Planning for Semantic Web Services

Evren Sirirt and Bijan Parsi

1 University of Maryland,
Computer Science Department,
College Park MD 20742, USA
evren@s. und. edu
2 University of Maryland, MIND Lab, 8400 Baltimore Ave,
College Park MD 20742, USA
bpar si a@ sr. und. edu

Abstract. Using Semantic Web ontologies to describe Web Services has proven
to be useful for various different tasks including service discovad/@mposi-

tion. Al planning techniques have been employed to automate the composition
of Web Services described this way. Planners use the description ofréhe p
conditions and effects of a service to do various sorts of reasoningt &loav

to combine services into a plan. OWL-S 1.1 will support the descriptionef th
preconditions and effects of services using OWL statements similar to &oms
Semantic Web Rule Language (SWRL). Thus, planners are requireader-u
stand the semantics of OWL in order to evaluate such preconditions. léawev
planners typically support only fairly limited reasoning capabilities whichho&n
handle the expressivity of Semantic Web ontologies. In particular, plartyg-

ically make the closed world assumption, whereas OWL has open worldnsem
tics. In this paper, we demonstrate how an OWL reasoner can be intkgrite

an Al planner to overcome these problems. We identify the challengestofgv

the service descriptions and reasoning about them when OWL is usestiibge
preconditions and effects. We also investigate the efficiency of suchegrated
system and show how OWL reasoning can be optimized for this systentlyFina
we present the performance results of our prototype implementation.

1 Introduction

The Semantic Web vision is of a world where loosely coupladependently evolv-
ing ontologies provide common understanding between bgémeous agents, systems,
and organizations. The Web Services vision is of a world eth@psely coupled, inde-
pendently evolving (typically software) components. Saleurrent efforts (OWL-S,
SWSI, WSMO), are attempting to integrate the two visions, iab produce a world
where Semantic Web ontologies supports greater automefigveb Services related
tasks, such as service discovery and composition. For thisoge, the OWL-S [17]
language was developed to provide a set of ontologies taibesservices using the
Web Ontology Language (OWL) [4].

Recently there has been a lot of work applying Al plannindntégues to the Web
Service composition problem. The straight-forward appinda to map service descrip-
tions to planning operators and directly use existing plagsystems. OWL-S allows

for describing services in ways amenable to planning. Fampte, it supports (in prin-
ciple) describing the preconditions and effects of Atomicfeésses. Such AtomicPro-
cess descriptions are easily treated as planning operators

All existing versions of OWL-S have left the particular lage for encoding pre-
conditions and effects unspecified. Consequently, tréoslachemes from OWL-S to
particular planning formalisms have had to insert their @wnodings of preconditions
and effects into the translated operators. As an unsungrsisult, the translated precon-
dition and effect formulas are easily handled by those ptansystems. Unfortunately,
the typical logic for expressing preconditions and effécta planning system is quite
differently expressive than RDF and OWL do. So, these syssemsot exploring what
it would be like to plan against actual encodings of worldesthat we expect to find
on the Semantic Web. The forthcoming OWL-S 1.1 forces theeiggumaking the de-
fault language for encoding service preconditions andceffa variant of the Semantic
Web Rule Language (SWRL) [10]. In order to evaluate such féasplanners must
understand the semantics of OWL.

There are many likely impedance mismatches. For examanpts typically as-
sume that they have the complete information about the wBiftte it is assumed that
planner knows all the objects and the relations, they usgedlovorld reasoning with
negation as failure. However, OWL has open world semanticause on the huge and
only partially knowable World Wide Web a statement cannoabgumed true on the
basis of a failure to prove it.

In this paper, we demonstrate how an OWL reasoner can be ategwith an
Al planner to overcome these problems. The reasoner is os&oie the world state,
answer the planner’s queries regarding the evaluationeafgmditions, and update the
state when planner simulates the effects of services. Wedf#scribe the challenges
of modeling service preconditions and effects and worltestsing OWL, and then
examine the impact of this on the planning process.

Specifically, we integrate the SHOP2 HTN planning systenj {4ith the OWL
DL reasoner Pellet [18]. This work is an extension of our pwork for planning over
OWL-S process models using SHOP2 [19]. In this work, we cotmagnon the OWL
DL fragment of the OWL language.

We also investigate the efficiency of such an integratedeaysind show how OWL
reasoning can be optimized for this system. Finally, wegamrethe performance results
of our prototype implementation.

2 Preliminaries

2.1 Classical Planning Representation

In classical planning representation a state is a set ofgrbterals expressed in a first-
order language. An action is an expression specifying whiskorder literals must
belong to the state in order for the action to be applicabid,vahich literals the action
will add or remove in order to make a new world state. An ajpholds in states iff

p € s. If g is a set of literals with variables,satisfiesy (denoteds |= g) when there is
a substitutiors such that every positive literal of(g) is in s and no negated literal of
o(g)isins.

