
Planning for Semantic Web Services

Evren Sirin1 and Bijan Parsia2

1 University of Maryland,
Computer Science Department,
College Park MD 20742, USA

evren@cs.umd.edu
2 University of Maryland, MIND Lab, 8400 Baltimore Ave,

College Park MD 20742, USA
bparsia@isr.umd.edu

Abstract. Using Semantic Web ontologies to describe Web Services has proven
to be useful for various different tasks including service discovery and composi-
tion. AI planning techniques have been employed to automate the composition
of Web Services described this way. Planners use the description of the pre-
conditions and effects of a service to do various sorts of reasoning about how
to combine services into a plan. OWL-S 1.1 will support the description of the
preconditions and effects of services using OWL statements similar to atomsin
Semantic Web Rule Language (SWRL). Thus, planners are required to under-
stand the semantics of OWL in order to evaluate such preconditions. However,
planners typically support only fairly limited reasoning capabilities which cannot
handle the expressivity of Semantic Web ontologies. In particular, planners typ-
ically make the closed world assumption, whereas OWL has open world seman-
tics. In this paper, we demonstrate how an OWL reasoner can be integrated with
an AI planner to overcome these problems. We identify the challenges of writing
the service descriptions and reasoning about them when OWL is used to describe
preconditions and effects. We also investigate the efficiency of such an integrated
system and show how OWL reasoning can be optimized for this system. Finally,
we present the performance results of our prototype implementation.

1 Introduction

The Semantic Web vision is of a world where loosely coupled, independently evolv-
ing ontologies provide common understanding between heterogeneous agents, systems,
and organizations. The Web Services vision is of a world where loosely coupled, inde-
pendently evolving (typically software) components. Several current efforts (OWL-S,
SWSI, WSMO), are attempting to integrate the two visions, thatis, to produce a world
where Semantic Web ontologies supports greater automationof Web Services related
tasks, such as service discovery and composition. For this purpose, the OWL-S [17]
language was developed to provide a set of ontologies to describe services using the
Web Ontology Language (OWL) [4].

Recently there has been a lot of work applying AI planning techniques to the Web
Service composition problem. The straight-forward approach is to map service descrip-
tions to planning operators and directly use existing planning systems. OWL-S allows

for describing services in ways amenable to planning. For example, it supports (in prin-
ciple) describing the preconditions and effects of AtomicProcesses. Such AtomicPro-
cess descriptions are easily treated as planning operators.

All existing versions of OWL-S have left the particular language for encoding pre-
conditions and effects unspecified. Consequently, translation schemes from OWL-S to
particular planning formalisms have had to insert their ownencodings of preconditions
and effects into the translated operators. As an unsurprising result, the translated precon-
dition and effect formulas are easily handled by those planning systems. Unfortunately,
the typical logic for expressing preconditions and effectsin a planning system is quite
differently expressive than RDF and OWL do. So, these systemsare not exploring what
it would be like to plan against actual encodings of world state that we expect to find
on the Semantic Web. The forthcoming OWL-S 1.1 forces the issue by making the de-
fault language for encoding service preconditions and effects a variant of the Semantic
Web Rule Language (SWRL) [10]. In order to evaluate such formulas planners must
understand the semantics of OWL.

There are many likely impedance mismatches. For example, planners typically as-
sume that they have the complete information about the world. Since it is assumed that
planner knows all the objects and the relations, they use closed world reasoning with
negation as failure. However, OWL has open world semantics because on the huge and
only partially knowable World Wide Web a statement cannot beassumed true on the
basis of a failure to prove it.

In this paper, we demonstrate how an OWL reasoner can be integrated with an
AI planner to overcome these problems. The reasoner is used to store the world state,
answer the planner’s queries regarding the evaluation of preconditions, and update the
state when planner simulates the effects of services. We first describe the challenges
of modeling service preconditions and effects and world state using OWL, and then
examine the impact of this on the planning process.

Specifically, we integrate the SHOP2 HTN planning system [16] with the OWL
DL reasoner Pellet [18]. This work is an extension of our prior work for planning over
OWL-S process models using SHOP2 [19]. In this work, we concentrate on the OWL
DL fragment of the OWL language.

We also investigate the efficiency of such an integrated system and show how OWL
reasoning can be optimized for this system. Finally, we present the performance results
of our prototype implementation.

2 Preliminaries

2.1 Classical Planning Representation

In classical planning representation a state is a set of ground literals expressed in a first-
order language. An action is an expression specifying whichfirst-order literals must
belong to the state in order for the action to be applicable, and which literals the action
will add or remove in order to make a new world state. An atomp holds in states iff
p ∈ s. If g is a set of literals with variables,s satisfiesg (denoteds |= g) when there is
a substitutionσ such that every positive literal ofσ(g) is in s and no negated literal of
σ(g) is in s.

