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Abstract

This paper presents our techniques used and their analysis for the runs made and
the results submitted by the CINDI group for the task of the image retrieval and au-
tomatic annotation of ImageCLEF 2006. For the ah-hoc image retrieval from both the
photographic and medical image collections, we have experimented with cross-modal
(image and text) interaction and integration approaches based on the relevance feed-
back in the form of textual query expansion and visual query point movement with
adaptive similarity matching functions. Experimental results show that our approaches
performed well compared to initial visual or textual only retrieval without any user
interactions or feedbacks. We are ranked first and second and achieved the highest
MAP score (0.3850) for the ad-hoc retrieval in the photographic collection (IAPR)
among all the submissions. For the automatic annotation tasks for both the medical
(IRMA) and object collections (LTU), we have experimented with a classifier combi-
nation approach, where several probabilistic multi-class SVM classifiers with features
at different levels as inputs are fused with several combination rules to predict the final
probability score of each category as image annotation. Analysis of the results of the
different runs we made for both the image retrieval and annotation tasks are reported
in this paper.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: H.3.1 Content Analysis and Indexing; H.3.3 Infor-
mation Search and Retrieval; H.3.7 Digital Libraries; I.4.8 [Image Processing and Computer

Vision]: Scene Analysis—Object Recognition

General Terms

Algorithms, Machine learning, Performance, Experimentation

Keywords

Content-based image retrieval, Vector space model, Feature extraction, Query expansion, Rele-
vance feedback, Classification, Support vector machine



1 Introduction

For the 2006 ImageCLEF workshop, CINDI research group has participated in four different tasks
of ImageCLEF track: an ad-hoc retrieval from a photographic collection, ad-hoc retrieval from a
medical collection, and automatic annotation of the medical and the object data sets [1, 2]. This
paper presents the methodologies, results and analysis of the runs of each of the tasks separately.

2 Ad-hoc retrieval from photographic collection

Our main goal of the ad-hoc retrieval task is to investigate the effectiveness of combining text
and image by involving user in the retrieval loop in the form of relevance feedback. We have
experimented with a cross-modal approach of image retrieval which integrates visual information
based on purely low-level image content and semantical information from the associated annotated
text files. The advantages of both modalities are exploited by involving the users in the retrieval
loop for the cross-modal interaction and integration in similarity matching.

For the text-based retrieval, the keywords from the annotated files are extracted and indexed
with the help of the vector space model paradigm [3]. In order to perform the query expansion on
the textual search, additional keywords are extracted for the query based on the positive feedbacks
from the user. For the content-based search, a query point movement and an adjustment of the
similarity matching functions are performed based on the estimation of the mean and covariance
matrix from the feature vectors of the positive feedback images. Finally, a ranked-based ordered
list of images is obtained by a pre-filtering approach which integrats the scores from both the text
and image search-based result lists.

2.1 Text retrieval approach

For the keyword-based search on the annotated text files, we have utilized a simple but effective
information retrieval (IR) tool by Raymond Mooney at the Texas University [4]. However, we have
performed several modifications to the original library according to the experimental requirements,
such as allowing recursive indexation of the text files that are stored in directories, expanding the
stop word list by adding several common words specific to the experimental domain and modifying
the term weighting scheme with the query expansion. For the text-based indexing, keywords are
extracted from all the associated annotation files by ignoring all the tags as stop words.

The indexing technique is based on the popular vector space model (VSM) of IR [3]. In this
model, texts and queries are represented as vectors in a N -dimensional space, where N is the
number of keywords in the collection. So, each document j can be represented as a vector as:

Dj =< w1j , · · · , wNj > (1)

The element wij represents the weights of the keyword wi appearing in document j and can be
weighted in a variety of ways. One common scheme is term-frequency-inverse document frequency

(TF-IDF) weighting. Both global weight and local weight are considered in this approach [3]. A
global weight indicates the overall importance of that component in the feature vector across the
whole image collection. A local weight is applied to each element indicating the relative importance
of the component within its vector. The local weight is denoted as Li,j = log(fi,j) + 1, where
fi,j is the frequency of occurrence of keyword wi in document j. The global weight is the inverse
document frequency and denoted by Gi where Gi = log(M/Mi) + 1, for i = (1, · · · , , N), where
Mi be the number of documents in which wi is found and M is the total number of documents
in the collection. Finally, the element wij is expressed as the product of local and global weight:
hence wij = Li,j ∗ Gi [3].

