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Abstract. Providing domestic energy consumers with a detailed break-
down of their electricity consumption, at the appliance level, empowers
the consumer to better manage that consumption and reduce their over-
all electricity demand. Non-Intrusive Load Monitoring (NILM) is one
method of achieving this breakdown and makes use of one sensor which
measures overall combined electricity usage. As all appliances are mea-
sured in combination in NILM this consumption must be disaggregated
to extract appliance level consumption. Machine learning techniques can
be adopted to perform this disaggregation with various levels of accuracy,
with Hidden Markov Model (HMM) derivatives offering among the most
accurate results. This work investigates how sensor sampling rate affects
disaggregation accuracy obtained through HMM. Derived re-sampled
data was passed through HMM and the resulting accuracy compared
with the sampling rates. Correlation was observed and statistically ver-
ified. Two distinct groups of appliances were later identified, one which
was highly correlated and another in which correlation was not observed.

1 Introduction

A detailed understanding of their energy consumption can empower consumers
to modify their energy usage. This can lead towards a reduction in over-reliance
on peak-time energy as well as reduced energy usage overall. Such modifications
in energy usage patterns would have the effects of reducing the current high re-
quirement for reserve and spin-up plants and under-utilised consumption. Simi-
larly, they can potentially reduce the overall number of power plants in general,
leading to major system reliability, economic, and environmental benefits. To
understand usage patterns, modifications of energy must be measured. Either
the load on each appliance is individually measured and recorded before this
information fed into a central monitoring system, or the consumption pattern
as a whole can be measured and interrogated to determine load usage by indi-
vidual components. The former method is achievable with current technology
but is prohibitively expensive as it requires that measurement and information
transmission components be attached to every device in the system. The lat-
ter method, Non-Intrusive Load Monitoring (NILM) or Energy Disaggregation,



requires measurement at only a single point in the system. Unfortunately, the
problem of working out which appliances are drawing power from the system at
any point in time is computationally complex and has not yet been fully solved.
Various modeling approaches have been proposed for tackling such a problem.
However, previous research haven’t focused on the investigation of the impact
of appliances sampling rates on model accuracy. The aim of this research is to
analyse one of the most commonly used data sets for comparing Non-Intrusive
Load Monitoring techniques and ascertain how sampling rate affects model ac-
curacy. This analysis will be performed by building a Hidden Markov Model
across appliance channels responsible for the highest amount of power usage.
The specific question being research is: ”Is the relationship between sampling
frequency for feature extraction and selection in Non-Intrusive Load Monitoring
and model accuracy significant?”

The reminder of this paper is organised as it follows. Section 2 presents
related work on load monitoring in general, intrusive and non-intrusive monitor-
ing subsequently. It then reviews researcher works that have employed Machine
Learning for load monitoring. An experiment is designed in section 3 to investi-
gate the relationship between the rate at which power observations are sampled
and the accuracy of Hidden Markov Models built on those samples. Section 4
presents the results of such investigation while section 5 critically discuss the
findings. Eventually, section 6 concludes this research highlighting its impact to
the body of knowledge and setting future avenues for research.

2 Related Work

Significant reductions in domestic energy use have been shown to be achievable
through the utilisation of detailed and granular energy consumption feedback
mechanisms [6]. A detailed review of 57 separate studies performed globally be-
tween 1974 and 2010 suggested an average reduction in energy usage of between
5% and 14% per household is achievable by providing usage information to the
consumer in addition to the standard monthly bill [7]. During peak energy us-
age periods even more significant savings were observed of between 10% and
18%. Through informing the consumer overall energy use can be decreased and
the variance between peak and off-peak demand undergoes slight normalisa-
tion,which results in a more economical and potentially more stable power grid.
Feedback at the appliance level results in roughly double the energy savings
of real time feedback at the aggregate level. Intrusive Load Monitoring (ILM)
relies on directly observing the consumption for each appliance at the point
which that consumption occurs. It is a bottom-up approach where devices are
individually measured before, ideally, being presented to the consumer though
a single interface [5] ILM therefore requires a distributed network of sensors
throughout the home. This method of load monitoring can lead to highly accu-
rate results. However there are a number of major drawbacks, most notably the
higher cost associated with the volume of sensors required and the maintenance