In classical planning, a planning operator is a tripleo = (name(o), precond(o), ef-
fects(o)). Effects of an operator can be positive or negative, i.e.effects+(o) (generally
referred as the add list) represents the set of literals thatwill be added to the state and
effects−(o) (generally referred as the delete list) represents the setof literals that will be
removed from the state. An operatoro is applicable in a states when the preconditions
are satisfied in the state, i.e.s |= precond(o). Most planners represent the world state
with a relational database and thus precondition evaluation is very fast. Applying the
effects of an operator is done by adding or deleting entries from the database.

These definitions were based on the initial modeling of the STRIPS [6] system. Cur-
rently, widely accepted planning representations use moreexpressive precondition and
effect descriptions [8]. For example, preconditions may contain disjunctions, quantified
expressions and some form of axioms. The effects may be conditional and may also
contain universally quantified expressions.

2.2 HTN Planning and SHOP2

HTN planning is similar to classical planning in that each world state is represented by a
set of literals and each action corresponds to a state transition. However, HTN planners
differ from classical AI planners in what they plan for, and how they plan for it. The
objective of an HTN planner is to produce a sequence of actions that perform some
activity or task. The description of a planning domain includes a set of operators similar
to those of classical planning, and also a set of methods, each of which is a prescription
for how to decompose a task into subtasks. Planning proceedsby using methods to
decompose tasks recursively into smaller and smaller subtasks, until the planner reaches
primitive tasks that can be performed directly using the planning operators.

Many service oriented objectives can be naturally described with a hierarchical
structure. HTN-style domains fit in well with the loosely coupled nature of Web Ser-
vices: different decompositions of a task are independent so the designer of a method
does not have to have close knowledge of how the further decompositions will go. Such
hierarchical modeling is the core of the OWL-S [17] process model to the point where
the OWL-S process model constructs can be directly mapped to HTN methods and
operators[19].

SHOP2 [16] is a domain independent HTN planner. A distinctive feature of SHOP2
is that it generates the steps of each plan in the same order that those steps will later
be executed, so it knows the current state at each step of the planning process. This
reduces the complexity of reasoning by eliminating a great deal of uncertainty about
the world, thereby making it easy to incorporate substantial expressive power into the
planning system. Thus SHOP2 can do axiomatic inference, mixed symbolic/numeric
computations, and calls to external programs.

2.3 Description Logics

Description Logics are a family of class-based knowledge representation formalisms
[1]. A DL knowledge base typically comprises two components: a “TBox” and an
“ABox”. The TBox contains intensional knowledge in the formof a terminology and the
ABox contains extensional knowledge that is specific to the individuals of the domain

of discourse. Intensional knowledge is usually thought notto change and extensional
knowledge is usually thought to be contingent, or dependenton a single set of circum-
stances, and therefore subject to occasional or even constant change [1].

In DL implementations, core inference is typically the consistency check for ABoxes,
to which all other inferences can be reduced. For example, checking if an individ-
ual a belongs to a concept termC in an ABox A can simply be done by checking
if A t {a : ¬C} is not consistent.

There is a direct correspondence between DLs and OWL. In fact,OWL DL and
OWL Lite can be viewed as expressive Description Logics, withan ontology being
equivalent to a Description Logic knowledge base. In particular, OWL facts (type as-
sertions, property assertions, individual equality and inequality) corresponds to ABox
assertions and OWL axioms (subclass axioms, subproperty axioms, domain and range
restrictions, etc.) correspond to TBox knowledge.

2.4 Syntax and Notation

In our Web Service examples we will use a syntax similar to that of the Planning Do-
main Definition Language (PDDL) [8] since it is a middle pointbetween the OWL-S
surface syntax [15] and SHOP2’s syntax. To express preconditions and effects we will
use a syntax similar to N3 (see Figure 1). We will ignore the namespace prefixes for the
URIs unless it is significant, e.g. rdf:type. Note that our service descriptions do not have
output specifications but only input specifications. Since planning operators tradition-
ally do not have outputs, OWL-S outputs are generally encodedasknowledge effects
[19]. We will use the classical DL syntax (∃, ∀, ¬) instead of verbose OWL names
(someV aluesFrom, allV aluesFrom, complementOf) to describe concepts.

(:action register-course
:parameters (?student - Student ?course - Course)
:precondition (and (?course hasPrerequisite ?anotherCourse)

(?student passed ?anotherCourse))
:effect (?student registered ?course)

Fig. 1. A service that registers a student to a course. The precondition is that thestudent has
passed the prerequisite course. The student is registered to the courseas the effect of executing
this service

3 Integrating an OWL Reasoner with a Planner

Integration of an OWL reasoner with a planner means that all ofthe planner’s interac-
tion with the state will be done by the reasoner. First, worldstate is actually represented
as an OWL knowledge base. Any statement entailed by the KB is assumed to be true in
the state. Evaluation of preconditions is done by the reasoner. Update to the state by the
application of effects is also handled by the reasoner. The following sections explain
the challenges of this integration. We do not discuss the soundness and completeness
of the integrated system because it trivially follows from the fact that SHOP2 is sound
and complete as long as its theorem proving is sound and complete.

