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Abstract. The complexity of vehicular embedded systems is continu-
ously increasing and this can negatively affect their development cost
and time to market. One way to alleviate these issues is to anticipate
analysis of system properties at design time for early architectural re-
finements. In this paper, we present a licentiate work which aims at
contributing to this effort. In particular, considering the importance of
timing constraints typical of vehicular embedded systems, we leverage
Model-Driven Engineering for realizing an automatic approach which al-
lows the developer to perform timing analysis on design models, without
having to manually specify timing elements. The proposed approach,
starting from a high-level model of the vehicular embedded application,
generates a set of candidate models enriched with timing elements in a
semi-automatic manner. Timing analysis is run on the generated models
and, based on its results, the approach supports the selection of the best
candidate model for a specific, non-empty, set of timing constraints.
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1 Introduction

During the last decades, ever-growing complexity of vehicular embedded systems
development negatively affected their development cost and time-to-market [17].
To mitigate these issues, a common practice is to anticipate analysis of systems
properties at design time to drive early architectural refinements. In this paper,
we present a licentiate work3 which aims at contributing to this effort. More
precisely, we propose an approach to allow the developer to perform end-to-end
and delay timing analysis4 5 on design models without having to manually specify
their timing elements. Starting from a high-level model of a vehicular embedded
application, we provide a semi-automated mechanism for generating a set of

? Copyright held by the author.
3 Within the Swedish Higher Education Systems, the Degree of Licentiate is a third-

cycle qualification formally equivalent to half of the Degree of Doctor.
4 In the remainder of the paper we will refer to end-to-end and delay timing analysis

simply as timing analysis.
5 We refer the reader to [13] [18] for further details on timing analysis.



candidate models enriched with timing elements with the aim of enabling early
timing analysis. Leveraging the timing analysis results, we support the selection
of the best candidate model for a specific, non-empty, set of timing constraints.

1.1 Context
One of the first attempts in mitigating the increasing complexity of vehicular
embedded systems development was the establishment of different views [14],
each of which often exploiting a specific language, in the software development.
As a result, the vehicular software development was characterized by a plethora
of heterogeneous languages each targeting specific aspects related to a partic-
ular view. Nevertheless, the usage of heterogeneous languages introduced new
challenges towards interoperability, e.g., integration between general purpose
languages, e.g., UML, and domain-specific languages, e.g., AUTOSAR. In try-
ing to solve to these challenges, the vehicular embedded research community
developed a layered architectural language, namely EAST-ADL [2].

EAST-ADL proposes a top-down development process composed by four dif-
ferent abstraction levels, i.e., vehicle, analysis, design and implementation level.
Within EAST-ADL, interoperability is ensured by well-defined relationships
among elements in the different abstraction levels. Nevertheless, these relation-
ships are not leveraged in any mechanism supporting the automatic translation
of different artifacts through the EAST-ADL abstraction levels. For this reason,
automotive industry is currently pushing for having a closer linkage among the
EAST-ADL abstraction levels for enabling a seamless development chain that
takes into account relationships among different levels. Such a chain would im-
prove the development of vehicular embedded software by providing automation
of tedious and error-prone activities, e.g., transition from one level to another.
Towards this goal, the vehicular embedded research community is considering
the adoption of Model-Driven Engineering (MDE).
EAST-ADL. EAST-ADL [2] is an architecture description language for mod-
eling product-lines of vehicular embedded systems. Currently it is managed by
the EAST-ADL Association together with the European FP7 MAENAD project.
EAST-ADL proposes a view over the development process composed by four dif-
ferent abstraction levels, which implicitly ensure separation of concerns through
the different engineering phases. Each abstraction level is described by means
of metamodeling constructs. Figure 1 shows the abstraction levels together with
methodologies and languages used at each one of them. EAST-ADL does not
provide modeling constructs for representing the software implementation archi-
tecture. Instead, for the last abstraction level, i.e., implementation level, EAST-
ADL suggests the usage of existing modeling languages, e.g., AUTOSAR, the
Rubus Component Model (RCM).
Vehicle Level.The highest abstraction level is represented by the vehicle level,
which captures information regarding the system’s functionality. Feature mod-
els can be used for showing what the system provides in terms of functionality.
These models are decorated with requirements. The vehicle level is also known
as end-to-end level as it serves to capture requirements and features on the end-
to-end vehicle functionality.



