
A Task-Driven Design Model for

Collaborative AmI Systems

R.F. Arroyo1, M. Gea1, J.L. Garrido1, and P.A. Haya2

1 Universidad de Granada
{robfram,mgea,jgarrido}@ugr.es

2 Universidad Autónoma de Madrid
Pablo.Haya@uam.es

Abstract. Ambient intelligence (AmI) is a promising paradigm for human-
centred interaction based on mobile and context-aware computing, nat-
ural interfaces and collaborative work. AMENITIES (a conceptual and
methodological framework based on task-based models) has been spe-
cially devised for collaborative systems and is the starting point for a
new design proposal for application to AmI systems. This paper pro-
poses a task-based model for designing collaborative AmI systems, which
attempts to gather the computational representation of the concepts in-
volved (tasks, laws, etc.) and the relationships between them in order
to develop a complete functional environment in relation with the fea-
tures of AmI systems (collaborative, context-aware, dynamic, proactive,
etc.). The research has been applied to an e-learning environment and is
implemented using a blackboard model.

1 Introduction

Ambient intelligence (AmI) has become the next step in the user-centred ap-
proach of computer applications. These applications incorporate technology into
an omnipresent and transparent infrastructure for the implementation of smart
environments. AmI places the emphasis on user-friendliness, more efficient ser-
vices and support for human and group interaction [1]. This paradigm is based
on emerging technologies, such as ubiquitous computing, collaborative systems
and intelligent user interfaces for natural interaction[2]. Although interest in this
technology and its benefits are high, it is difficult for there to be the required
infrastructure to develop these applications which fulfill the requirements.

In order to characterize this interaction paradigm, a brief review of the fea-
tures for this kind of system is presented below.

Context-Awareness. Context is defined as ”any information that can be used
to characterize an entity’s situation. An entity can be a person, place, or physical
or computational object relevant to the interaction” [4].

Natural User Interface. Mobility and ubiquity demand better user-friendly
interfaces which use natural mechanisms and allow the user to focus on the
task. Spoken dialogue has also been considered as a natural method to interact

UMICS'06 969



with the environment, and context could also be used to resolve communication
ambiguities [5].

Collaborative spaces. Most of the AmI scenarios are oriented towards group-
work whereby users interact with each other to achieve common goals. These
collaborative tasks are present due to many users working together to fulfill an
activity, or alternately, the system takes part in the users’ tasks to give addi-
tional information, performing actions or guiding the user workflow while the
users interact in the system.

Dynamic Space. These active spaces mean that people work in a constantly
changing context [6] (such as for example changes in group members, scenario
devices, etc.). Two different methods can be used: context pull requests the
required context information when it is needed (by the user, system, etc.), and
context push is a mode where the context information is forwarded to subscribed
users.

Proactiveness. One of the requisites of AmI scenarios is for there to be reactive
behaviour. In this case, it should not be necessary to focus the user’s attention
on dialogue interaction all the time. New behavioural user models have therefore
been proposed [7] which are useful for inferring the user’s action.

Shared Knowledge. Knowledge about the context of the user engaged in the
scenario is highly distributed. This information is bound to the users, their lo-
cations, the community in which they are involved [8].

Usefulness. This new paradigm offers a different computational environment
which is a long way from classical desktop applications. The development of
applications to solve everyday tasks is important. Several aspects must be con-
sidered such as trust, collaboration, effectiveness, etc. One example of a useful
application is the Stick-e Notes [9].

These features demand a robust and comprehensible model to describe and
implement AmI scenarios. Section 2 of this paper introduces the main methods
used by different authors to describe AmI systems. Section 3 then presents a
comprehensive and straightforward method for describing these AmI features.
Section 4 illustrates the integration of this proposal on a centralized implemen-
tation based on a blackboard. Finally, Section 5 describes an example based on
an e-learning collaborative scenario.

2 Modelling Approaches for AmI Systems

2.1 Methods for AmI Specification

The complexity of AmI design is closely related with the mechanism for de-
scribing its inherent features. Suitable methods for describing these properties
in a straightforward way should therefore be applied and this would allow us to
accomplish a more correct analysis and development. Some of these approaches
are described below.

Theoretical models. Most of the proposed theoretical models in human-
computer interaction (HCI) are based on the human information processor model

970 Ubiquitous Mobile Information and Collaboration Systems



[10]. For AmI environments, the user(s) attention(s) is/are shared on several si-
multaneous activities using artifacts to achieve certain goals. Activity theory
(AT) [21] deals with human social interaction using tools in the context of a
community in which the fundamental unit of analysis is human activity. The
activity is the smallest meaningful unit for human action. Activities are embod-
ied so as to accomplish a goal (objective) using tools within a community. This
theory has been successfully applied in order to understand collaborative works
(CSCW). A complementary theory comes from situated social interaction [11].
Theories and ontology-based methods are well suited for a better understanding
of AmI environments but it is also necessary for development processes to deal
with these concepts.