3.1 Operator Definitions

We want to change the classical planning operator definitions such that preconditions
and effects will be written with OWL. First we need to determine what kind of OWL
statements can appear in operator preconditions and effects. For this purpose, we will
look at what kind of formalisms have been used in planning community and how these
can be used in our context.

The original STRIPS [6] language allowed the use arbitrary well-formed formulas
in first-order logic for preconditions and effects. However, defining a semantics for this
formulation was problematic [13]. Thus, in subsequent work, researchers have placed
some restrictions on the nature of the planning operators.

Typically, preconditions and effects contain only first-order literals. This means that
only SWRL atoms, which are in essence OWL facts (ABox assertions) with variables,
can be used and we should exclude usage of arbitrary OWL axioms(TBox axioms) in
operator definitions. This is also intuitive because the axioms in ontologies are used to
model the world as we know it. They represent the nature of theworld, e.g. student
is always subclass of person, whereas the facts about individuals represent our current
knowledge that may change over time, e.g. a person may graduate and no longer be a
student.

Planners normally allow negated atoms to appear in preconditions. Planners gen-
erally operate with a closed world assumption and treat negation as failure. For ex-
ample, a registration service may have a condition that onlypeople who are not al-
ready registered may use that service and express this with the following precondition:
not(?person rdf:type Registered). With NAF this would evaluate to true whenever
we cannot prove the person is registered. However, with openworld semantics failing
to prove that the person is registered may just mean that we don’t know if person is
registered. To make sure that person is not registered, we want a stronger condition
such as (?person rdf:typeNotRegistered) whereNotRegistered is the complement
of Registered. As SWRL does not allow negated atoms appear in rule bodies, wealso
restrict the preconditions to contain only non-negated SWRLatoms.

One restriction planners impose on operator preconditionsand effects is that only
the variables defined as parameters can be used. It is easy to see that we cannot allow
arbitrary variables to appear in effects because all literals we add to the state should be
ground. However, this restriction can be relaxed as done in the Planning Domain De-
scription Language (PDDL) [8] and implemented in expressive planning systems like
SHOP. In particular, it is possible to use existentially quantified variables in the operator
preconditions and universally quantified variables in the effects. When the variables in
effects are universally quantified, we do not have the problem of unground variables be-
cause the variable will be bound to every instance in the state. The existentially bound
variables in the preconditions may also appear in the effects as long as it is guaranteed
that there will be only one substitution for that variable. If there is more than one substi-
tution and planner chooses one of these options arbitrarilyduring planning all the rest
of the plan may depend on this choice. Since there is no way of seeing this arbitrary
choice in the plan generated (only the variables in the parameters can be known) there
is no guarantee the same binding will be chosen during the execution of plan.

The restriction about variables do not apply to method preconditions. Since method
descriptions in SHOP2 do not have any effects it is possible to use existentially quanti-
fied variables regardless of how many bindings for those variables may exist. Choosing
a binding for this variable becomes a nondeterministic branching point for SHOP2. This
feature is highly used in practice along with some heuristics about which bindings are
most likely to yield a plan [16].

One problem about limiting use of variables in effects arises when the effect of
an action is creating a new object that did not exist before. This problem emerges as
a difficulty in modeling in some planning domains (see the Settlers domain in 2002
International Planning Competition [7]) and becomes ubiquitous when using OWL-
S. Since OWL (and RDF) is based on triples, n-ary predicates must be described using
some (possibly anonymous) intermediary individuals. These anonymous individuals, or
so called bnodes, actually represent existential variables in the KB. Suppose the service
description shown in Figure 2, which makes an appointment for a person with a doctor
at a given time. Normally, this effect could be represented with a three variable predicate
such asappointment(?p, ?d, ?t). But using OWL requires us to define an additional
object, i.e.?appt variable, that will specify the relation between these three objects.

(:action make-appointment
:parameters (?p - Person ?d - Doctor ?t - Time)
:precondition ...
:effect (and (?d hasAppointment ?appt)

(?p hasAppointment ?appt)
(?appt rdf:type Appointment)
(?appt appointmentTime ?t)))

Fig. 2.A simplified service description where person?p makes an appointment with doctor?d at
time?t.

These additional instances can be seen as the output of the service, i.e. the service
creates a new appointment instance as an effect of its execution. But modeling these
variables as outputs of the service would not be appropriatebecause output of a service
is considered to be some data returned by the service after execution of the service.
It is more proper to define a special category of variables to distinguish these“purely
syntactic” variables from variables which are relevant to the planning problem. For
example, in our implementation we used a simple syntax basedsolution where any
variable that starts with a character ’’ (as in Prolog don’t care variables) is treated as
an anonymous node rather than an existential variable.

Planners use axiomatic inference to infer conditions that were not in the world state.
This extension establishes a distinction between two classes of predicates used in the
domain: primitive and derived predicates. Derived predicates can be deduced from other
primary and secondary relations whereas primary predicates are true only if they explic-
itly exist in the state. Including derived predicates in theeffects of operators causes a
problem as we will discuss in detail in Section 3.3. Commonlyaccepted solution to
this problem is to allow only primitive relations to appear in effects of operators and
restrict derived predicates to appear only in preconditions. This is quite an inconvenient
restriction for OWL.