In classical planning, a planning operator is a triple (haméeo), precondo), ef-
fectgo)). Effects of an operator can be positive or negative dffects (o) (generally
referred as the add list) represents the set of literalswhbbe added to the state and
effects (o) (generally referred as the delete list) represents thefdigdrals that will be
removed from the state. An operatois applicable in a statewhen the preconditions
are satisfied in the state, i.e}= precond(o). Most planners represent the world state
with a relational database and thus precondition evalnasiovery fast. Applying the
effects of an operator is done by adding or deleting entris the database.

These definitions were based on the initial modeling of thRIF'E [6] system. Cur-
rently, widely accepted planning representations use mxjpeessive precondition and
effect descriptions [8]. For example, preconditions maytam disjunctions, quantified
expressions and some form of axioms. The effects may be timmali and may also
contain universally quantified expressions.

2.2 HTN Planning and SHOP2

HTN planning is similar to classical planning in that eachridatate is represented by a
set of literals and each action corresponds to a state ti@ndiowever, HTN planners
differ from classical Al planners in what they plan for, analahthey plan for it. The
objective of an HTN planner is to produce a sequence of axtibat perform some
activity or task. The description of a planning domain imlgls a set of operators similar
to those of classical planning, and also a set of methodh,&aghich is a prescription
for how to decompose a task into subtasks. Planning prodegdsing methods to
decompose tasks recursively into smaller and smaller skagtantil the planner reaches
primitive tasks that can be performed directly using thepiag operators.

Many service oriented objectives can be naturally desdrivgh a hierarchical
structure. HTN-style domains fit in well with the loosely @bed nature of Web Ser-
vices: different decompositions of a task are independethe designer of a method
does not have to have close knowledge of how the further deaositions will go. Such
hierarchical modeling is the core of the OWL-S [17] processlehdo the point where
the OWL-S process model constructs can be directly mappedrte iHethods and
operators[19].

SHOP2 [16] is a domain independent HTN planner. A distircteature of SHOP2
is that it generates the steps of each plan in the same orakethibse steps will later
be executed, so it knows the current state at each step oflahaipg process. This
reduces the complexity of reasoning by eliminating a grea df uncertainty about
the world, thereby making it easy to incorporate substhaexpressive power into the
planning system. Thus SHOP2 can do axiomatic inferencegangymbolic/numeric
computations, and calls to external programs.

2.3 Description Logics

Description Logics are a family of class-based knowledgeeagentation formalisms
[1]. A DL knowledge base typically comprises two componemtsTBox” and an

“ABox”". The TBox contains intensional knowledge in the foafra terminology and the
ABox contains extensional knowledge that is specific to tiividuals of the domain

of discourse. Intensional knowledge is usually thoughttoathange and extensional
knowledge is usually thought to be contingent, or dependera single set of circum-
stances, and therefore subject to occasional or even corsiange [1].

In DL implementations, core inference is typically the dstency check for ABoxes,
to which all other inferences can be reduced. For examplegkihg if an individ-
ual a belongs to a concept terd in an ABox A can simply be done by checking
if Au{a:—C?} is not consistent.

There is a direct correspondence between DLs and OWL. In @afl. DL and
OWL Lite can be viewed as expressive Description Logics, withontology being
equivalent to a Description Logic knowledge base. In paldic OWL facts (type as-
sertions, property assertions, individual equality aretjirality) corresponds to ABox
assertions and OWL axioms (subclass axioms, subproperynaxidomain and range
restrictions, etc.) correspond to TBox knowledge.

2.4 Syntax and Notation

In our Web Service examples we will use a syntax similar te ¢fidhe Planning Do-
main Definition Language (PDDL) [8] since it is a middle polb@tween the OWL-S
surface syntax [15] and SHOP2'’s syntax. To express pretiongiand effects we will
use a syntax similar to N3 (see Figure 1). We will ignore thmespace prefixes for the
URIs unless it is significant, e.g. rdf:type. Note that ouwaee descriptions do not have
output specifications but only input specifications. Sinlegping operators tradition-
ally do not have outputs, OWL-S outputs are generally encaddéahowledge effects
[19]. We will use the classical DL syntaxi(V, —) instead of verbose OWL names
(someValuesFrom, allV aluesFrom, complementO f) to describe concepts.

(:action register-course

:paranmeters (?student - Student ?course - Course)

:precondition (and (?course hasPrerequisite ?another Course)
(?student passed ?anot her Course))

ceffect (?student registered ?course)

Fig. 1. A service that registers a student to a course. The precondition is thatuthent has
passed the prerequisite course. The student is registered to the asuhseeffect of executing
this service

3 Integrating an OWL Reasoner with a Planner

Integration of an OWL reasoner with a planner means that ah@planner’s interac-
tion with the state will be done by the reasoner. First, wettde is actually represented
as an OWL knowledge base. Any statement entailed by the KBigaad to be true in
the state. Evaluation of preconditions is done by the rezrstipdate to the state by the
application of effects is also handled by the reasoner. BHewing sections explain
the challenges of this integration. We do not discuss thadmwess and completeness
of the integrated system because it trivially follows frdme fact that SHOP2 is sound
and complete as long as its theorem proving is sound and edenpl

3.1 Operator Definitions

We want to change the classical planning operator defisitguth that preconditions
and effects will be written with OWL. First we need to determimhat kind of OWL
statements can appear in operator preconditions and effeat this purpose, we will
look at what kind of formalisms have been used in planningroomity and how these
can be used in our context.