Fig. 1: EAST-ADL abstraction levels

Analysis level. At the analysis level, vehicle functions are expressed, using formal
notations, in terms of behaviors and interfaces. Yet, design and implementation
details are omitted. At this stage, high level analysis for functional verification
can be performed.
Design level. At this abstraction level, the analysis-level artifacts are refined
with design-oriented details: while the analysis level does not differentiate among
software, middleware and hardware, the design level explicitly separates them.
Allocation of software functions to hardware nodes is expressed at this level too.
Implementation level. At the implementation level, artifacts introduced at the
design level are refined with implementation details. At this stage component
models, e.g., RCM, AUTOSAR, can be used to model the system in terms of
components and interactions among them. The output of this level is a complete
software architecture which can be used for code generation.

Rubus Component Model Rubus Component Model (RCM) is a component
model for the development of resource-constrained embedded real-time systems.
It is developed by Arcticus Systems AB in collaboration with Mälardalen Uni-
versity and it is currently adopted by several companies as alternative to, e.g.,
AUTOSAR. In fact, in contrast with its competitors, RCM offers high-precision
timing analysis together with a well-established supporting framework.

In the context of EAST-ADL abstraction levels, RCM is used at the imple-
mentation level (Figure 1). Its main goal is to express the software architecture
in terms of software functions and interactions among them. In RCM, the basic
entity is the so-called software circuit (SWC) which represents the lowest-level
hierarchical element in RCM and it encapsulates basic software functions. Each
SWC is defined by its behavior and interface. Interfaces manage the interac-
tions among SWCs via ports. RCM distinguishes between data and control flow.
Therefore, the interfaces have two types of ports: data ports for the data flow and
trigger ports for the control flow. SWCs are characterized by run-to-completion
semantics meaning that a SWC, upon triggering, reads data from the data input
ports, executes its behavior and writes data on the data output ports. SWCs
can be grouped and organized in assemblies, for decomposing the system in a
hierarchical manner. Modes are used to distinguish among different states of the
system. That is, each mode describes the architecture of the functions which



are relevant for that mode. Target entities are used for grouping modes that
are deployed on the same Electronic Control Unit (ECU). Moreover, they pro-
vide details regarding hardware and operating system. Node is a hardware and
operating-system independent abstraction of a target entity. Finally, System is
the top-level hierarchical entity, which describes software architecture for the
complete vehicular system. RCM facilitates analysis and reuse of components
in different contexts by separating functional code from the infrastructure that
implements the execution environment.

The RCM metamodel definition is part of the intended research contributions
of the Licentiate thesis.

1.2 Paper Outline
The rest of the paper is organized as follows. Section 2 describes the research
problem. Section 3 presents the proposes solution and the related research con-
tributions. Section 4 describes the work-to date and the current status. Finally,
Section 5 and Section 6 discuss the validation methodologies and related work,
respectively.

2 Problem Formulation
In this section, we discuss the research goal for the licentiate work, together with
the research challenges to be tackled towards its achievement.

2.1 Research Goal
Given the timing constraints typical of vehicular embedded applications, antic-
ipating timing analysis is a way for mitigating development issues, such as cost
and time-to-market. Within the EAST-ADL development methodology, the way
towards early timing analysis is hampered by the weak linkage between the mod-
eling language used at the implementation level - where timing analysis is usually
performed - and the design level. The goal of this licentiate research work is to
provide a semi-automated support for allowing timing analysis on design models,
without the need of manually adding their timing elements.