of the distributed network of sensors. Non-Intrusive Load Monitoring (NILM)
is the top-down approach to energy consumption measurement. The total com-
bined power consumption is measured and through the use of disaggregation
techniques an attempt is made to split that value into its constituent parts [9].
Current state of the art approaches are able to disaggregate the combined load
signal with an accuracy in the region of 80- 90 % [10]. As NILM does not require
that observations be made at the appliance level, there is a significant reduction
in the physical hardware required over ILM. Only a single measurement point
is required. This negates the requirement for a distributed network of sensors,
resulting in a significant initial outlay cost to the consumer who does not need
to maintain the sensor network [6]. NILM is formally described in equation 1.

P (t) = p1(t) + p2(t) + . . . + pn(t) (1)

where P (t) is the known total overall power consumed at time t and pi(t),
the unknown power p consumed by each appliance i at time t in a system with n
appliances. Multiple devices may be active at any given point in time. Electrical
loads tend to exhibit unique energy consumption patterns over time depending
on their state. These patterns are known as load signatures. A single appliance
may have multiple load signatures, for example the load signature of a microwave
operating at high power will differ from the same microwave operating on the
defrost setting. Different models of the same appliance type will tend not to
exhibit the same load patterns. When enough granularity is introduced into the
observations, different instances of the same devices, that means multiple mi-
crowaves of the same model, will tend to exhibit different load conditions under
the same parameters. This uniqueness, while useful in discriminating between
different light-bulbs in the same home also tend to make model generalisation
more complex [8]. A number of data sets comprising appliance level and aggre-
gated domestic energy consumption such as REDD [12] and SMART [1] exist in
the literature. Each of these data sets contain power observations at the individ-
ual appliance and whole house level. The REDD dataset is the most commonly
cited at present [12]. It spans multiple homes and it contains both high and low
frequency observations.

2.1 Machine learning for non-intrusive load monitoring

Both supervised and unsupervised machine learning techniques have been utilised
in the search of an optimised NILM solution. Supervised machine learning re-
lies on a priori knowledge, of which there are two levels with respect to NILM.
The total number of appliances in the system as well as a name, or some other
designation, for each appliance is the most basic level of a priori knowledge.
The second level is knowledge of the consumption patterns of each appliance
in the system as opposed to only the combined usage of all appliances [2]. It is
at the second level of knowledge that the split between supervised and unsu-
pervised is most relevant to NILM techniques. With sufficient feature selection
performed classification accuracies in the region of 90% has been obtained us-
ing Naive Bayes, J48 Decision Trees and Bayesian Networks which rises to 95%



accuacy [15]. Similarly, the application of ensemble methods such as random for-
est or LogitBoost proved useful in building highly accurate models [14]. In [13],
an attempt to implement a supervised NILM technique on board a large US
Coast Guard ship was performed. In this context, even with a highly trained,
regimented, and dedicated workforce, the accurate collation of the required a
priori knowledge proved both difficult and highly time consuming. Existing his-
torical data sets such as the REDD [12], or SMART [1] can be harnessed to
build NILM solutions. The major limitation of these models is that they tend to
perform poorly when appliances which were not present in the historical dataset
are introduced to the model. As discussed above, different instances of the same
appliance will tend to have different load signatures. Therefore even if all of the
appliances in the implemented system are also present in the historical dataset,
unless they were the appliances from the historical dataset a loss of accuracy is
to be expected. As shown in [3], while historical datasets are invaluable for com-
paring different NILM methods and algorithms which may later be deployed,
actual models built in such a supervised manner tend to function with lim-
ited success once deployed to real world situations. When available dataset do
not contain labelled information, then unsupervised machine learning methods
have been employed. For example, in an analysis by [4], Hidden Markov Models
(HMM) and variants of the HMM were discovered to be the highest performers.
These variants include Hierarchical Dirichlet Process HMM (HDP-HMM), facto-
rial Hidden semi-Markov model and Conditional (FHMM), Hidden Markovs as
Bayesian networks, and Additive Factorial Approximate Maximum A-Posteriori
(AFAMAP) [11]. Each of the HMM variant models relies on the accuracy of the
underlying base HMM in order to achieve optimal results. A major drawback
of purely unsupervised machine learning techniques is that their output is not
in a form that is easily digestible. The model may, with an acceptable level of
accuracy, correctly classify all of the power use across the system. However, if
the user cannot be made aware of what specific appliance is using energy, at
any given point in time, they are unable to modify their consumption behaviour
and realise energy savings. Semi-automatic machine learning techniques offer a
solution to this problem [2]. An unsupervised method can be used to identify
different appliances and apply a temporary label to them after which a user man-
ually modifies the labels so that they are understandable by them and useful in
NILM feedback [5].