3.2 Precondition Evaluation

The applicability of a planning operatoro in a stateS is defined to be the satisfiability of
its precondition inS. In other words, a planning operator is applicable if its precondition
is the logical consequence of the state, written asS |= precond(o). Preconditions are
generally defined as conjunctions and since we have defined that preconditions can only
contain OWL facts (or ABox assertions in DL terminology) possibly with variables, a
precondition expression becomes equivalent to a conjunctive ABox query [11]. When
the precondition expression does not contain any variables, precondition evaluation be-
comes boolean query answering, i.e. answering yes or no. Whenthere are existentially
quantified variables then we also need to generate the variable bindings that makes the
conjunctive formula logical consequence of the state.

One important point in precondition evaluation is the presence of existentially quan-
tified variables. The satisfiability of the preconditions actually depends on whether we
want to get the variable bindings for these existential variables or not. This is a direct
consequence of open world reasoning. Consider this simple example: Suppose we have
a simple query (?p hasChild?c). If we don’t want to get the variable bindings for?c
then a KB containing only these assertions{Parent = ∃hasChild.>, John:Parent}
would satisfy the query with the binding{?p ← John} because we know thatJohn

has a child even though we do not know who that child is. On the other hand, when we
want to bind the variable?c to a known individual, the query would fail for the very
same KB. The same behavior would be observed when there are anonymous individu-
als, individuals with no URI reference, in the KB.

Since the precondition evaluation highly depends on the interpretation of these ex-
istentially quantified variables we need to define a clear semantics as to which inter-
pretation will be preferred. The OWL query language proposal[5] suggests to label the
variables asmust-bind, may-bind, anddont-bindto control this behavior. This is also
consistent with ABox query answering schemes where some variables are labeled as
distinguished, meaning they should be bound to a value.

Labeling the existential variables in preconditions asdont-bindvariables cannot be
done arbitrarily. A variable isactive if it is used in another context, e.g. an operator
may use it in the effects or a method may use it as an input of a subtask. Anactive
variable should always be bound to a known individual to ensure that we always have
ground terms.Inactivevariables can be labeled asdont-bindor must-bindat will by
service writer. It is preferable that an existential variable that is not labeled either way
be interpreted as adont-bindvariable since this way we can benefit from the open world
semantics of OWL to continue planning in the face of incompleteness in the KB.

As we have mentioned in section 2.1, current state of the art planning systems use
more expressive constructs in preconditions such as disjunctions and quantified expres-
sions. Evaluating a disjunctive would be equivalent to answering a disjunctive query.
Note that answering disjunctive queries cannot simply be done by answering each dis-
junct separately because there are cases when the query itself is a logical consequence
of the KB but none of its disjuncts are [11].

Universally quantified expressions in preconditions also creates a problem with
open world semantics. Consider this simple precondition{(∀ x)(P hasChildx)(x:Male)}
where it says that all the children ofP should be male. The way planners evaluate quan-

tified expressions is with the closed world assumption whereall the explicit children in
the KB are found and tested with the condition. Then if we consider the following KB
{ParentWithNoSon=∀hasChild.Female, Female = ¬Male, John:(≥1hasChildu
ParentWithNoSon)} this closed world interpretation of the query would succeedal-
though we know for sure that John has at least one daughter (again we just don’t know
who she is).

In most real world problems, preconditions involve some kind of numerical compu-
tation (i.e., comparison). It is foreseeable that a lot of services will use expressions such
as the built-in primitives of SWRL to express these kind of preconditions. Consider the
precondition of the book buying service shown in Figure 3. Wecan evaluate this precon-
dition at two steps. In the first step, we do the query in our KB as described above and
bind the variables?price and?limit to actual values. In the second step, we compare
these two values and verify the condition holds. With this approach there are cases again
where we can get incomplete results. Consider another condition where{(?p hasAge
?age), (?age > 18)} and a KB{PersonOlderThan40 = ∃hasAge.MoreThan40,
John:PersonOlderThan40} whereMoreThan40 is defined as an XML Schema
type with the restriction on its minValue to be greater than 40. In our KB, we don’t have
explicit information about John’s age but we know that{?p ← John} satisfies the con-
dition (supposing?age is a don’t-bind variable). But the expressivity of OWL cannot
handle more complex conditions, like the one in Figure 3, so it may be preferable to
have another module that processes these expressions.

(:action buy-book
:parameters (?b - Book ?cc - CreditCard)
:precondition (and (?b hasCost ?price)

(?cc hasAvailableLimit ?limit)
(?price < ?limit))

:effect ...)

Fig. 3.A simple book buying service where the available limit on the credit card should be higher
than the price of the book

3.3 Applying Effects

The effects of an operator are applied to the current state tosimulate the action. Ap-
plying an operatoro to a states transforms it into a new state denoted bysnew =
apply(o, s). After the application of effects, the atoms in the positiveeffects of the op-
erator should be entailed by the state, i.e.apply(o, s) |= effects+{o}, and the atoms
in the negative effects should not be entailed,apply(o, s) 6|= effects−{o}.