The vector space model is based on the assumption that similar documents will be represented
by similar vectors in the N -dimensional vector space. In particular, similar documents are expected
to have small angles between their corresponding vectors. Hence, the cosine similarity measure is



adopted between feature vectors of the query document q and database document j as follows [3]:

Stext(q, j) = Stext(Dq ,Dj) =

∑N

i=1 wiq ∗ wij
√

∑N

i=1(wiq)2 ∗
√

∑N

i=1(wij)2
(2)

where, Dq and Dj are the query and document vector respectively. The advantage of the VSM
includes a ranked result of the retrieved documents (as well as the associated images) which would
be useful when we fuse the results from both the keyword and content-based image retrieval.

2.2 Content-based image retrieval approach

The performance of a Content-based image retrieval approach(CBIR) system depends on the
underlying image representation, usually in the form of a feature vector [5]. Based on the previous
experiments [6], we have found that the image features at different levels are complementary
in nature and together they could contribute to effectively distinguish the images of different
semantic categories. Hence, to generate the feature vectors, we have extracted the low-level
global, semi-global and region specific local features for the image representation at different
levels of abstraction.

2.2.1 Feature extraction and similarity matching

In this work, the MPEG-7 based Edge Histogram Descriptor (EHD) and Color Layout Descriptor
(CLD) are extracted for image representation at the global level [7]. To represent the global shape
feature, the spatial distribution of edges are utilized by the EHD descriptor. A histogram with
16×5 = 80 bins is obtained, corresponding to a feature vector fEHD, having a dimension of 80 [7].
The CLD represents the spatial layout of the images in a very compact form [7]. It is obtained
by applying the discrete cosine transform (DCT) on the 2-D array of local representative colors
in YCbCr color space. In this work, CLD with 10 Y , 3 Cb and 3 Cr coefficients is extracted to
form a 16-dimensional feature vector fCLD.

Now, for comparing the query image Q and the target image T in the database based on the
global features, a weighted Euclidean distance measure is utilized as

DISglobal(Q, T ) = ωCLDDCLD(Q, T ) + ωEHDDEHD(Q, T ), (3)

where, DCLD(Q, T ) = ||fCLD
Q − fCLD

T ||2 and DEHD(Q, T ) = ||fEHD
Q − fEHD

T ||2 are the Euclidean
distance measures for CLD and EHD feature vector respectively and ωCLD and ωEHD are weights
for each feature distance measure subject to ωCLD + ωEHD = 1 and adjusted as ωCLD = 0.4 and
ωEHD = 0.6 in the experiment.

For semi-global feature vector, a simple grid-based approach is used to divide the images into
five overlapping sub-images [6]. Several moment based color and texture features are extracted
from each of the sub-images and later they are combined to form a semi-global feature vector. For
moment-based color feature, the first (mean) and second (standard deviation) central moments
of each color channel in HSV color space are extracted. Texture features are extracted from
the grey level co-occurrence matrix (GLCM) [8]. GLCM is defined as a sample of the joint
probability density of the gray levels of two pixels separated by a given displacement. Second
order moments, such as energy, maximum probability, entropy, contrast and inverse difference
moment are measured based on the GLCM. Color and texture feature vectors are normalized and
combined to form a joint feature vector of 11-dimensions (6 for color and 5 for texture) for each
sub-region to finally generate a 55-dimensional (5 × 11) semi-global feature vector fSG. For the
semi-global distance measure between Q and T , we also utilized the Euclidean distance measure
as

DISsemi-global(Q, T ) = ||fSG
Q − fSG

T ||2 (4)

We have also considered a local region specific feature extraction approach by fragmenting an image
automatically into a set of homogeneous regions based on a fast k-means clustering technique. To



represent each region with local features, we consider information on weight (i.e, number of pixels)
and color-texture as in [6]. Color feature fc

Ri
of each region Ri is a 3-D vector and is represented

by the K-means cluster center, i.e., the average value for each of the three color channels in HSV
space of all the image pixels in this region. Texture feature of each region is measured in an
indirect way by considering the cross-correlation among color channels due to the off diagonal of
the 3 × 3 covariance matrix of the region Ri.