The literature seems to focus on evaluating and improving different machine
learning techniques. Little research was found on the design choices made at
the data capture stage with respect to NILM. In the creation and dissemination
of such data sets it is necessary to choose appropriate sampling rates for both
data transmission and storage reasons. Do these design choices have an impact on
model accuracy? This research has potential to inform both the future collection
of new comparative data sets as well as the design choices made for in-situ NILM
mains monitoring.



3 Design and Methodology

A secondary research study has been designed for the investigation of the rela-
tionship between the rate at which power observations are sampled and the ac-
curacy of Hidden Markov Models (HMM) built upon those samples. The REDD
dataset has been chosen for such an investigation [12]. A note that the specific
accuracy of the models themselves is not particularly relevant, how the accuracy
changes across the different sampling rates is. Additionally, as HMM models are
the foundation of factorial Hidden Markov models (fHMM), it is not necessary
to perform this evaluation at the fHMM level. An HMM evaluation is sufficient.
The whole house disaggregation itself will not form part of this experiment, but
it is expected that whole house disaggregation will benefit from this research.
The REDD is unlabelled with respect to true activation state of each appliance
at any given point in time. It requires that an approximation of ground truth be
derived per appliance to test model accuracy. The research hypothesis set is:

H0: “Feature Sampling Frequency and Model Accuracy are linearly related”.
The research hypothesis has been be tested with a statistical confidence level of
95% and the CRISP-DM process for data mining has been followed.

Data Understanding The REDD dataset is made available for general re-
search and its compressed size is 1.58GB. It consists of three separate sets of
data which vary in their levels of completeness.

A Low frequency data containing average power readings for the mains power
sampled at 1Hz and individual circuits at 1/3 Hz;

B Higher frequency data created by means of lossy compression;
C Raw data sampled at a very high frequency.

The raw data provided is incomplete spanning only 90 minutes of observation
for 2 houses. The high frequency compressed data set contains whole house
aggregated data and no observations at the individual appliance level. The low
frequency data set, which consists of both appliance level and aggregated level
recordings, was used for the purpose of this research. Data related to house 3 and
house 5 far outperform all of the other houses with regards to synchronisation of
observations across both mains and appliance. For house 5, mains observations
always exists when appliance observations exists while for house 3 aggregated
observations exists for one of the days without appliance level observations.
The low frequency data set contains average power readings for both the two
power mains (US domestic circuitry comprises two 110V mains lines) and the
individual appliance circuits of the house. The data is logged at a frequency of
about 1 second for a mains and 3 seconds for the appliances. Each appliance file
contains UTC timestamps and power readings (recording the apparent power of
the circuit) for the channel. There are 104 unique appliance channels contained
within the REDD dataset, 44 of which exists in houses 3 and 5. Appliances in
house 5 each consist of 404,107 observations with 1,427,284 observations in each
of its aggregated mains channels. For house 3 there are 80,417 readings for each
appliance and 302,122 observations in both aggregated mains channels.