The original STRIPS [6] language allowed the use arbitragyl-formed formulas
in first-order logic for preconditions and effects. Howedsfining a semantics for this
formulation was problematic [13]. Thus, in subsequent woekearchers have placed
some restrictions on the nature of the planning operators.

Typically, preconditions and effects contain only firstter literals. This means that
only SWRL atoms, which are in essence OWL facts (ABox asses}tinmith variables,
can be used and we should exclude usage of arbitrary OWL axjbBtsx axioms) in
operator definitions. This is also intuitive because thersi in ontologies are used to
model the world as we know it. They represent the nature ofabed, e.g. student
is always subclass of person, whereas the facts about di@ild represent our current
knowledge that may change over time, e.g. a person may geadod no longer be a
student.

Planners normally allow negated atoms to appear in pretiondi Planners gen-
erally operate with a closed world assumption and treat rmgas failure. For ex-
ample, a registration service may have a condition that pelyple who are not al-
ready registered may use that service and express thishattolowing precondition:
not(?person rdf:itype Registered). With NAF this would evaluate to true whenever
we cannot prove the person is registered. However, with egetd semantics failing
to prove that the person is registered may just mean that wk kisow if person is
registered. To make sure that person is not registered, w¢ avatronger condition
such as{person rdf:type N ot Registered) where N ot Registered is the complement
of Registered. As SWRL does not allow negated atoms appear in rule bodiealsge
restrict the preconditions to contain only non-negated SVaRIms.

One restriction planners impose on operator preconditiokseffects is that only
the variables defined as parameters can be used. It is easy that we cannot allow
arbitrary variables to appear in effects because all Iéex@ add to the state should be
ground. However, this restriction can be relaxed as donkdrPlanning Domain De-
scription Language (PDDL) [8] and implemented in expresgilanning systems like
SHOP. In particular, it is possible to use existentiallympifeed variables in the operator
preconditions and universally quantified variables in tfiects. When the variables in
effects are universally quantified, we do not have the praldéunground variables be-
cause the variable will be bound to every instance in the stdte existentially bound
variables in the preconditions may also appear in the eff@giong as it is guaranteed
that there will be only one substitution for that variabfehkre is more than one substi-
tution and planner chooses one of these options arbitrdwifing planning all the rest
of the plan may depend on this choice. Since there is no wageihg this arbitrary
choice in the plan generated (only the variables in the perars can be known) there
is no guarantee the same binding will be chosen during theugéiea of plan.

The restriction about variables do not apply to method prditions. Since method
descriptions in SHOP2 do not have any effects it is possibiese existentially quanti-
fied variables regardless of how many bindings for thoseatiées may exist. Choosing
a binding for this variable becomes a nondeterministic thiarg point for SHOP2. This
feature is highly used in practice along with some heussdiicout which bindings are
most likely to yield a plan [16].

One problem about limiting use of variables in effects arigden the effect of
an action is creating a new object that did not exist befolgs problem emerges as
a difficulty in modeling in some planning domains (see thel&stdomain in 2002
International Planning Competition [7]) and becomes uibiqs when using OWL-
S. Since OWL (and RDF) is based on triples, n-ary predicatest beidescribed using
some (possibly anonymous) intermediary individuals. &weonymous individuals, or
so called bnodes, actually represent existential varsahléhe KB. Suppose the service
description shown in Figure 2, which makes an appointmerda feerson with a doctor
at a given time. Normally, this effect could be representil athree variable predicate
such asuppointment(?p, ?d, 7t). But using OWL requires us to define an additional
object, i.e.?appt variable, that will specify the relation between thesedhwbjects.

(:action rmake-appoi nt ment
:paraneters (?p - Person ?d - Doctor ?t - Tine)
:precondition ...
ceffect (and (?d hasAppoi nt nent ?appt)
(?p hasAppoi nt nent ?appt)
(?appt rdf:type Appoi nt ment)
(?appt appointnentTime ?t)))

Fig. 2. A simplified service description where persgmmakes an appointment with doctaf at
time 7t.

These additional instances can be seen as the output ofrtheesé.e. the service
creates a new appointment instance as an effect of its éarcBut modeling these
variables as outputs of the service would not be appropbia¢ause output of a service
is considered to be some data returned by the service akeusgan of the service.
It is more proper to define a special category of variablesstinguish these“purely
syntactic” variables from variables which are relevanthe planning problem. For
example, in our implementation we used a simple syntax baskdion where any
variable that starts with a character (as in Prolog don't care variables) is treated as
an anonymous node rather than an existential variable.

Planners use axiomatic inference to infer conditions treewmot in the world state.
This extension establishes a distinction between two etae$ predicates used in the
domain: primitive and derived predicates. Derived pre@isaan be deduced from other
primary and secondary relations whereas primary predicatetrue only if they explic-
itly exist in the state. Including derived predicates in #ffeects of operators causes a
problem as we will discuss in detail in Section 3.3. Commadgepted solution to
this problem is to allow only primitive relations to appearéffects of operators and
restrict derived predicates to appear only in precondstidimis is quite an inconvenient
restriction for OWL.