To compute the region specific distance measure between two regions Ri and Rj of Q and T
respectively, we apply the Bhattacharyya distance metric [9] as follows:

D(Ri, Rj) =
1

8
(fc

Ri
− fc

Rj
)T

[

(CQRi
+ CTRj

)

2

]

−1

(fc
Ri

− fc
Rj

) +
1

2
ln

∣

∣

∣

∣

(CQRi
+CTRj

)

2

∣

∣

∣

∣

√

|CQRi
||CTRj

|
(5)

where fc
Ri

and fc
Rj

are the region feature vectors, and CQRi
and CTRi

are the covariance matrices
of region Ri and Rj of query image Q and target image T respectively. Finally, the image-level
distance between Q and T is measured as

DISlocal(Q, T ) =

∑M

i=1 wQRi
Ri(T ) +

∑N

j=1 wTRj
Rj(Q)

2
(6)

where wQRi
and wTRj

are the weights for region i of image Q and region j of image T respectively.

For each region i ∈ M in Q, Ri(T ) is defined as the minimum distance between this region and
any region j ∈ N in image T and in a similar way Rj(Q) is computed.

The overall image level similarity is measured by fusing of a weighted combination of individual
similarity measures. Once the distance functions are measured as above, they are normalized and
converted to similarity measure, which in general is the converse of a distance function. After the
similarity measures of each representation are determined as Sglobal(Q, T ), Ssemi-global(Q, T ), and
Slocal(Q, T ), we aggregate or fuse them into a single similarity matching function as follows:

Simage(Q, T ) = wgSglobal(Q, T ) + wsgSsemi-global(Q, T ) + wlSlocal(Q, T ) (7)

Here, wg, wsg and wl are non-negative weighting factors of different feature level similarities with
normalization wg + wsg + wl = 1. For the retrieval experiments, they are selected as wg = 0.4,
wsg = 0.3 and wl = 0.3.

2.3 Cross-modal interaction with relevance feedback

In a practical multi-modal image retrieval system, the user at first might want to search images
with keywords as it is more convenient and semantically more appropriate. However, a short
query (e.g., query topic) with few keywords might not be enough to incorporate the user perceived
semantics to the retrieval system. Hence, a query expansion process is required to add additional
keywords and modify the weight of the keywords in the original query vector. In this paper, a
simpler approach of query expansion is considered based on identifying useful terms or keywords
from the associated annotation files for the images.

The approach of the textual query expansion based on the relevance feedback (RF) is as follows:
the user provides the initial query topic and the system extracts from it a set of keywords as the
initial textual query vector Dq(0). This query vector is used to retrieve K most similar images from
associated text documents based on the cosine similarity measure described in section 2.1. If the
user is not satisfied with the result, then the system will allow the user to select a set of relevant
or positive images close to the semantics of the initial textual query topic. Next, the system will
extract all the keywords from the annotation files associated with the positive feedback images.



After extracting the additional keywords, the query vector will be adjusted as Dq(i) at iteration i
by re-weighting its keywords by following the TF-IDF and re-submitted to the system as the query
for the next iteration. This process may continue for several iterations until the user is satisfied
with the result.

However, since we have a multi-modal system, it will not be wise to perform query expansion
by just using one particular modality (e.g., only text). Visual features of images also play an
important part in distinguishing different semantical/visual categories. Therefore, we also need to
perform RF with content-based image search for better precision [11]. In this scenario, like textual
query expansion, user might provide the initial image query vector fQ(0) to retrieve K most similar
images based on the similarity measure function in equation (7). In the next iteration (either from
the texual or image-based feedback), user might select a set of relevant images compared to the
initial query image. It is assumed that, all the positive feedback images Pos(fQ(i)) at some
particular iteration i will belong to the user perceived semantic category and obey the Gaussian
distribution to form a cluster in the feature space.

Let, NPos be the number of positive feedback images at iteration i and fTj
∈ ℜd is be the feature

vector that represents j-th image for j ∈ {1, · · · , NPos}, then the new query point at iteration i is

estimated as fQ(i) = 1
NPos

∑NPos

j=1 fTj
as the mean vector of positive images and covariance matrix

is estimated as C(i) = 1
NPos−1

∑NPos

j=1 (fTj
− fQ(i))(fTj

− fQ(i))
T . However, singularity issue will

arise in covariance matrix estimation if fewer than d + 1 training samples or positive images are
available as will be the case in user feedback images. So, we add regularization to avoid singularity
in matrices as follows[12]:

Ĉ(i) = αC(i) + (1 − α)I (8)

for some 0 ≤ α ≤ 1 and I is the d × d identity matrix.
After generating the mean vector and covariance matrix of the positive images, we adaptly

adjust the Euclidean distance measures of various feature representation with the following Ma-
halanobis distance measure [9]:

DISMaha(Q, T ) = (fQ(i) − fT)T Ĉ−1
(i) (fQ(i) − fT) (9)

Here, fT denotes the feature vector of target database image T in general for different image
representation (e.g., global and semi-global). The Mahalanobis distance differs from the Euclidean
distance in that it takes into account the correlations of the data set and is scale-invariant, i.e.,
it is not dependent on the scale of measurements. If the covariance matrix is the identity matrix
then it is the same as the Euclidean distance [9].