Data Preparation For maximum replicability, a decision was made to focus
on house 3 and 5, the only houses present in both the low-frequency and the
high-frequency data sets. This decision reduced the number of potential chan-
nels to 44. Calculation alone for all 44 channels in house 3 and 5, with available
computational power, would have taken close to 2 months to perform and was
deemed excessive. Another decision was made to focus on high power usage ap-
pliance channels. While the low frequency appliance observation rate has been
originally described as one sample every 3 seconds, in practice this is not the
case. The duration of each sample is not explicitly stated in the REDD dataset
description, but only the starting time of each observation is recorded. It can
be extrapolated that the start time of a subsequent observation corresponds to
the end time of the current observation. The low frequency data set, while inter-
spersed with gaps, follows a rough pattern of 15 recording alternating between
3 and 4 seconds apart, followed by a 16th recording after an 8 or 9 second lag.
Based on this, lack of observations spanning more than 10 seconds are consid-
ered gaps. Gaps are not included when re-sampling as the period over which the
average power reading is being measured is unknown and can therefore have a
significant negative impact on the re-sampling calculation. Observations which
correspond to gaps are thus dropped at the point prior to re-sampling. Because
the goal is to investigate how sampling rates affect model accuracy, the low fre-
quency channels being tested were resampled to different sampling rates. After
initial tests on 6 sampling rates, a further 26 sampling rates were added to pro-
vide a good spread of experimental data and granularity of results. Sampling
rates ranged from an observation every second through to one ever 6 minutes,
with more focus placed on the higher granularity resamples. Down-sampling to
a rate of 1 sample every second is achievable but no more information can be
attained at higher frequency sampling rates. Importantly, while a single span
may contain multiple observations, so to may a single observation exists across
multiple spans. Re-sampling was performed using a custom algorithm.

1. set a variable timeInSpan to 0 for each observation;
2. calculate the span for each observation;
3. calculate the number of spans in which each observation exists as the differ-

ence between the start and end span;
4. tag the observations that exists entirely within a single span and set their

timeInSpan to the length of the observation;
5. duplicate observations that exist in multiple spans; calculate the length of

time spent in the either the 1st or final span and recorded it in timeInSpan;
6. a new span observation is added for each span crossed, for observation in

more than 2 spans (except 1st and last span, already handled in 5); for each
new observation, set the timeInSpan to the full length of the span;

7. merge sll of the observations from steps 4, 5, 6 into a single structure;
8. calculate an average voltage, reading weighted based on timeInSpan for each

span (spans with no observations are considered gaps and not used in sub-
sequent models; for spans with both gaps and observations, the weighted
average of the observation is considered to be the average observations for
the duration of the span).



Data issues Hidden Markov Models (HMMs) rely on the sequential nature of
the data. HMMs expect to be able to draw assumptions on the current state
of the system based on the previous state of the system. As such the model
must know where there is a break in the sequence. Sequential data without
gaps is considered to be a run, with each run being considered to be an entirely
new sequence on to which testing or training may be performed. It is to be
expected that the threshold of temporal gaps allowed within a run will have
a bearing on experimental results. As processing and model building of all of
the required HMM for a single channel took in the order of 30 hours a single
threshold was used throughout. The threshold considered as an acceptable gap
within a run was taken as 60 seconds. Short experiments with differing thresholds
at a 1 second sampling rate were carried out prior to making this decision. Table
1 details the number of runs as a result of differing acceptable gap thresholds
across both considered houses. As the threshold reduces model run time increased
significantly. It was assumed that, under practical scenarios, most appliances
were to be active for longer than a minute, thus 60 second gaps were tolerable.

Acceptable Gap Threshold (in seconds)
1s 10s 20s 30s 40s 50s 60s 70s 80s 90s 100s 120s 180s 240s

House 3 812 812 252 223 197 183 165 146 127 111 88 70 50 36
House 5 267 264 52 38 32 26 24 23 22 22 22 20 14 12

Table 1: Number of runs, per house at differing acceptable gap thresholds.

Adding constant noise Hidden Markov models work by calculating the prob-
ability of a change in state. It was observed that many of the appliances being
measured remain in a constant state for extended periods of time. This resulted
in runs where zero variance was observed in the data over the course of many
days. It proved technically impossible to build a model under such circumstances.
In order to counteract this, variance was added to the data in the form of 1/2
Watt 1/2 Hz wave overlaid across each dataset. This new noise, while insignifi-
cant for the overall power usage and thus having a minimal effect on the results,
introduced the required variance to allow the HMM to function.