3.2 Precondition Evaluation

The applicability of a planning operatoin a stateS is defined to be the satisfiability of
its precondition inS. In other words, a planning operator is applicable if itcpredition
is the logical consequence of the state, writterfds: precond(o). Preconditions are
generally defined as conjunctions and since we have defiaggriconditions can only
contain OWL facts (or ABox assertions in DL terminology) pbgswith variables, a
precondition expression becomes equivalent to a conpmétBox query [11]. When
the precondition expression does not contain any varigptesondition evaluation be-
comes boolean query answering, i.e. answering yes or no. \ieem are existentially
quantified variables then we also need to generate the l@baidings that makes the
conjunctive formula logical consequence of the state.

One important point in precondition evaluation is the pnessof existentially quan-
tified variables. The satisfiability of the preconditionsuatly depends on whether we
want to get the variable bindings for these existentialalzlgs or not. This is a direct
consequence of open world reasoning. Consider this simplagle: Suppose we have
a simple query{p hasChild?c). If we don’t want to get the variable bindings fo¢
then a KB containing only these assertidBarent = 3hasChildT, John:Parent}
would satisfy the query with the binding’p < John} because we know thatohn
has a child even though we do not know who that child is. On therdhand, when we
want to bind the variabl&c to a known individual, the query would fail for the very
same KB. The same behavior would be observed when there angraous individu-
als, individuals with no URI reference, in the KB.

Since the precondition evaluation highly depends on therpmétation of these ex-
istentially quantified variables we need to define a clearasgits as to which inter-
pretation will be preferred. The OWL query language prop{iauggests to label the
variables asnust-bind may-bind anddont-bindto control this behavior. This is also
consistent with ABox query answering schemes where soniables are labeled as
distinguishedmeaning they should be bound to a value.

Labeling the existential variables in preconditionglaat-bindvariables cannot be
done arbitrarily. A variable isctiveif it is used in another context, e.g. an operator
may use it in the effects or a method may use it as an input obtask. Anactive
variable should always be bound to a known individual to emsiat we always have
ground termsinactive variables can be labeled dsnt-bindor must-bindat will by
service writer. It is preferable that an existential valgstat is not labeled either way
be interpreted as@ont-bindvariable since this way we can benefit from the open world
semantics of OWL to continue planning in the face of incongsiess in the KB.

As we have mentioned in section 2.1, current state of thelamnpg systems use
more expressive constructs in preconditions such as disjurs and quantified expres-
sions. Evaluating a disjunctive would be equivalent to arévg a disjunctive query.
Note that answering disjunctive queries cannot simply beedwy answering each dis-
junct separately because there are cases when the quéfrisitségical consequence
of the KB but none of its disjuncts are [11].

Universally quantified expressions in preconditions alsmates a problem with
open world semantics. Consider this simple precondif{eh:)(P hasChildz)(z: Male)}
where it says that all the children & should be male. The way planners evaluate quan-

tified expressions is with the closed world assumption whérde explicit children in
the KB are found and tested with the condition. Then if we aersthe following KB
{ParentWithNoSon=VhasChildFemale, Female = =Male, John:(>1hasChildn
ParentWithNoSon)} this closed world interpretation of the query would succaled
though we know for sure that John has at least one daught@n(ag just don’t know
who she is).

In most real world problems, preconditions involve somallofnumerical compu-
tation (i.e., comparison). It is foreseeable that a lot ofises will use expressions such
as the built-in primitives of SWRL to express these kind ofcpralitions. Consider the
precondition of the book buying service shown in Figure 3.0Ak evaluate this precon-
dition at two steps. In the first step, we do the query in our IsRlescribed above and
bind the variableSprice and?limit to actual values. In the second step, we compare
these two values and verify the condition holds. With thigrapch there are cases again
where we can get incomplete results. Consider another ttondihere{(?p hasAge
?age), (Tage > 18)} and a KB {PersonOlderThan40 = FhasAgeM oreT han40,
John:PersonOlderThan40} where MoreThan40 is defined as an XML Schema
type with the restriction on its minValue to be greater thanla our KB, we don't have
explicit information about John’s age but we know thap — John} satisfies the con-
dition (supposingage is adon’t-bind variable). But the expressivity of OWL cannot
handle more complex conditions, like the one in Figure 3,tsody be preferable to
have another module that processes these expressions.

(:action buy-book
:paraneters (?b - Book ?cc - CreditCard)
:precondition (and (?b hasCost ?price)
(?cc hasAvailableLimt ?limt)
(?price < ?limt))
reffect ...)

Fig. 3. A simple book buying service where the available limit on the credit cardldha higher
than the price of the book

3.3 Applying Effects

The effects of an operator are applied to the current stasémalate the action. Ap-
plying an operatow to a states transforms it into a new state denoted &y, =
apply(o, s). After the application of effects, the atoms in the positéfects of the op-
erator should be entailed by the state, iggply (o, s) = ef fects™{o}, and the atoms
in the negative effects should not be entaileehly (o, s) - ef fects—{o}.