Basically, at each iteration of relevance feedback, we generate several mean vectors and co-
variance matrices for each of the representation separately and use it in the distance measures.
Finally, we obtain a ranked based retrieval by applying the fusion-based similarity function of
equation (7). So, the above relevance feedback approach performs both the query point movement
and similarity matching adjustment at the same time.

2.4 Integration of the textual and visual results

We have considered a pre-filtering and merging approach based on the text and image result lists
obtained by the text retrieval after query expansion and image retrieval by applying adaptive
distance measure (equation (9)) after the relevance feedback. In this multi-modal integration ap-
proach, combining the result of the text and image based retrieval is a matter of re-ranking or
re-ordering of the images based on a weighted combination of scores from both the modalities.
Instead of purely merging the results, we basically perform a pre-filtering step with the text query
at first as it can generate results more closely to the user perceived semantics. The steps involved
in the proposed interaction and integration approaches are as follows:

Step 1: Perform an initial text-based search with a query vector Dq(0) for a query topic q(0)
at iteration i = 0 and rank the associated images based on the ranking of the text (annotation)
documents by applying Stext of equation(2).



Figure 1: Process flow diagram of the integration approach

Table 1: Results of the ImageCLEFphoto Retrieval task

Run ID Language Mod A/M FB QE MAP

Cindi-Text-Eng Eng Text Automatic Without No 0.1995

Cindi-TXT-EXP Eng Text Manual With Yes 0.3749

Cindi-Exp-RF Eng Text+Image Manual With Yes 0.3850

Step 2: Consider top K = 30 most similar images from the retrieval interface and obtain user
feedback about positive or relevant images (e.g., associated annotation files) for the textual query
expansion.

Step 3: Resubmit the modified query vector Dq(i) by re-weighting the keywords at iteration i.
Continue the iterations by incrementing i, until the user is satisfied or the system converges.

Step 4: Perform visual only search on the result list of the first L = 2000 images obtained from
step 3 with the initial query image Q(0).

Step 5: Obtain the user feedback of the relevant images and perform the image only search
with the new query Q(i) at iteration i with equation (9) and equation (7). Continue the iterations
by incrementing i, until the user is satisfied or the system converges.

Step 6: Aggregate the text and image based scores by fusing the similarity measures as:

S(Q, T ) = wtextStext(., .) + wimageSimage(., .) (10)

where, wtext = 0.7 and wimage = 0.3 are selected for the experiment.
Step 7: Finally, rank the images in descending order of similarity values and return the top

1000 images.
Fig. 1 shows the process flow diagram of the proposed multi-modal intercation and integration

approaches.

2.5 Analysis of the results

We have submitted three runs for the ad-hoc retrieval of the IAPR collection as shown in Table
1. In all these runs, English queries and example images are used as our initial source queries.
In the first run with ID “Cindi-Text-Eng”, we performed only the automatic text-based search
without any feedback as our base run. For the second and third runs with ID “Cindi-TXT-EXP”

and “Cindi-Exp-RF” respectively, we performed manual feedback in the text only modality and in
combination of the text and image modalities (with only one or two iterations for each modality)
as discussed in the previous sections. From Table 1, it is clear that the MAP scores are almost



doubled in both the cases with the feedback and integration of text and image has achieved the
best performance. In fact, these two runs ranked first and second in terms of the MAP score among
the 157 submissions in the photographic retrieval task. Our group performed manual submissions
using relevance judgement from the user, which along with the integration of the both modalities
could be the reason for our good results.