Modeling According to the literature, the observed states are known to follow a
Gaussian distribution. As such a Gaussian HMM was used. Tests were performed
across each of the appliances at 2 second and 10 second sampling rates. In order
to determine the optimal number of expected states using the Akaike Information
Criterion (AIC) . AIC is a measure of the relative quality of statistical models for
a given data set. It provides a relative estimate of the information loss of a given
model. The optimal number of states was determined as 3. As a probabilistic
model which relies on local maximums for optimisation, the same data is to
be expected to return a slightly different model depending on the initial seed
provided to the model. Seeds for this experiment were chosen randomly. 15



models with different initial seeds were created for one of the data sets to further
understand the scale of these differences. These differences were not found to
be significant. The results across all 15 models were found to be broadly in
line with one another. In order to allow somewhat for seed difference, but yet
complete the experiment in a reasonable time frame, 3 models were created
for each data set, each with a different initial seed. For each channel tested
3 differently seeded models were built, fit, and trained across the 32 sampling
rates. The data was split into training and test sets at a 60:40 ratio. Due to
the sequential nature of the data random sampling was deemed inappropriate
as it would de-sequentialise the data. To overcome this the data was initially
grouped into sequential runs Runs longer than 2 hours in duration were split
into multiple runs with a maximum length of 2 hours each. Random sampling
, without replacement was performed of the runs until the training data set
comprised 60 % of the runs. The remaining 40% was considered the test data
set.During the training phase the Viterbi Algorithm identifies the hidden states
which are most likely to have generated the observed states. This is based on
the knowledge of the number of expected states which was passed, which for the
purpose of this experiment was 3. The Baum-Welch EM algorithm identifies the
local maximums of the model parameters iteratively so as to optimise the model.
Testing a HMM model involves feeding data not previously used in creating
that model. This is crucial to fairly assess the model accuracy. The depmixS4
package does not allow for data absence during the fit phase to be added as
test or validation data. To overcome this limitation new models were built for
the test phase which were fit using the 3 parameters of the training models
that describe a complete HMM (the state transition probability matrix, the
emission probability matrix, the initial state distribution). State probabilities
were assigned by the model to each observation in the training data set. The state
with the highest probability per observation, being the most likely state, was
considered to be the models assertion. Within the REDD dataset the absolute
ground truth state per observation channel is unknown and must be extrapolated
from the data. The derived metric used as the ground truth in this experiment
is that a channel is considered active at any point in which power consumption
exceeds 10% of maximum usage for that channel. Otherwise it is considered
inactive. For each observation in the test data there now exists a calculated
ground truth of state and the models assertion of state. Comparison of these
states was used to determine the accuracy of each model. This resulted in 96
models per observed channel (3 randomly seeded models for each of the 32
sampling rates = 96).

Evaluation A determination of which states derived from the HMM corre-
sponded to which ground state was performed by finding the median power
value of each state observed by the model. High value corresponded to ground
states of On while low values corresponded to ground states of Off. As 3 state
HMMs were used but only 2 states (On or Off ) were used as the calculated
ground truth 2 of the HMM states would be classified as either On or Off. This
resulted in a merging of 2 of the HMM determined states.



4 Results

Precision, Recall and F1 score were plotted for all 8 of the appliance channels
measured. The F1 value for each appliance was then plotted along with a Loess
curve as an indicator of potential correlation between sample length and F1
accuracy. As shown in figure 1 there appears to be weak correlation overall.
A Pearson’s product-movement correlation tests was performed to evaluate the
statistical significance of the correlation. The test resulted in a correlation, at the
95% confidence interval, between −0.303 and −0.065 with a p-value of 0.00285.

Fig. 1: F1 score across all measured ap-
pliance channels with a Loess curve.

As the 95 % confidence band never
intersects with a correlation value
of zero and the p-value was less
than 0.05 there is evidence to ac-
cept the null hypothesis. This means
that sampling rate and model ac-
curacy are related across employed
dataset. The tested appliance chan-
nels appear to fall into two cate-
gories.

Category A has broadly similar
precision and recall within each model
while category B tends to have high
recall but very low precision. Both the
categories were investigated and sta-
tistically tested. Category A includes
appliances which have broadly similar
precision and recall at a given sample
rate. These appear to have an F1-score above 80% at higher sampling rates and
to show a reduction in accuracy which is more closely correlated to sample length
than the total data set as shown in figure 2. Yet their overall F1-score at the
360s sampling rate is in the 60% to 80% band. A Pearson’s product-movement
correlation tests was performed on the category A appliances. With a p-value
< .0001 the correlation was between −0.761 and −0.592 at a 95% confidence
interval suggesting to accept the hypothesis.