Applying the positive effects of an operator means addivg aesertions to our KB
which may cause inconsistencies. For example, a serviceamasrtise a description
where the effect of the service is given 8pdrson president/ S A) saying that you
will be the president of USA after running that service. Hoer if the current KB
contains the information about the current president there already exists another
distinct individual who has the president property withueal/.S A and the president
property is defined as InverseFunctionalProperty, themngdthis new assertion will
cause an inconsistency. When there is an inconsistency iKBh&ny conclusion can
be deduced so we cannot guarantee the correctness of therfrasults.

Most planners assume that modeling the planning operatorsatly is the respon-
sibility of the person who supplies the domain. The sounslaesl completeness of the
planners are proven with respect to correct domain degmmte.g. a blocks world do-
main where an operator causes a block to be in two differ@egslat the same time will
cause most planners generate unsound plans. Since we &reydeth Web Service
descriptions that come from various different sources wamoaguarantee the correct-
ness of these descriptions. For this reason, a plannerdshejatt the application of an
operator when its effects cause an inconsistency.

Negative effects cannot cause an inconsistency in the KBusecof the monotonic
nature of our reasoning. Removing assertions from a camgigB cannot cause it to
become inconsistent. However, we have the problem of KB/ifgrthe same assertion
from other facts even after we remove that assertion fronKi.eFor example, an un-
register service may have a negative effect which requiedeletion the fact’ferson
memberClub). But, if the KB includes another facC{ub hasMembef person) such
that hasMember is the inverse property of member then westilillderive the same
conclusion as before. This is exactly why planning systerakenthe distinctions be-
tween primitive and derived predicates and do not allowveeripredicates in effects
(see section 3.1).

Unfortunately, restricting the usage of derived predisateeffects makes it nearly
impossible to model any action in OWL. An OWL propeftys a derived predicate if
it satisfies any of the following conditions:

It has a subproperty;(C p = q(x,y) — p(z,y))

It has an equivalent property € ¢ = q(z,y) — p(z,y))

It has an inverse property € ¢~ = q(z,y) — p(y, z))

It is a symmetric property (Symmetric= p(z,y) — p(y, z))

— Itis a transitive property (Transitive= p(x, y) A p(y, z) — p(z, 2))

A type assertion in OWL such as ¢df:itype C) is equivalent to a single variable
predicate in the forn®(z). This type assertion would be a derived predicate if ofzss
meets any of the following conditions:

It has a subclasd{ C C = D(z) — C(z))

It has an equivalent clas€'(C D = D(z) — C(x))

It is defined to be the range of a properprdfs:rangeC = p(z,y) — C(y))

It is defined to be the domain of a properpyrfifs:domainC = p(z,y) — C(x))

Note that being a subclass of some restriction could alseed@uo be a derived
predicate, e.gD C Vp.C' A D(z) A p(z,y) — C(x). Itis even hard to enumerate all
these case because the combination of cardinality réstrictnominals and general
inclusion axioms may cause class membership to be derivet dther facts.

If we allow derived predicates to appear in negative effdus we need a way to
make sure that statement will not be inferred after the effeapplied to the world
state. One possibility is to make the reasoner delete aliela¢ed statements from the
KB until the statement in question is not entailed by the KB/e@ the expressivity of
OWL DL this is quite a hard task. Furthermore, there is no deitgistic way to control
this behavior. For example, in the KBe: A, z: B} if we want to deleter: A M B then

we can either delete: A, x:B or both to have the same effect. Another possibility is
to make the service writer include all the enumerationsegioginedicates that the truth
value depends on, in the negative effect list. This workd Weelsimple domains but
gets quite hard quickly when the ontologies and definiticgtoime complex. It is even
harder in the distributed setting of the Web where a servigeemwmay enumerate all
the possibilities in the description to the best of her kremgle but the client who uses
that description may have access to another ontology tltgahants those definitions
with some new descriptions with dependencies not mentiontte negative effects.

4 Implementation and Optimization Techniques

The performance of the planning system is considerablytgtewhen the precondi-
tion evaluation of operators and methods are done by theprewing. During a plan
generation, planner will do hundreds of precondition exiins so the reasoner needs
to handle these queries very fast to be at all workable.

A significant majority of the preconditions consist of camjtive expressions so we
will focus on how to optimize conjunctive queries. As we hdisgcussed in section 3.2,
operator preconditions (generally) do not contain vadgalwhereas method precondi-
tions have many existentially quantified variables. If thegondition does not contain
any variables we just need a yes/no answer, whereas thengiitons withmust-bind
variables then we have to generate answer sets for the sé e

The existing conjunctive ABox query answering algorithm4,[12] reduce the
problem of query answering to one or more KB satisfiabiligtpems. The main idea is
to consider a conjunctive query as a directed graph whenedties are either variables
or individual names (constants). In addition, concept arel terms provide labels for
nodes and edges respectively. For example, the g{(@ryrdf:type Start), (?z path
7y), (?z path?z)} corresponds to a graph with three nodes and two edges. When the
query consists of one connected graph then the query carsheead with one satisfi-
ability test.