2.2 Research Challenges

RC 1 – Definition of a metamodeling characterization of RCM. Al-
though EAST-ADL does not fully embrace the MDE paradigm, the languages
defined for the abstraction levels are formalized by metamodeling. For this rea-
son we want to leverage MDE for automating the development of the vehicle
embedded software in EAST-ADL. To this end, all the involved languages have
to be provided with a proper metamodel definition. In our case, the challenge
is the definition of a metamodel for RCM, the language used at implementation
level.

RC 2 – Definition of a mapping between EAST-ADL design level
metamodel and RCM metamodel. Due to the lack of timing information,
high-precision timing analysis can not be performed at the EAST-ADL design
level. One way to solve this issue, is the automatic translation of design level
models to implementation level models, i.e., RCM models, on which timing anal-
ysis can be performed. RCM models contain in fact timing elements, e.g. clocks,



control-flow ports, to mention a few, that cannot be modeled at the design level.
These elements represent a variability points in the transition from design to
implementation level, meaning that more than one RCM model can be a valid
translation of a given EAST-ADL design level model. The challenge is to define
and implement a semi-automatic translation such that all the possible RCM
models for a given EAST-ADL design level model are produced without any
error-prone and time consuming manual activity. Semi-automatic in the sense
that, while timing elements (e.g., clock, control flow port) can be fully automati-
cally specified, their completion with actual timing properties (e.g., clock period,
wcet) is still guided by the developer.

RC 3 – Definition of a mechanism for the selection of the best RCM
model for a set of timing constraints. Starting from the generated RCM
models, the challenge is to define a mechanism able to, based on the analysis
results, select the RCM model which better meets the given set of timing con-
straints. In fact, at the end of the process, starting from a design level model,
either an RCM model is chosen or refinements of the design level model are
needed. This represents the last step for exploiting timing analysis results at
design level for early enabling software architecture refinements.

3 Proposed Solution and Intended Contributions

The contribution of the licentiate work presented in this paper, is the definition
of a process which, from a design level model, generates a set of candidate im-
plementation level models enriched with timing elements whose properties are
set at generation time by the developer. That is to say, the developer drives
the automatic generation of all the relevant combinations of timing elements by
inserting timing properties only once per element instead of having to manu-
ally edit all the generated models. At this point timing analysis can be run and
from its results, the best candidate implementation model, for a specific timing
property or a set of them, is selected. Figure 2 depicts the proposed approach
and it also provides a breakdown of the overall contribution in specific research
contributions (RCOs).

RCO 1 – RCM metamodel. This contribution, marked as 1 in Figure 2,
provides a metamodel definition for RCM. The metamodel has been realized as
an Ecore model, within the Eclipse Modeling Framework 6 (EMF). The defini-
tion of the metamodel comprised the addition of some modeling elements, e.g.,
connectors, as well as the refinements of already existing elements relations, e.g.,
ports and data element hierarchies.

RCO 2 – DL2RCM transformation. This contribution, marked with 2 in
Figure 2, provides a model to model transformation between EAST-ADL design
level metamodel and RCM metamodel (DL2RCM). The transformation has been
implemented by means of a bidirectional model transformation language, namely
Janus Transformation Language (JTL). To the best of our knowledge, JTL is

6 http://www.eclipse.org



Fig. 2: Research Contributions

the only transformation language able to deal with non-bijective transforma-
tions by possibly producing multiple results. The contribution of the DL2RCM
transformation is two-fold. On the one hand, it allows the automatic transla-
tion of EAST-ADL design level models to RCM models. On the other hand,
it does not impose restrictions on the generation of the RCM models, i.e., it is
able to generate all the possible RCM models for a given EAST-ADL design level
model. For instance, given the EAST-ADL design level model depicted in Figure
3a and considering the generation of clocks in the RCM models, the DL2RCM
transformation will produce the RCM models depicted in Figure 3b.
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Fig. 3: Source and target model examples for DL2RCM

RCO 3 – Mechanism for the best RCM candidate selection. This con-
tribution, marked as 3 in Figure 2, provides a conceptual mechanism supporting



the selection of the best RCM model for a specific, non-empty, set of timing
constraints as the last step in the process of anticipating timing analysis at de-
sign level for enabling early architecture refinements. For each generated RCM
model, timing analysis is applied. Analysis results together with a non-empty
set of timing constraints, are the inputs of the mechanism that checks analysis
results versus timing constraints to identify, possibly the best RCM candidate
implementation model. If the mechanism fails in identifying a candidate, early
architecture refinements at the EAST-ADL design level model may be needed.