Applying the positive effects of an operator means adding new assertions to our KB
which may cause inconsistencies. For example, a service mayadvertise a description
where the effect of the service is given as (?person presidentUSA) saying that you
will be the president of USA after running that service. However, if the current KB
contains the information about the current president, i.e.there already exists another
distinct individual who has the president property with value USA and the president
property is defined as InverseFunctionalProperty, then adding this new assertion will
cause an inconsistency. When there is an inconsistency in theKB any conclusion can
be deduced so we cannot guarantee the correctness of the further results.

Most planners assume that modeling the planning operators correctly is the respon-
sibility of the person who supplies the domain. The soundness and completeness of the
planners are proven with respect to correct domain descriptions, e.g. a blocks world do-
main where an operator causes a block to be in two different places at the same time will
cause most planners generate unsound plans. Since we are dealing with Web Service
descriptions that come from various different sources we cannot guarantee the correct-
ness of these descriptions. For this reason, a planner should reject the application of an
operator when its effects cause an inconsistency.

Negative effects cannot cause an inconsistency in the KB because of the monotonic
nature of our reasoning. Removing assertions from a consistent KB cannot cause it to
become inconsistent. However, we have the problem of KB deriving the same assertion
from other facts even after we remove that assertion from theKB. For example, an un-
register service may have a negative effect which requires the deletion the fact (?person

memberClub). But, if the KB includes another fact (Club hasMember?person) such
that hasMember is the inverse property of member then we willstill derive the same
conclusion as before. This is exactly why planning systems make the distinctions be-
tween primitive and derived predicates and do not allow derived predicates in effects
(see section 3.1).

Unfortunately, restricting the usage of derived predicates in effects makes it nearly
impossible to model any action in OWL. An OWL propertyp is a derived predicate if
it satisfies any of the following conditions:

– It has a subproperty (q v p ≡ q(x, y) → p(x, y))
– It has an equivalent property (p = q ≡ q(x, y) → p(x, y))
– It has an inverse property (p = q− ≡ q(x, y) → p(y, x))
– It is a symmetric property (Symmetricp ≡ p(x, y) → p(y, x))
– It is a transitive property (Transitivep ≡ p(x, y) ∧ p(y, z) → p(x, z))

A type assertion in OWL such as (x rdf:typeC) is equivalent to a single variable
predicate in the formC(x). This type assertion would be a derived predicate if classC

meets any of the following conditions:

– It has a subclass (D v C ≡ D(x) → C(x))
– It has an equivalent class (C v D ≡ D(x) → C(x))
– It is defined to be the range of a property (p rdfs:rangeC ≡ p(x, y) → C(y))
– It is defined to be the domain of a property (p rdfs:domainC ≡ p(x, y) → C(x))

Note that being a subclass of some restriction could also causeC to be a derived
predicate, e.g.D v ∀p.C ∧ D(x) ∧ p(x, y) → C(x). It is even hard to enumerate all
these case because the combination of cardinality restrictions, nominals and general
inclusion axioms may cause class membership to be derived from other facts.

If we allow derived predicates to appear in negative effectsthen we need a way to
make sure that statement will not be inferred after the effect is applied to the world
state. One possibility is to make the reasoner delete all therelated statements from the
KB until the statement in question is not entailed by the KB. Given the expressivity of
OWL DL this is quite a hard task. Furthermore, there is no deterministic way to control
this behavior. For example, in the KB{x:A, x:B} if we want to deletex:A u B then

we can either deletex:A, x:B or both to have the same effect. Another possibility is
to make the service writer include all the enumerations, other predicates that the truth
value depends on, in the negative effect list. This works well for simple domains but
gets quite hard quickly when the ontologies and definitions become complex. It is even
harder in the distributed setting of the Web where a service writer may enumerate all
the possibilities in the description to the best of her knowledge but the client who uses
that description may have access to another ontology that augments those definitions
with some new descriptions with dependencies not mentionedin the negative effects.

4 Implementation and Optimization Techniques

The performance of the planning system is considerably affected when the precondi-
tion evaluation of operators and methods are done by theoremproving. During a plan
generation, planner will do hundreds of precondition evaluations so the reasoner needs
to handle these queries very fast to be at all workable.

A significant majority of the preconditions consist of conjunctive expressions so we
will focus on how to optimize conjunctive queries. As we havediscussed in section 3.2,
operator preconditions (generally) do not contain variables whereas method precondi-
tions have many existentially quantified variables. If the precondition does not contain
any variables we just need a yes/no answer, whereas the preconditions withmust-bind
variables then we have to generate answer sets for these variables.