Category B includes appliances which have high recall but very low preci-
sion at with a given sample rate. Their F1-score appears to vary much less with
respect to sample length than was found in the category A appliances. These
appliances have a lower F1-score than is found in the Category A appliances and
would appear to have significantly less correlation between sample length and
F1-score (as per fig. 3, from the Loess curve). The Pearson’s correlation tests
returned a p-value of 0.2587. Within a 95% confidence interval the true correla-
tion was found to be between −0.309 and 0.086. For category B appliances, the
null hypothesis was rejected, showing how sample rate and accuracy of models
are not related.



(a) Evaluation metrics (b) F1-score fitted with a Loess curve

Fig. 2: F1-scores fitted with Loess curve

(a) Evaluation metrics (b) F1-score fitted with a Loess curve

Fig. 3: Category B appliances.

5 Discussion of findings

The results of the experiment have shown, with a confidence level of 95%, that
there is weak correlation between sample length and model accuracy as a whole
across all of the tested appliance channels. Up to the limits of the sampling
rates, which could be derived from the REDD dataset, higher sampling will
yield more accurate results. While strong correlation was observed in category
A appliances, in order for the model to understand which appliances were cat-
egory A appliances the model either labelling or a higher level of user feedback
would be required. As discussed above this is sub-optimal in a domestic setting.
All appliances must therefore be considered in their entirety. Category A appli-
ances would seem to be appliances which have a finite numbers of states. The
appliance channels categorised in this research as category B present as devices
having continuously variable state characteristics. The move towards more de-
vices which are more energy efficient tends towards the creation of appliances
with more variable characteristics in terms of consumption patterns. As the ratio
of category A to category B appliances within the home shifts over time, it can
be expected that this shift will have implications for these findings. However,
based on the REDD dataset, it would appear that the higher the sampling rate
the higher the accuracy of predictions which can be obtained through the use
of HMM and by extension fHMM. As this research was performed on HMM,
which is the lowest level building block for all of the fHMM models currently
being researched or implemented with respect to NILM, this research has a high
level of applicability. Only the appliances found to have the highest consumption
within 2 houses were tested. It is possible that different conclusions could have



been reached had each appliance channel undergone testing. 32 sampling rates
were chosen for this experiment. More sampling rates, especially at above 60
seconds would have provided more granular results. It was observed that HMM
returns slightly different results under different seed settings. Three HMMs were
built per sampling rate for each appliance channel. The effect of seed variance
could have been further reduced by building more models per sampling rate.

6 Conclusion

This research investigated the problem of providing more accurate feedback to
end users of their power consumption patterns. Through the literature review
it was identified that there are significant energy efficiencies to be wrought by
the provision of granular feedback to the end user. A comparison was then made
between the differing techniques of collecting data to feedback to the user: intru-
sive and non-intrusive methods. Following a discussion on their relative merits
and drawbacks, non-intrusive methods were further examined. Hidden Markov
Model (HMM) was identified as the building block of the state of the art ap-
proaches to Non-Intrusive Load Monitoring (NILM) and as such it was believed
that any improvements in HMM would feed though to improvements in those
methods. A well-known dataset (REDD) has been used as a baseline for compar-
ing different machine learning algorithms. However, it was unclear if it had been
optimally built with respect to the chosen sampling rate. Similarly, other datasets
of the same ilk were found to sample at different frequencies but no evaluation of
the different sampling frequencies which could be extrapolated from the REDD
dataset was found. Therefore, the research question investigated focused on the
relationship between sampling frequency for feature extraction and selection in
Non-Intrusive Load Monitoring and HMM model accuracy. An experiment was
designed for such an investigation, and Gaussian Hidden Markov Models were
employed as modelling technique. Findings support the null research showing
how sampling rate is linearly related to model accuracy, with a 95% confidence
level. In particular, with higher sampling rates, model accuracy increases. As
fHMM techniques are the current state of the art approach, this research can
have a positive impact at the forefront of the NILM field. This project verified
the correlation between sampling rate and model accuracy at the building block
level of HMM. While mathematically this should apply to fHMM techniques
such as the AFAMAP this has not been verified experimentally and is proposed
as future work. A correlation was identified but no investigation was performed
on an optimal sampling rate taking recording, storage, processing and finan-
cial cost into account. Having found a relationship, finding an optimal level is
fundamentally the next step towards optimising NILM.
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