Answering queries with only one term, i.e. the query graphraedges, is equiv-
alent to an entailment check. For example, the querydf:type Rover) is entailed
by the KB S if and only if {S U (A rdf:type /Rover)} is not consistent. When the
query contains multiple terms, i.e. the query graph has ritae one edge, then the
technique of “rolling up” is applied to transform the quentd an equivalent query
with a single concept term. For example, the following quést has no variablegC
rdf:type Computer), (C manufacturedByM), (C hasCPUCPU), (CPU cpuType
Centrino)} can be transformed into the following concept tetth{. manufacturedBy
{L} N 3hasCPU. {CPU} 1 JepuType{Centrino})). The query can now be an-
swered by adding the negation of this concept to the indaliduand then checking
if the KB is consistent. If the query contains multiple disoected components, each
connected subcomponent can be rolled up to one individuhiesied separately.

Rolling up technique is quite effective when we don’t neeel wariable bindings
because one query that contains multiple terms can be aedweéth one satisfiabil-
ity check rather than multiple entailment tests. Howewuss technique is not efficient
when we also want the variable bindings. The variable bigslare returned by replac-

ing each variable with one individual, rolling up the quendanswering the boolean
query. One must try every possible combination of bindimggdt all the answers. [12]
proposes an optimization technique that attempts to rethe@umber of candidate
individuals. The idea is to roll-up the query into a distirgiied variable prior to substi-
tuting it with any individual name. The concept is used toiege the list of individual
names corresponding to instances of the concept. Thevexdriadividuals are used as
the candidates for the distinguished variable.

This technique reduces the number of satisfiability teststilitries unnecessary
tests. Consider the previous query with all the individushes are replaced with vari-
ables{(?c rdf:type Computer), (?c manufacturedBy’m), (?c hasCPU?cpu), (?cpu
cpuType?t)} where we want to get all the computers, their manufactutkesCPU
they have and the type of these CPUs. Suppose we have 10 amsmdnufactured
by 10 different manufacturers and each computer has onlyCété (for a total of 10
distinct CPU instances) and three types of CPUs, Pentiugrgjiim4 and Centrino. In
the original setting, we need to try each individual. Sineehave 33 individuals, as-
suming nothing else exists in the world, we could try evempnbmmation of bindings for
a total of33* ~ 1186000 consistency tests. The optimization described above would
help us to reduce the number of candidates so we would not trge a manufacturer
as a candidate computer. Therefore, we have 10 differesikplittes for variables’c,
?m, Tcpu and 3 candidates fdtt. The algorithm still tries all possible combination of
these bindings yield a total af) x 10 x 10 x 3 = 3000 tests.

The problem with this approach stems from not having thetgkid see why a
binding fails. For example, if computer1 is manufactured by\/1 then a binding
with C1 and M2 will fail no matter what candidates we try for the other vatés.
Unfortunately, it is not possible to learn the dependenbigsveen variable bindings
using the rolling up technique. For this purpose, we proosew technique where
each individual term in the query is tested separately asntailment test. For the
given query example, given a candidate binding for a compugewould try the 10
different manufacturers and find the one binding that is tiggchl consequence of the
KB. Then we would try 10 different CPU bindings, out of whichlp one succeeds.
Then we try the remaining 3 candidates for the CPU types.dretid, we end up trying
only a total of10 x (10 4 10 + 3) = 230 consistency tests.

Computing the likely candidates itself is a costly opematim the example query
we have four distinguished variables so we need to perfomifstance retrieval op-
erations. Generally, reasoners realize the whole KB upaditg and this retrieval op-
erations become cheap. Unfortunately, in our setting @eim constantly changing
the current state possibly invalidating the cached reslilis much preferable to use
the optimized instance retrieval algorithms designed Joragnically changing ABoxes
[9]. The motivation of this approach is to eliminate all oétinrelevant individuals with
only one consistency check. Obvious instances of the comesgnl not be tested at all
and the rest of candidates can be eliminated with a binatjoparg method. The idea
for retrieving the instances of conceftis to add{z:—~C} assertion for every: that
cannot be eliminated by inspection. If the new KB is consistee conclude that no
more instances df’ exist in the remaining set, otherwise KB is partitioned td had

this procedure is continued at each partition. Thus, at seghbinary partitioning may
eliminate half of the candidates using a single test.

Computing the candidates by rolling up the whole query gieesmany possibil-
ities. If we compute the candidates based on each statemérha bindings done at
previous steps then we will find a smaller number of candgltitat are more likely to
succeed at later steps. When we concentrate on the stateshémsquery we can also
make use of the existing assertions in the KB more efficiefitlymost DLs looking
at the existing role assertions is enough to determine ifingdlividuals are related to
each other with a given role. However, in the presence of nalaithis is not the case
any more and we may get incomplete results with this apprdaiehwe use structural
inspection to find obvious answers and then use optimizetvat on the rest of the
individuals we can get complete results efficiently. Fomagke, if the statement in the
query is (s p o) we can first examine the existing role assertions to get bvéoas
answers. Then we can retrieve the instances of the coapept} to get the remaining
bindings for?s. Note that, if all the individuals are related with expliagsertions then
only one consistency check (as described above) will be ginéa eliminate all the
other possibilities.