The existing conjunctive ABox query answering algorithms [11, 12] reduce the
problem of query answering to one or more KB satisfiability problems. The main idea is
to consider a conjunctive query as a directed graph where thenodes are either variables
or individual names (constants). In addition, concept and role terms provide labels for
nodes and edges respectively. For example, the query{(?x rdf:type Start), (?x path
?y), (?z path?x)} corresponds to a graph with three nodes and two edges. When the
query consists of one connected graph then the query can be answered with one satisfi-
ability test.

Answering queries with only one term, i.e. the query graph has no edges, is equiv-
alent to an entailment check. For example, the query (A rdf:type Rover) is entailed
by the KB S if and only if {S t (A rdf:type 6 Rover)} is not consistent. When the
query contains multiple terms, i.e. the query graph has morethan one edge, then the
technique of “rolling up” is applied to transform the query into an equivalent query
with a single concept term. For example, the following querythat has no variables{(C
rdf:type Computer), (C manufacturedByM), (C hasCPUCPU), (CPU cpuType
Centrino)} can be transformed into the following concept term (C:∃.manufacturedBy
{L} u ∃hasCPU. ({CPU} u ∃cpuType.{Centrino})). The query can now be an-
swered by adding the negation of this concept to the individual A and then checking
if the KB is consistent. If the query contains multiple disconnected components, each
connected subcomponent can be rolled up to one individual and tested separately.

Rolling up technique is quite effective when we don’t need the variable bindings
because one query that contains multiple terms can be answered with one satisfiabil-
ity check rather than multiple entailment tests. However, this technique is not efficient
when we also want the variable bindings. The variable bindings are returned by replac-

ing each variable with one individual, rolling up the query and answering the boolean
query. One must try every possible combination of bindings to get all the answers. [12]
proposes an optimization technique that attempts to reducethe number of candidate
individuals. The idea is to roll-up the query into a distinguished variable prior to substi-
tuting it with any individual name. The concept is used to retrieve the list of individual
names corresponding to instances of the concept. The retrieved individuals are used as
the candidates for the distinguished variable.

This technique reduces the number of satisfiability tests but still tries unnecessary
tests. Consider the previous query with all the individual names are replaced with vari-
ables{(?c rdf:type Computer), (?c manufacturedBy?m), (?c hasCPU?cpu), (?cpu

cpuType?t)} where we want to get all the computers, their manufacturers,the CPU
they have and the type of these CPUs. Suppose we have 10 computers manufactured
by 10 different manufacturers and each computer has only oneCPU (for a total of 10
distinct CPU instances) and three types of CPUs, Pentium3, Pentium4 and Centrino. In
the original setting, we need to try each individual. Since we have 33 individuals, as-
suming nothing else exists in the world, we could try every combination of bindings for
a total of334 ≈ 1186000 consistency tests. The optimization described above would
help us to reduce the number of candidates so we would not try to use a manufacturer
as a candidate computer. Therefore, we have 10 different possibilities for variables?c,
?m, ?cpu and 3 candidates for?t. The algorithm still tries all possible combination of
these bindings yield a total of10 × 10 × 10 × 3 = 3000 tests.

The problem with this approach stems from not having the ability to see why a
binding fails. For example, if computerC1 is manufactured byM1 then a binding
with C1 andM2 will fail no matter what candidates we try for the other variables.
Unfortunately, it is not possible to learn the dependenciesbetween variable bindings
using the rolling up technique. For this purpose, we proposea new technique where
each individual term in the query is tested separately as an entailment test. For the
given query example, given a candidate binding for a computer we would try the 10
different manufacturers and find the one binding that is the logical consequence of the
KB. Then we would try 10 different CPU bindings, out of which only one succeeds.
Then we try the remaining 3 candidates for the CPU types. In the end, we end up trying
only a total of10 × (10 + 10 + 3) = 230 consistency tests.

Computing the likely candidates itself is a costly operation. In the example query
we have four distinguished variables so we need to perform four instance retrieval op-
erations. Generally, reasoners realize the whole KB upon loading and this retrieval op-
erations become cheap. Unfortunately, in our setting planner is constantly changing
the current state possibly invalidating the cached results. It is much preferable to use
the optimized instance retrieval algorithms designed for dynamically changing ABoxes
[9]. The motivation of this approach is to eliminate all of the irrelevant individuals with
only one consistency check. Obvious instances of the concept need not be tested at all
and the rest of candidates can be eliminated with a binary partioning method. The idea
for retrieving the instances of conceptC is to add{x:¬C} assertion for everyx that
cannot be eliminated by inspection. If the new KB is consistent we conclude that no
more instances ofC exist in the remaining set, otherwise KB is partitioned to half and

this procedure is continued at each partition. Thus, at eachstep binary partitioning may
eliminate half of the candidates using a single test.