3 Ad-hoc retrieval from medical image collections

For the ah-hoc image retrieval task in the medical collections (e.g., CaseImage, PEIR, MIR and
PathoPic datasets), we have experimented with a similar cross-modal approach performed for
photographic retrieval. However, for the text-based indexing and search, we have utilized the
Lucene search engine [10], an open source project under the Apache software foundation. We have
also performed a different query expansion and merging algorithm to obtain a text-based result
list and finally merge with the image-based result list to obtain the final ranked result by applying
similar weighting scheme as discussed in section 2.4 for photographic retrieval.

To use the textual information for image retrieval in the medical collections, each image has to
be attached to at least one (possibly empty) text document. The text-based indexing is started
by extracting keywords from the XML documents by parsing them using Xerces2 Java Parser, an
open source project under the Apache software foundation. Every element of the XML document
is indexed as a separate field in Lucene. Separate fields make it easier to search for the contents
based on criteria or simply searching on all the indexed elements. Before indexing, the stop words
(we have added additional domain specific stop words to the list) are removed from the description
of the elements. Once the index creation process is completed, the keyword-based searching can
be performed using the Lucene API.

For content-based indexing, we use the same approach as described in section 2 for the pho-
tographic collection. However, we have extracted a low-resolution scaled-specific image feature in
addition to the global, semi-global and local region-specific features. Since, images in the different
medical collections vary in sizes, resizing them into a thumbnail of a fixed size might reduce some
noise due to the artifacts presents in the images, although it may introduce distortion. These
approaches are extensively used in face or finger-print recognition and have proven to be effective.
For the scaled-based feature vector fScaled, each image is converted to a gray-level image and down
scaled to 64×64 regardless of the original aspect ratio. Next, the down-scaled image is partitioned
further with a 16 × 16 grid to form small blocks of (4 × 4) pixels. The average gray value of each
block is measured and concatenated to form a 256-dimensional feature vector. By measuring the
average gray value of each block, it can cope with global or local image deformations to some
extent and adds robustness with respect to translations and intensity changes.

We also utilize the Euclidean distance measure to compare Q and T for fScaled and the fusion-
based similarity function is slightly adjusted due to the added scaled-specific feature as follows:

Simage(Q, T ) = wgSglobal(Q, T ) + wscSscaled(Q, T )wsgSsemi-global(Q, T ) + wlSlocal(Q, T ) (11)

For the medical retrieval experiments, the weights are adjusted as wg = 0.4, wsc = 0.2, wsg = 0.25
and wl = 0.15.

3.1 Query expansion and integration of the results

A search process can start either by entering some text (query topic) in the text field or by
providing a query image (e.g., “query-by-example”) to the system. If the user starts a keyword-
based search process, then the system will search the index, find the XML documents where those
keywords occur based on the similarity matching on the query and document vectors, and finally
retrieve the images corresponding to the XML documents. Resulting images are then displayed
as sorted in descending order of the similarity scores of the associated XML documents.

If the user starts the search process with the visual approach (i.e. “query by example”), various
low-level image features will be computed on-line and the resulting images will be displayed sorted



Figure 2: Query expansion and merging approach

by similarity score obtained from equation (11). After the initial search, user can make use of the
relevance feedback system, which can work on both the text and image modalities simulteneously
to display the results in the subsequent passes as discussed in section 2.3. After obtaining the
initial results, user can select the relevant images as a positive feedback to the system which
indicates the type of images the user is looking for. The system then runs two separate queries on
the text and image-based systems for the selected feedback images.

For the query expansion in the text-based system, the system finds the corresponding XML
documents from the positive feedback images. Next, it extracts the top n most frequent keywords
from each XML documents. Hence, in the next iteration of RF, user will submit seperate new
queries to the system using the new keywords found in each document. This will result in m
different lists of results where m is equal to the number of documents sent as positive feedback.
After getting m separate lists of results, we merge these into a single list and display the text-based
result.

Merging of the results is based on the assumption that if a particular image is occurring in
most of the lists, then it should have a higher rank or priority then images less frequent in the lists.
So, we upgrade the rank of this image by increasing the average similarity score based on how
many lists contain that image. For example, if there are 10 lists of results, and a particular image
presents in 8 of the lists, we will add more weight to this image than the image which occurs in 3
lists. More technically, if the image presents in all the list then a boost of 0.3 as additional score
will be given to that image score. If the image exists in 50% or above of the lists then a boost of
0.2 and for less than 50%, a boost of 0.1 is given. For the images exist only once among all the
lists, no boost is provided but the images are added to the list of the final result with their original
score. After this, the list is sorted with the new scores and displayed as the final text-based result
list as shown in the Fig. 2. The different boosting scores are selected by experimenting on a small
sample database, which provided better results.