When combined with an iterative query answering mechanissnagiproach may
help to avoid a lot of consistency tests. In a planning probieost of the time, finding
the first plan is enough (e.g. if we are not trying to optimizeoat function). In this
case, we can first try the obvious candidates and delay th&stency test as much as
possible. If the planner cannot find a plan with the initiaidings then it would keep
asking the reasoner for more bindings which in the end woetpiire us to make an
expensive consistency test. But there is a good chance ghan &an be found with the
initial bindings.

5 Experiments

We have done some experiments (1) to evaluate the optimiz&tichniques we de-
scribed and (2) to compare the performance of the integststm with the original
planning system. We have built a prototype system by integyahe OWL DL rea-
soner Pellet [18] with the Java version of SHOP (JSHOP). Weota experiments on
a Windows machine with a Pentium Centrino 1.6 GHz CPU and 1@Bary.

Since there are no standard benchmark problems for semmpasition, we have
done our experiments with the Rover domain which was useduki2002 International
Planning Competition [7]. In this domain a collection of eps navigate a planet sur-
face, find samples and communicates the results back to arlane have translated
20 problem files to OWL and encoded the original JSHOP domaduirsyntax where
precondition and effects are written as SWRL atoms. Sineadihinain was using n-ary
predicates, e.g:an_traverse(rover, locl, loc2), we had to translate them using extra
individuals, e.g.fover cantraversepath, path beginslocl, path endsloc2). For this
reason, OWL versions of problems were slightly differentttize original, especially
the harder problems contained significantly more indivislua

We first implemented the three different query optimizatmechanisms and ran
them on the test cases. Figure 4(a) shows the results of pariments. Algorithm A is

the original optimization technique as suggested in [12Joinputes the candidates for
each variable by rolling up the query to that term and perfogithe binary instance
retrieval algorithm. The query then is rolled up for each baration of the candidates.
Algorithm B also computes the candidates in the same manrneudes the variable
dependencies to prune the possibilities that will obvipéel. Algorithm C on the other
hand does not compute the candidates in the beginning. €a&tediare computed on a
need basis. As some of the other variables are bound to aetluals, the candidates for
the remaining variables are computed using these valuesrelults show Algorithm
C always performed significantly better than the otherseNloat Algorithm A and B
was unable to finish all the test cases even after a subdtamiaint of time. These are
still preliminary results that need to be confirmed with aevidariety of KBs.

Total Planning Time oot A 2 Maoim®__ Aot ©

9000

180 8000
160 7000
6000
5000

4000

3000

2000
w0
20 1000

0 0
12 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 20 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Time (sec)
of Consistency Tests

Problems Problems

() (b)

Fig. 4. Chart (a) shows the comparison of the total planning time spent by thearisHOP
system and the integrated JSHOP-Pellet system. Chart (b) shows themoiconsistency tests
done by each variation of the optimization methods.

We then compared the performance of the integrated syst#nthve original ISHOP
system. As we have expected original JISHOP performed hiatirery test case as
shown in Figure 4(b). But we should also note that Pellet thighly optimized to han-
dle large number of individuals. In our experiments, we atim to use Racer which
is highly optimized for such KBs. However, only way to comriaate with Racer was
through HTTP sockets which dominated the total time spedtiarthe end overall
performance was not any better.

6 Related Work

The most closely related work to ours is McDermott's Optoanpler [14]. Optop is
an estimated-regression planner that generates congpsitf Web Services where the
goal is given as a logical formula. This approach is appletdbatomic service descrip-
tions where we use HTN planning to deal with composite sergli&scriptions. Another
difference is that, in our work, we have focused on how to déthl the expressivity of
OWL ontologies and do reasoning during planning whereas gtaploys Horn-logic
axioms for inference.

There has been some work to combine Description Logics Withrng but with
a completely different approach. In [3] De Giacomo et al.grgjs using a DL frame-
work to plan for robot actions. This approach uses the famatibn of actions given
by propositional dynamic logics (PDL). The correspondeipe®veen PDLs and DLs
are exploited for an actual implementation using the reas@iL.ASSIC. Badea [2]
also makes use of this correspondence and presents twotideduygproaches, where
the existence of a plan corresponds to an inconsistency,@ewell as a satisfiability
based one, where planning is reduced to model constru&ith.approaches use PDL
framework to represent actions whereas we use DL formabsmpresent states.

Query answering has been investigated in a DL frameworkdhdi]in the Semantic
Web context [12]. In our work, we have used the sound and cet@ligorithms pre-
sented there and concentrated on optimizing the query aimgnéne. Our main focus
was to minimize the number of consistency tests without glmnthe main algorithm
and treating the consistency test as a black box operation.