4 Preliminary Work and Current Status
In [7], we present the metamodel definition for RCM which focuses on the defi-
nition of metamodeling elements representing the software architecture. A work
describing an extension of the RCM metamodel including the definition of new
structural elements and elements used for describing timing information is cur-
rently under review at the Journal of Systems and Software7. In the same work,
we also demonstrate the applicability of the RCM metamodel by conducting
an automotive application case study. In [8] we propose a two-phase methodol-
ogy which supports the extraction of timing models from EAST-ADL design-
level models with the aim of anticipate timing analysis at design level. Within
the proposed methodology, the software architecture at design level is auto-
matically transformed to all the meaningful implementation-level models. The
end-to-end timing analysis is performed on each generated implementation-level
model and the analysis results are fed back to the design-level model. The afore-
said methodology is based on a model-to-model transformation between models
conforming to the EAST-ADL design-level metamodel and models conforming
to RCM metamodel (DL2RCM). The DL2RCM transformation has been imple-
mented within the Eclipse Modeling Framework8 using JTL [9]. The proposed
methodology is concretely integrated in an industrial tool used by automotive
companies. We are planning to validate the methodology by means of an indus-
trial case study and submit the results of this validation to the International
Conference on Model Driven Engineering Languages and Systems9.

5 Validation
The works presented in [7], has been evaluated upon an industrial case-study. In
[7], we demonstrate the applicability of the RCM metamodel by defining a model-
to-model transformation between models conforming to the RCM metamodel
and models conforming to AUTOSAR [1]. The models describe a single-node real
time system composed of three components. Similarly, in [8], in order to prove
the applicability of the proposed methodology, we instantiate the methodology
within an industrial tool-suite, namely Rubus-ICE10 used for the development of
vehicular embedded systems. Also we are planning to demonstrate the validity
of the methodology with an industrial case-study mimicking the TIMMO2USE
break-by-wire validator [4].

7 http://www.journals.elsevier.com/journal-of-systems-and-software/
8 http://www.eclipse.org
9 http://www.modelsconference.org

10 https://www.arcticus-systems.com/products/rubus-ice/



6 Related Work
This section discusses some literature related to our problem and contributions.

6.1 Modeling Languages for Vehicular Embedded Systems

In this section we discuss modeling languages and methodologies specifically
tailored for the development of vehicular embedded systems.

AUTOSAR. AUTOSAR [1] is an industrial initiative to provide standard-
ized software architecture for the development of vehicular embedded systems.
Within AUTOSAR, the software architecture is defined in terms of software
components (SWCs) and Virtual Function Bus (VFB). VFB handles the virtual
integration and communication among SWCs, hiding low-level implementation
details. Unlike RCM, no particular focus was directed to specification and han-
dling of timing-related details.

AUTOSAR metamodel describes the software development at a higher level
of abstraction compared to RCM metamodel. Unlike RCM, it does not separate
control and data flows among software components nor differentiate between
the modeling of intra- and inter-node communication. Despite these differences,
there are some similarities between AUTOSAR and RCM, e.g., the sender re-
ceiver communication mechanism in AUTOSAR is very similar to the pipe-and-
filter communication mechanism in RCM. AUTOSAR is more focused on the
functional and structural abstractions, hiding the implementation details about
execution and communication. Whereas, RCM supports the modeling, analysis
and synthesis of the execution environment of software functions. Essentially,
AUTOSAR hides the details that RCM highlights.