When the content-based system receives the list of positive images as relevance feedback, we can
perform similar query point movement and similarity measure adjustment techniques as described
in section 2.3, to return a new image-based result list on the text-based pre-filtered images. Once
we have separate lists of results (e.g., one from the text-based system and another from the image-
based system), we merge the lists using the similar weighting scheme as described in section 2.4
for the photographic image retrieval.



Table 2: Results of the Medical Retrieval task

Run ID Topic System MAP R-prec B-pref

CINDI-Fusion-Visual Automatic Visual 0.0753 0.1311 0.166

CINDI-Visual-RF Feedback Visual 0.0957 0.1347 0.1796

CINDI-Text-Visual-RF Feedback Mixed 0.1513 0.1969 0.2397

3.2 Analysis of the results

We have submitted three runs for the ad-hoc medical retrieval as shown in Table 2. In all these
runs, English queries and example images are used as our initial source queries. In the first run
with ID “CINDI-Fusion-Visual”, we performed only the automatic visual only search without any
feedback. Our group ranked first in this run category (automatic+visual) based on the MAP score
(0.0753) out of five different groups and 11 submissions. For the second run with ID “CINDI-

Visual-RF”, we performed the manual feedback in the image only modality. For this category
(e.g., visual only run with RF), only our group has participated this year and achieved better
MAP score (0.0957) then without RF as shown in Table 2. For the third run with ID “CINDI-

Text-Visual-RF”, we performed the manual feedback in both the modalities and merge the result
lists as discussed in the previous section. For this category (e.g., mixed with RF), we have achieved
a moderate MAP score of 0.1513. From the scores, it is clear that combining both modalities is
far better then using only a single modality (e.g., only image).

4 Automatic annotation tasks

The aim of the automatic annotation task is to compare the state-of-the-art approaches to image
classification and annotation and to quantify their improvements for image retrieval. We inves-
tigate a supervised learning-based approach to associate the low-level image features with their
high-level semantic categories for the image categorization or annotation of the medical (IRMA)
and object (LTU) data sets. Specially, we explore the classifier combination approach of several
probabilistic multi-class support vector machine (SVM) classifiers. Instead of using only one in-
tegrated feature vector, we utilize the features at the different levels of image representation as
inputs to the SVM classifiers and use several classifier combination approaches to predict the final
image category as well as probability or membership score of each category as image annotation.

4.1 Probabilistic multi-class SVM with pairwise coupling

SVM is an emerging machine learning technology that has already been used successfully for image
retrieval and classification purposes [13]. It performs classification between two classes by finding
a decision surface that is based on the most informative points of the training set. Briefly, one
can say that SVM constructs a decision surface between samples of two classes, maximizing the
margin between them. SVM was originally designed for binary classification problem. A number of
methods have been proposed for extension to multi-class problem to separate L mutually exclusive
classes essentially by solving many two-class problems and combining their predictions in various
ways [14]. In the experiments, we utilize a multi-class classification method by combining all
pairwise comparisons of binary SVM classifiers, known as one-against-one or pairwise coupling
(PWC) [14]. PWC constructs binary SVM’s between all possible pairs of classes. Hence, this
method uses L∗(L−1)/2 binary classifiers, each of which provides a partial decision for classifying
a data point. During the testing of a feature vector f , each of the L ∗ (L− 1)/2 classifier votes for
one class. The winning class is the one with the largest number of accumulated votes. Although
the voting procedure requires just pairwise decisions, it only predicts a class label [16]. However, to



Figure 3: Block diagram of the classifier combination process.

annotate or represent each image with a category specific confidence score, probability estimation
is required. In our experiments, the probability estimation approach in [14] for the multi-class
classification by PWC is utilized. In this context, given the observation or feature vector f , the
goal is to estimate the posterior probability as

pk = P (y = k | f), k = 1, · · · , L (12)

4.2 Multiple SVM classifier combination

The development of a multiple expert or classifier combination based system has received increasing
attention and has been a popular research topic. In general, classifier combination is defined as
the instances of the classifiers with different structures trained on distinct feature spaces [15].
Feature descriptors at different levels of image representation are in diversified forms and often
complementary in nature. It is rather unwise to concatenate them together to form a single feature
vector as the input for a single classifier. Hence, multiple classifiers are needed to deal with the
different features, which results in a general problem of how to combine those classifiers with
different features to yield the improved performance.