7 Conclusions and Future Work

In this work we have investigated the issues of using planfon composition of Web
Services on Semantic Web. We examined the impact of using @Mkegcribe the pre-
conditions and effects of services. We have shown what featof classical planning
are not suitable in Semantic Web. In particular, we idertifiee challenges to write ser-
vice descriptions and reason about them with open world sgasand the expressivity
of OWL. These issues need to be addressed in order to develbwodd applications
on Semantic Web.

We have shown how an OWL reasoner can be coupled with a plaorreason
about the world state during planning. The efficiency of sadystem has been inves-
tigated and we presented novel optimization techniquesatbald be useful for query
answering in general. Our preliminary experiments withghegotype implementation
showed that the performance of planning system suffers dltleet characteristics of
DL reasoning. But it is also clear that there are plenty ofrojiation possibilities that
need to be investigated.

Querying large Semantic Web KBs using Description Logiceldaalgorithms will
most likely become an important and popular topic. Optirtidratechniques for query
answering is anticipated to get more attention in this odn#es a future work, we aim
to evaluate our optimization techniques more thoroughiggisntologies of varying
size and structure. We also think that examining the insbastcy results based on
clash dependencies could help us to speed up the eliminatticendidates that cause
us to repeat the consistency tests.

In our experiments, we have used domains coming from thepigriterature. As a
future work, we will concentrate on scenarios related ta@diveb Service composition
problems. As the new version of OWL-S becomes available weabtp find more real
world examples that we can use in our system.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Pelielefier, editors.The
Description Logics Handbook: Theory, Implementations, and Applicat@ambridge Uni-
versity Press, 2003.

2. L.Badea. Planning in description logics: Deduction versus satisfiab#ityite InEuropean
Conference on Atrtificial Intelligenc@ages 479—-483, 1998.

3. G. De Giacomo, L. locchi, D. Nardi, and R. Rosati. Classic planningnfabile robots. In
Proceedings of the FAPR-96 Workshop on Planning in Complex Envénotgi996.

4. M. Dean, G. Schreiber, S. Bechhofer, F. van Harmelen, J. ldend Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. A. Stein. Web Ontologyuaaygy(OWL) Refer-
ence. W3C Recommendation 10 Feb 2004 http://www.w3.org/TR/owl-ref/.

5. R. Fikes, P. Hayes, and I. Horrocks. OWL-QL - a language fdudgve query answering
on the semantic web. Technical Report KSL-03-14, Stanford UsilyeCA, 2003.

6. R. E. Fikes and N. J. Nilsson. Strips: A new approach to the applicatithreorem proving
to problem solving. In J. Allen, J. Hendler, and A. Tate, editRasadings in Planningpages
88-97. Kaufmann, San Mateo, CA, 1990.

7. M. Fox and D. Long. International planning competition, 2002.
http://www.dur.ac.uk/d.p.long/competition.html.

8. M. Fox and D. Long. PddI2.1: An extension to pddl for expressingptaral planning do-
mains, 2002. http://www.dur.ac.uk/d.p.long/pddI2.ps.gz.

9. V. Haarslev and R. Mller. Optimization strategies for instance retrievall. Horrocks
and S. Tessaris, editorBroceedings of the 2002 Description Logic Workshop (DL 2002)
volume 53 of CEUR Workshop Proceeding®002.

10. I. Horrocks and P. F. Patel-Schneider. A proposal for an alebrlanguage. IRroc. of the
Thirteenth International World Wide Web Conference (WWW 20892, 2004.

11. I. Horrocks and S. Tessaris. A conjunctive query languagddscription logic aboxes. In
Proc. of the 17th Nat. Conf. on Artificial Intelligence (AAAI 200@ages 399—-404, 2000.

12. I. Horrocks and S. Tessaris. Querying the semantic web: a Fayppaoach. IrProc. of the
13th Int. Semantic Web Conf. (ISWC 20@2)02.

13. V. Lifschitz. On the semantics of strips. In M. P. Georgeff and AL&nsky, editors,
Reasoning about Actions and Plapsges 1-9. Kaufmann, Los Altos, CA, 1987.

14. D. McDermott. Estimated-regression planning for interactions with seebices. InSixth
International Conference on Al Planning & Scheduli2g02.

15. D. McDermott. Surface syntax for OWL-S, 2003. http://www.darglservices/owl-
s/1.0/surface.pdf.

16. D. Nau, T. Au, O. lighami, U. Kuter, J. Murdock, D. Wu, and Fmén. SHOP2: An HTN
planning systemJournal of Atrtificial Intelligence ResearcB0:379-404, 2003.

17. OWL Services Coalition. OWL-S: Semantic markup for web servi2@83. OWL-S White
Paper http://www.daml.org/services/owl-s/0.9/owl-s.pdf.

18. Pellet. Pellet - OWL DL Reasoner, 2003. http://www.mindswap.or@Z&det.

19. D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automating DAMIveb services

composition using SHOP2. IRroceedings of 2nd International Semantic Web Conference

(ISWC2003)Sanibel Island, Florida, October 2003.