TIMMO/TIMMO-2-USE. TIMMO [5], a large EU research project, is an
initiative to provide AUTOSAR with a timing model. To this end, it provides
a predictable methodology and language, called TADL [3] for expressing timing
requirements and constraints. TADL is inspired by MARTE [6] which is the UML
profile for the model-driven development of real-time and embedded systems.
TIMMO methodology makes use of the EAST-ADL and AUTOSAR interplay.
Although the TIMMO project has been evaluated upon prototypes, to the best
of our knowledge, there is no concrete industrial implementation of it.

TIMMO-2-USE [4], a follow up project, presents a major redefinition of
TADL and new functionality for supporting the AUTOSAR extensions regarding
timing model. Although both TIMMO and TIMMO-2-USE attempt to annotate
AUTOSAR with a timing model, this may be hard to accomplish as AUTOSAR
aims at hiding implementation details of execution environment and communi-
cation using the VFB.

TIMMO-2-USE proposes a methodology for the software development of ve-
hicular embedded systems solving particular issues related to the timing mod-
eling. The methodology is based on the EAST-ADL abstraction levels and it
introduces, for each level, a set of activities to perform in order to ensure the
software timing requirements. Compared to the proposed solution, the TIMMO-
2-USE methodology does not provide of automation nor supports early timing
analysis.



6.2 Model-Driven Engineering for Vehicular Embedded Systems

In the last decades, several works investigated how to automatize the inter-
play between EAST-ADL and AUTOSAR through MDE. In this respect, in
[19], the authors investigate the relationship between concepts of EAST-ADL
and AUTOSAR. The authors use three case studies as drivers for the empirical
establishment of these relationships. Nevertheless, the work only considers be-
havioral aspects and timing constraints from the control systems development
view. Thus, it might be considered as a first step towards the automatic synthesis
of an AUTOSAR architecture from EAST-ADL.

Similarly, in [10] the authors present a mapping between EAST-ADL and
AUTOSAR artifacts. Nevertheless the mapping is limited only on few EAST-
ADL elements and events. Furthermore, as EAST-ADL evolved, the mapping is
no longer valid.

The work in [15] aims at achieving model synchronization between SysML
and AUTOSAR using Triple Graph Grammars (TGG) [16]. The proposed ap-
proach is developed in an industrial project. The work represents one of the
first attempts in using MDE for achieving model synchronization within the ve-
hicular embedded domain. Nevertheless, compared to EAST-ADL, the adopted
SysML profile is very generic and it does not cover most of the vehicular aspects
of the software systems. On the other hand, having a more tailored language,
such as EAST-ADL, would make the synchronization hard to achieve due to the
underneath non-injective relations [12].

Although the work presented in this paper does not address design space
exploration, the generation of candidate models and their evaluation are two of
the four common steps for design space exploration. The work in [20] describes
a MDE approach which allows the automatic selection of the most adequate
modeling solution for application, platform, and mapping between application
and platform. The approach is based on an iterative algorithm which evalu-
ates a candidate model per iteration, until the optimum is found. With respect
our solution, such an approach does not generate all the candidate models in a
single execution; rather, by means of heuristics, it considers a model per itera-
tion. Similarly to the work proposed in this paper, in [11], the authors exploit
JTL, for an automatic deployment exploration technique based on refinement
transformations and platform-based design. More precisely, JTL is used for re-
alizing the so-called refinement transformations responsible for the design space
exploration. Differently from our approach, the refinements transformations are
endogenous, i.e., the involved source and target metamodels are the same, as the
source and target models both conform to the AUTOSAR metamodel.
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7. Bucaioni, A., Cicchetti, A., Sjödin, M.: Towards a metamodel for the rubus com-

ponent model. In: 1st International Workshop on Model-Driven Engineering for
Component-Based Software Systems, ModComp 2014, 29 September 2014. pp.
46–56 (2014)

8. Bucaioni, A., Mubeen, S., Cicchetti, A., Sjödin, M.: Exploring timing model extrac-
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