k), (T1-5)

Bk−1q,a,k,+1 v ∃P.(Ca u ∃Sa,0 u ∃P.(Cb uQ
k+1
q,b,k+1)), for b ∈ Γ. (T1-6)

The three situations are depicted in Fig. 2, where the Sa,0 arrows are not shown,
and all arrows are labelled by P . The filled nodes represent the beginning of
the pattern in each of the three inclusions (T1-4)–(T1-6) and the subscript of the
concept Ca in the label of the hatched nodes determines the respective subscript
of the sequence of roles Qjq,a,k that follows the pattern.

Note that there is only one branch for the cell whose contents is modified: the
branch corresponds to the new symbol, a, in that cell (see explanations below).

cell (k − 1) cell k cell (k + 1)

(a)
Bk−2

q,a,k,−1

Cb

Cb′

Cb′′

Ca, Q
k
q,b,k−1

Ca, Q
k
q,b′,k−1

Ca, Q
k
q,b′′,k−1

Cb, Q
k+1
q,b,k−1

Cb′′ , Q
k+1
q,b,k−1

Cb′ , Q
k+1
q,b,k−1

(b) Bk−2
q,a,k,0

Cb, B
k−1
q,a,k,0

Cb′ , B
k−1
q,a,k,0

Cb′′ , B
k−1
q,a,k,0

Ca, Q
k
q,a,k

Ca, Q
k
q,a,k

Ca, Q
k
q,a,k

Cb, Q
k+1
q,a,k

Cb′′ , Q
k+1
q,a,k

Cb′ , Q
k+1
q,a,k

(c) Bk−2
q,a,k,+1

Cb, B
k−1
q,a,k,+1

Cb′ , B
k−1
q,a,k,+1

Cb′′ , B
k−1
q,a,k,+1

Ca, Q
k
q,a,k

Ca, Q
k
q,a,k

Ca

Cb, Q
k+1
q,b,k+1

Cb′′ , Q
k+1

q,b′′,k+1

Cb′ , Q
k+1
q,b′,k+1

Fig. 2. Three types of transitions: head (a) moves left, (b) stays and (c) moves right.

Finally, if k ≤ j < n then the current state and head position with the symbol
scanned by the head are simply propagated along the tape:

Qjq,a,k v ∃P.(Cb uQ
j+1
q,a,k), for b ∈ Γ (T1-7)

(generating a separate branch for each symbol tentatively assigned to the cell;
see cases (a) and (b) in Fig. 2).

Step 2. The axioms (T1-3)–(T1-7) generate a separate P -successor for each sym-
bol b in the alphabet Γ . The correct one will be chosen by a Σ-homomorphism
from the canonical model C2 of K2 into the canonical model C1 of K1. To ex-
clude wrong choices, we add the following concept and role inclusions to T1 and
T2. Each element d1 of C1 that represents a possible cell contents, say a, also
generates a block of arrows Sb,0, . . . , Sb,n, for all symbols b different from a:

Ca v D, (T1-8)

Ca v ∃Sb,0, for b ∈ Γ \ {a}, (T1-9)

∃S−b,j−1 v ∃Sb,j , for b ∈ Γ and 0 < j ≤ n, (T1-10)

∃S−b,n v Cb, for b ∈ Γ. (T1-11)

On the other hand, T2 makes sure that every element d2 of a concept D in C2
generates a block Za,0, . . . , Za,n, for each a ∈ Γ :

D v ∃Za,0, (T2-1)

∃Z−a,j−1 v ∃Za,j , for 0 < j ≤ n, (T2-2)

∃Z−a,n v Ca. (T2-3)

Suppose a Σ-homomorphism h : C2 → C1 maps d2 to d1. The following role
inclusions in T1 ensure then that all the Za,0, . . . , Za,n blocks but one can be
mapped by h to the respective blocks Sa,0, . . . , Sa,n in C1 (see Fig. 3):

Sa,j v Za,j , for a ∈ Γ and 0 ≤ j ≤ n. (T1-12)

So, the only remaining block is Za,0, . . . , Za,n such that d1 belongs to Ca in C1
(that is, the symbol a tentatively contained in this cell). Then the following role
inclusions allow the sequence of Za,j to be mapped along the inverses of P in
C1, but only if the same cell contains a in the preceding configuration (that is,
the element n+ 1 steps closer to the root in C1 belongs to Ca; see Fig. 3):

P− v Za,j , for a ∈ Γ and 0 ≤ j ≤ n. (T1-13)

Thus, the blocks Sb,0, . . . , Sb,n act as ‘sinks’ for the respective blocks Zb,0, . . . , Zb,n
from C2.