Computing the candidates by rolling up the whole query givestoo many possibil-
ities. If we compute the candidates based on each statement and the bindings done at
previous steps then we will find a smaller number of candidates that are more likely to
succeed at later steps. When we concentrate on the statementsof the query we can also
make use of the existing assertions in the KB more efficiently. In most DLs looking
at the existing role assertions is enough to determine if twoindividuals are related to
each other with a given role. However, in the presence of nominals this is not the case
any more and we may get incomplete results with this approach. But we use structural
inspection to find obvious answers and then use optimized retrieval on the rest of the
individuals we can get complete results efficiently. For example, if the statement in the
query is (?s p o) we can first examine the existing role assertions to get the obvious
answers. Then we can retrieve the instances of the concept∃p.{o} to get the remaining
bindings for?s. Note that, if all the individuals are related with explicitassertions then
only one consistency check (as described above) will be enough to eliminate all the
other possibilities.

When combined with an iterative query answering mechanism this approach may
help to avoid a lot of consistency tests. In a planning problem, most of the time, finding
the first plan is enough (e.g. if we are not trying to optimize acost function). In this
case, we can first try the obvious candidates and delay the consistency test as much as
possible. If the planner cannot find a plan with the initial bindings then it would keep
asking the reasoner for more bindings which in the end would require us to make an
expensive consistency test. But there is a good chance that aplan can be found with the
initial bindings.

5 Experiments

We have done some experiments (1) to evaluate the optimization techniques we de-
scribed and (2) to compare the performance of the integratedsystem with the original
planning system. We have built a prototype system by integrating the OWL DL rea-
soner Pellet [18] with the Java version of SHOP (JSHOP). We ran our experiments on
a Windows machine with a Pentium Centrino 1.6 GHz CPU and 1GB memory.

Since there are no standard benchmark problems for service composition, we have
done our experiments with the Rover domain which was used in the 2002 International
Planning Competition [7]. In this domain a collection of rovers navigate a planet sur-
face, find samples and communicates the results back to a lander. We have translated
20 problem files to OWL and encoded the original JSHOP domain inour syntax where
precondition and effects are written as SWRL atoms. Since this domain was using n-ary
predicates, e.g.can traverse(rover, loc1, loc2), we had to translate them using extra
individuals, e.g. (rover can traversepath, path beginsloc1, path endsloc2). For this
reason, OWL versions of problems were slightly different than the original, especially
the harder problems contained significantly more individuals.

We first implemented the three different query optimizationmechanisms and ran
them on the test cases. Figure 4(a) shows the results of our experiments. Algorithm A is

the original optimization technique as suggested in [12]. It computes the candidates for
each variable by rolling up the query to that term and performing the binary instance
retrieval algorithm. The query then is rolled up for each combination of the candidates.
Algorithm B also computes the candidates in the same manner but uses the variable
dependencies to prune the possibilities that will obviously fail. Algorithm C on the other
hand does not compute the candidates in the beginning. Candidates are computed on a
need basis. As some of the other variables are bound to actualvalues, the candidates for
the remaining variables are computed using these values. The results show Algorithm
C always performed significantly better than the others. Note that Algorithm A and B
was unable to finish all the test cases even after a substantial amount of time. These are
still preliminary results that need to be confirmed with a wider variety of KBs.

Total Planning Time

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Problems

T
im

e
 (

s
e
c
)

JSHOP JSHOP-Pellet

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Problems

#
 o

f
C

o
n

s
is

te
n

c
y

 T
e

s
ts

Algorithm A Algorithm B Algorithm C

(a) (b)

Fig. 4. Chart (a) shows the comparison of the total planning time spent by the original JSHOP
system and the integrated JSHOP-Pellet system. Chart (b) shows the number of consistency tests
done by each variation of the optimization methods.

We then compared the performance of the integrated system with the original JSHOP
system. As we have expected original JSHOP performed betterin every test case as
shown in Figure 4(b). But we should also note that Pellet is not highly optimized to han-
dle large number of individuals. In our experiments, we alsotried to use Racer which
is highly optimized for such KBs. However, only way to communicate with Racer was
through HTTP sockets which dominated the total time spent and in the end overall
performance was not any better.

6 Related Work

The most closely related work to ours is McDermott’s Optop planner [14]. Optop is
an estimated-regression planner that generates compositions of Web Services where the
goal is given as a logical formula. This approach is applicable to atomic service descrip-
tions where we use HTN planning to deal with composite service descriptions. Another
difference is that, in our work, we have focused on how to dealwith the expressivity of
OWL ontologies and do reasoning during planning whereas Optop employs Horn-logic
axioms for inference.

There has been some work to combine Description Logics with planning but with
a completely different approach. In [3] De Giacomo et al. suggests using a DL frame-
work to plan for robot actions. This approach uses the formalization of actions given
by propositional dynamic logics (PDL). The correspondencebetween PDLs and DLs
are exploited for an actual implementation using the reasoner CLASSIC. Badea [2]
also makes use of this correspondence and presents two deductive approaches, where
the existence of a plan corresponds to an inconsistency proof, as well as a satisfiability
based one, where planning is reduced to model construction.Both approaches use PDL
framework to represent actions whereas we use DL formalism to represent states.

Query answering has been investigated in a DL framework [11]and in the Semantic
Web context [12]. In our work, we have used the sound and complete algorithms pre-
sented there and concentrated on optimizing the query answering time. Our main focus
was to minimize the number of consistency tests without changing the main algorithm
and treating the consistency test as a black box operation.