In the experiments, we consider expert combination strategies of the SVM classifiers with
different low-level features as inputs based on three popular classifier combination rules (e.g., sum,
product and max rules) [15]. Since the outputs of the classifiers are to be used in combination,
the confidence or membership scores from the probabilistic SVM’s in the range of [0, 1] for each
category serve this purpose. In these combination rules, a priori probabilities are assumed to be
equal and the decision is made by the following formula in terms of the a posteriori probabilities
yielded by the respective classifiers:

P combine(y = k | f) =
P combine

k
∑L

k=1 P combine
k

, k = 1, · · · , L (13)

Here, P combine
k is the combined output of the classifiers about the likelihood of the sample vector f

belonging to the category k ∈ L. P combine
k and is obtained by using the following two combination

rules [15]:
In product rule, it is assumed that the representations used are conditionally statistically

independent, where R experts or classifiers are combined as follows

P combine
k =

R
∏

m=1

P (y = k | fm) (14)

where, P (y = k | fm) denotes the posterior probability of the class k on the input fm for the
classifier m. Similarly, for the sum and max rules, it can be stated as follows:

P combine
k =

R
∑

m=1

P (y = k | fm) (15)



Table 3: Performance of the object annotation task (LTU dataset)

Run ID Feature Method Error rate(%)

Cindi-SVM-Product CLD+EHD+Semi-global SVM (Product) 83.2

Cindi-SVM-SUM CLD+EHD+Semi-global SVM (Sum) 85.2

Cindi-SVM-EHD EHD SVM 85.0

Cindi-Fusion-Knn CLD+EHD+Semi-global+Local K-NN 87.1

Table 4: Performance of the medical annotation task (IRMA dataset)

Run ID Feature Method Error rate(%)

cindi-svm-product CLD+EHD+Scaled+Semi-global SVM (Product) 24.8

cindi-svm-sum CLD+EHD+Scaled+Semi-global SVM (Sum) 24.1

cindi-svm-max CLD+EHD+Scaled+Semi-global SVM (Max) 26.1

cindi-svm-ehd EHD SVM 25.5

cindi-fusion-KNN9 CLD+EHD+Scaled+Semi-global+Local K-NN 25.6

P combine
k =

R
max
m=1

P (y = k | fm) (16)

The sum rule is developed under stricter assumptions than the product rule. In addition to
the conditional independence assumption in the product rule, the sum rule assumes that the
probability distribution will not deviate significantly from the a priori probabilities [15]. The
multi-class SVM classifiers as experts on different feature descriptors as described in section 2.2
for retrieval, are combined with the above rules and finally classify the image to the category with
the highest obtained probability value and annotate the images with the probability or membership
scores as shown in the process diagram in Fig. 3.

4.3 Analysis and results of the runs

To perform SVM-based classification, we utilze the LIBSVM software package [16]. For the train-
ing of both the data sets, RBF kernel functions are utilized with different kernel γ and cost C
parameters found out experimentally with 5-fold cross validation (CV).

We have submitted four runs for the object annotation task as shown in Table 3. First three
of these runs are experimented with the proposed multi-class SVM and classifier combination ap-
proach with different feature inputs and the last run with ID “Cindi-Fusion-Knn” is experimented
with a K-NN (K=9) classifier by using the fusion-based similarity matching function in equation
(7). Our best run (e.g., “Cindi-SVM-Product”) in this task ranked third among all the submis-
sions. Although the accuracy rate is much lower at this moment due to the complexity of the
dataset in general.

For the medical annotation task, we have submitted five runs as shown in Table 4. First four
of these runs are experimented with the proposed multi-class SVM and classifier combination
approach and the last run with ID “cindi-fusion-KNN9” is experimented with a K-NN (K=9)
classifier by using the fusion-based similarity matching function in equation (11). Our best run
(e.g., “cindi-svm-sum”) in this task ranked 13th among all the submissions and 6th among all the
groups.



5 Conclusion

This report has examined the image retrieval and annotation approaches of CINDI research group
for ImageCLEF 2006. We have participated in all the four sub-tasks and submitted several runs
with different combination of methods, features and parameters. We have experimented with a
cross-modal interaction and integration approach for the retrieval of the photographic and medical
image collections and a supervised classifier combination-based approach for the automatic anno-
tation of the object and medical datasets. The analysis and the results of the runs are discussed
in this paper.
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