C2

C1

configuration

cell kcell k
n+ 1 arrows

D

Ca
Za,0

Za,1

Za,n

Pi,kPi,k

Cb

Zb,
0

Zb,
1

Zb,
n

Cb′

Z b
′ ,0

Z b
′ ,1

Z b
′ ,n

DCa

P PPP

Cb

Sb,
1

Sb,
n

Cb′

S b
′ ,1

S b
′ ,n

S b
′ ,0

Fig. 3. Synchronising the contents of the cells in consecutive configurations.

Note that the cell whose contents is changed generates the additional blocks
Sa,0, . . . , Sa,n to allow the respective blocks of Za,0, . . . , Za,n from C2 to be sunk
there (because there can be no match along the P -edges).

Step 3. It remains to encode the acceptance condition for the Turing machine
M ′. To this end, we extend T2 with four blocks of roles: for each i = 0, . . . , 3, we
take role names Pi,0, . . . , Pi,n and add to T2 the inclusions

∃P−i,j−1 v ∃Pi,j , for 0 ≤ i ≤ 3 and 0 < j ≤ n. (T2-4)

The four blocks are arranged into an infinite tree-like structure by the following
concept inclusions:

A v ∃P0,0, ∃P−0,n v ∃P1,0, ∃P−0,n v ∃P2,0, (T2-5)

∃P−1,n v ∃P3,0, ∃P−2,n v ∃P3,0, (T2-6)

∃P−3,n v ∃P1,0, ∃P−3,n v ∃P2,0. (T2-7)

More precisely, the P0,j block can be thought of as the root, from which two
branches start with P1,j and P2,j blocks, respectively. Each of these blocks is
followed by a P3,j block. Then we again have the P1,j and P2,j blocks, and so
on. Such a pattern is required to represent configurations of M ′ with alternating
universal and existential states.

C2

C1

A

X1

X2

X1

X2

X1

X2

0
1

2

3

3
A

P0,0 P0,1 P0,n

X1

P1,
0

X2

P
2,0

P1,1 P1,n P3,0 P3,1 P3,n P1,0

P2,0

P2,1 P2,n P3,0 P3,1 P3,n

P1,0

P2,0

Fig. 4. Choosing a run all branches of which are infinite.

We extend T1 with the following role inclusions:

P v Pi,j , for 0 ≤ i ≤ 3 and 0 ≤ j ≤ n. (T1-14)

Thus, each the initial P0,i block in C2 can be Σ-homomorphically mapped into
the initial P -block in C1 (see Fig. 4). Its successor must be a universal state,
which is reflected by the two blocks, P1,j and P2,j , in C2. Both of these blocks

should be Σ-homomorphically mapped into C1. The following concept inclusions
in T2 ensure that the P1,j block is mapped to the P -block that begins with X1

and the P2,j to the P -block that begins with X2:

∃P−1,0 v X1, ∃P−2,0 v X2, (T2-8)

Each of the P1,j and P2,j blocks in C2 is followed by a P3,j block, which cor-
responds to an existential state: the P3,j block can be mapped to either of
the two P -blocks (beginning with X1 or X2); see Fig. 4, where possible Σ-
homomorphisms are shown by thick grey dashed arrows.

It remains to add to T2 concept inclusions making sure that each of the
domain elements representing cells of the tape in a non-initial configuration
belongs to the concept D, thus enforcing synchronisation of the cell contents:

∃P−i,j v D, for 1 ≤ i ≤ 3 and 0 < j ≤ n. (T2-9)

One can show now that T1 and T2 are as required: M accepts w iff the
canonical model C2 of K2 = (T2, {A(c)}) is finitely Σ-homomorphically embed-
dable into the canonical model C1 of K1 = (T1, {A(c)}), where Σ contains the
concept and role names in T2. It remains to use Theorem 2 and the fact that
APSpace = ExpTime.