7 Conclusions and Future Work

In this work we have investigated the issues of using planning for composition of Web
Services on Semantic Web. We examined the impact of using OWL to describe the pre-
conditions and effects of services. We have shown what features of classical planning
are not suitable in Semantic Web. In particular, we identified the challenges to write ser-
vice descriptions and reason about them with open world semantics and the expressivity
of OWL. These issues need to be addressed in order to develop real-world applications
on Semantic Web.

We have shown how an OWL reasoner can be coupled with a planner to reason
about the world state during planning. The efficiency of sucha system has been inves-
tigated and we presented novel optimization techniques that would be useful for query
answering in general. Our preliminary experiments with theprototype implementation
showed that the performance of planning system suffers due to the characteristics of
DL reasoning. But it is also clear that there are plenty of optimization possibilities that
need to be investigated.

Querying large Semantic Web KBs using Description Logic based algorithms will
most likely become an important and popular topic. Optimization techniques for query
answering is anticipated to get more attention in this context. As a future work, we aim
to evaluate our optimization techniques more thoroughly using ontologies of varying
size and structure. We also think that examining the inconsistency results based on
clash dependencies could help us to speed up the eliminationof candidates that cause
us to repeat the consistency tests.

In our experiments, we have used domains coming from the planning literature. As a
future work, we will concentrate on scenarios related to actual Web Service composition
problems. As the new version of OWL-S becomes available we expect to find more real
world examples that we can use in our system.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors.The
Description Logics Handbook: Theory, Implementations, and Applications. Cambridge Uni-
versity Press, 2003.

2. L. Badea. Planning in description logics: Deduction versus satisfiability testing. InEuropean
Conference on Artificial Intelligence, pages 479–483, 1998.

3. G. De Giacomo, L. Iocchi, D. Nardi, and R. Rosati. Classic planning for mobile robots. In
Proceedings of the FAPR-96 Workshop on Planning in Complex Environments, 1996.

4. M. Dean, G. Schreiber, S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. A. Stein. Web Ontology Language (OWL) Refer-
ence. W3C Recommendation 10 Feb 2004 http://www.w3.org/TR/owl-ref/.

5. R. Fikes, P. Hayes, and I. Horrocks. OWL-QL - a language for deductive query answering
on the semantic web. Technical Report KSL-03-14, Stanford University, CA, 2003.

6. R. E. Fikes and N. J. Nilsson. Strips: A new approach to the application of theorem proving
to problem solving. In J. Allen, J. Hendler, and A. Tate, editors,Readings in Planning, pages
88–97. Kaufmann, San Mateo, CA, 1990.

7. M. Fox and D. Long. International planning competition, 2002.
http://www.dur.ac.uk/d.p.long/competition.html.

8. M. Fox and D. Long. Pddl2.1: An extension to pddl for expressing temporal planning do-
mains, 2002. http://www.dur.ac.uk/d.p.long/pddl2.ps.gz.

9. V. Haarslev and R. Mller. Optimization strategies for instance retrieval. In I. Horrocks
and S. Tessaris, editors,Proceedings of the 2002 Description Logic Workshop (DL 2002),
volume 53 ofCEUR Workshop Proceedings, 2002.

10. I. Horrocks and P. F. Patel-Schneider. A proposal for an owl rules language. InProc. of the
Thirteenth International World Wide Web Conference (WWW 2004). ACM, 2004.

11. I. Horrocks and S. Tessaris. A conjunctive query language fordescription logic aboxes. In
Proc. of the 17th Nat. Conf. on Artificial Intelligence (AAAI 2000), pages 399–404, 2000.

12. I. Horrocks and S. Tessaris. Querying the semantic web: a formal approach. InProc. of the
13th Int. Semantic Web Conf. (ISWC 2002), 2002.

13. V. Lifschitz. On the semantics of strips. In M. P. Georgeff and A. L.Lansky, editors,
Reasoning about Actions and Plans, pages 1–9. Kaufmann, Los Altos, CA, 1987.

14. D. McDermott. Estimated-regression planning for interactions with webservices. InSixth
International Conference on AI Planning & Scheduling, 2002.

15. D. McDermott. Surface syntax for OWL-S, 2003. http://www.daml.org/services/owl-
s/1.0/surface.pdf.

16. D. Nau, T. Au, O. Ilghami, U. Kuter, J. Murdock, D. Wu, and F. Yaman. SHOP2: An HTN
planning system.Journal of Artificial Intelligence Research, 20:379–404, 2003.

17. OWL Services Coalition. OWL-S: Semantic markup for web services,2003. OWL-S White
Paper http://www.daml.org/services/owl-s/0.9/owl-s.pdf.

18. Pellet. Pellet - OWL DL Reasoner, 2003. http://www.mindswap.org/2003/pellet.
19. D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automating DAML-S web services

composition using SHOP2. InProceedings of 2nd International Semantic Web Conference
(ISWC2003), Sanibel Island, Florida, October 2003.