Next, we show that Σ-query inseparability is also ExpTime-hard. To this
end, let Σ be the signature of T2. Then we take T 1

1 and T 2
2 be to the ‘localised’

TBoxes T1 and T2, respectively: namely, T kk is the result of attaching the super-
script k to each symbol (concept or role name) in the TBox Tk (such symbols
are local for the respective TBox, that is, the signatures of T 1

1 and T 2
2 do not

intersect). Then we take T Σk to link those local symbols to the signature Σ: each
T Σk consists of all inclusions of the form Sk v S, for symbols S in Σ. Now, let
T ′k = T kk ∪T Σk . Consider the problem of Σ-query inseparability of (T ′1 , {A1(a)})
and (T ′1 ∪T ′2 , {A1(a), A2(a)}). Evidently, the canonical model of (T ′1 , {A1(a)}) is
contained in the canonical model of (T ′1 ∪ T ′2 , {A1(a), A2(a)}). The converse Σ-
query entailment is only possible if there is a Σ-homomorphism from the canon-
ical model of (T ′2 , {A2(a)}) into the canonical model of (T ′1 , {A1(a)}), which
amounts to checking whether T2 is Σ-query entailed by T1. q

The ExpTime lower bound for Σ-query entailment in the case of OWL 2 QL
TBoxes can be proved, using Theorem 3, by a minor modification of T1 and T2
above: for each of the role names R involved in T2 (and so in T1), we take a fresh
role R′ and add an extra role inclusion R v R′ to the each of the two TBoxes;
and take Σ to include the concepts A, X1, X2 and the Ca, for a ∈ Γ , together
with the newly introduced role names R′. Thus we obtain:

Theorem 5. The Σ-query entailment and Σ-query inseparability problems for
OWL 2 QL TBoxes are ExpTime-complete.

4 Conclusion

In this paper, we have proved that the Σ-query entailment and inseparability
problems for both OWL 2 QL KBs and TBoxes are ExpTime-hard. This lower
bound is tight for OWL 2 QL TBoxes matching the upper bound previously
established in [4]. We are working on a game-theoretic proof showing that it is
tight for the case of KBs as well.

References

1. Arenas, M., Botoeva, E., Calvanese, D., Ryzhikov, V.: Exchanging OWL 2 QL
knowledge bases. In: Proc. of the 23rd Int. Joint Conf. on Artificial Intelligence
(IJCAI 2013) (2013)

2. Arenas, M., Botoeva, E., Calvanese, D., Ryzhikov, V., Sherkhonov, E.: Exchanging
description logic knowledge bases. In: Proc. of the 13th Int. Conf. on Principles of
Knowledge Representation and Reasoning (KR 2012). AAAI Press (2012)

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press (2003), (2nd edition, 2007)

4. Konev, B., Kontchakov, R., Ludwig, M., Schneider, T., Wolter, F., Zakharyaschev,
M.: Conjunctive query inseparability of OWL 2 QL TBoxes. In: Proc. of the 25th
AAAI Conf. on Artificial Intelligence (AAAI 2011). AAAI Press (2011)

5. Konev, B., Ludwig, M., Walther, D., Wolter, F.: The logical difference for the
lightweight description logic EL. Journal of Artificial Intelligence Reserach (JAIR)
44, 633–708 (2012)

6. Kontchakov, R., Wolter, F., Zakharyaschev, M.: Logic-based ontology comparison
and module extraction, with an application to DL-Lite. Artificial Intelligence 174,
1093–1141 (2010)

7. Kozen, D.: Theory of Computation. Springer (2006)
8. Lutz, C., Wolter, F.: Deciding inseparability and conservative extensions in the

description logic EL. Journal of Symbolic Computation 45(2), 194–228 (2010)
9. Vardi, M.Y.: Reasoning about the past with two-way automata. In: Proc. of the 25th

Int. Colloquium on Automata, Languages and Programming (ICALP’98). Lecture
Notes in Computer Science, vol. 1443, pp. 628–641. Springer (1998)