Scenarios. AmI is viewed as a natural human-centred interaction, and in this
way, its benefits are suggested by defining envisioned scenarios [12]. Scenario-
based design [13] is a well-known technique for problem understanding and re-
quirement elicitation, and it has sometimes been proposed as an alternative
method for task-based design. However, the natural narrative language is diffi-
cult for non-expert users to handle, and it is necessary to translate these con-
clusions into other intermediate (graphical) notation such as a UML use case
diagram, which is used to identify functional requirements for the AmI context.

Task and workflow models. Task and workflow models. Task modelling
transforms user activities and related data into structured pieces of task-based
knowledge. Any model usually covers the representation of the task execution
(giving temporal constraints) with objects and the involvement of actors playing
roles. However, context data is not present at this stage. A mixed approach is
presented in [14,3], where the notation used is a mixture of scenario descrip-
tion (using a graphical notation) and task modelling (using actors, messages,
synchronization mechanism, etc.) in a two-step process. Alternately, workflow
defines precise work processes to predict their execution and management [22].
Workflow is oriented towards processes and time execution whereas tasks focus
on the user and expected behaviour. The inclusion of more context-dependent
aspects of these activities is currently being researched and this is crucial for
AmI design.

Middleware. A consistent middleware layer is required to support the in-
frastructure requirements for AmI development. [15] proposes a context layer
which is a middleware based on a blackboard metaphor that stores a global data
structure representing a model of the world, where any relevant information
is maintained. This layer is also used for an asynchronous information querying
mechanism. This approach has the following benefits: it is a loose-coupling mech-
anism between producer and consumer, interpretation is consumer-dependent,
one participant is not aware of the others, and the model is easily extendable.

2.2 AMENITIES: Methodological and Conceptual Framework

So far, we have reviewed the most important AmI features and different mecha-
nisms for representing them. One of the most relevant issues is context-awareness,
and most authors agree with the importance of understanding these concepts and

UMICS'06 971



reflecting them in the design. In order to address the development of collabora-
tive AmI systems, we have used a methodology (called AMENITIES [17]) based
on tasks and behaviour models and used for studying and developing cooper-
ative systems. It focuses on group-related concepts and has been successfully
applied to collaborative systems, describing complex and dynamic organizations
and shared resources [16,18].

AMENITIES is based on tasks and behaviour models, with tasks being the
main concept of any system modelled using this methodology. Figure 1 shows the
main concepts of AMENITIES in addition to their relationships using an UML
class diagram. According to this conceptual framework, an action is an atomic
unit of work. Its event-driven execution may require/modify/generate explicit
information. A subactivity is a set of related subactivities and/or actions. A task
is a set of subactivities intended to achieve certain goals. A role is a designator
for a set of related tasks to be carried out. An actor is a user, program, or
entity with certain acquired capabilities (skills, category, etc.) that can play a
role in the execution (using artifacts) of (or responsibility for) actions. A group
performs certain subactivities depending on interaction protocols. A cooperative
task is one that must be carried out by more than one actor, playing either the
same or different roles. A group is a set of actors playing roles and organized
around one or more cooperative tasks. A group may comprise (i.e. be formed
of) related subgroups. A law is a limitation or constraint imposed by the system
that allows it to adjust the set of possible behaviours dynamically. An event is
based on its common software definition, which is an occurrence or happening
of significance to a task or program. An organization consists of a set of related
roles. Finally, a cooperative system is composed of organizations, groups, laws,
events and artifacts.

For each particular system, these concepts are described in a suitable way us-
ing an UML extension (called COMO-UML) [20]. This has the following benefits:
concepts (such as roles, capabilities, laws) are blended on a modelling notation
to express collaborative issues, reflecting dynamic aspects (changes in responsi-
bilities, interruptible tasks), social structure (roles, capabilities) and impositions
(the rules governing the community). We shall now use this approach to collect
AmI features and reflect them in a specific design.

3 AmI Design Model

This design model aims to state the computational representation of the con-
cepts involved (tasks, laws, etc.), and the relationships between them in order
to develop a complete functional environment in terms of the features of AmI
systems (collaborative, context-aware, dynamic, proactive, etc.). AMENITIES
embraces the main concepts to be considered when designing collaborative sys-
tems and is the starting point for our new proposal for designing AmI systems.
In the following section, we will propose a stepwise method for translating these
abstract concepts into a computational model.

972 Ubiquitous Mobile Information and Collaboration Systems



Requirements Engineering in Cooperative Systems   233

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

more cooperative tasks. A group may be composed, that is, formed from, related
subgroups. A law is a limitation or constraint imposed by the system that allows it to
adjust the set of possible behaviours dynamically. An organisation consists of a set of
related roles. Finally a cooperative system consists of organisations, groups, laws,
events, and artefacts.

The two key concepts defined above are task and group. We use the notion of task to
structure and describe the work that must be performed by the group. This provides the
way to translate work, that is, something that is tacit and implicit into something that is
concrete and explicit. Nonetheless tasks are also considered at a very abstract level as
noted above. On the other hand a group can be more or less explicit. Sometimes
organisational aspects determine the way people work, but in other cases personal and/
or operational aspects are the basis for organising people in order to perform an activity.
The notion of role, in any case, allows us both to specify groups as needed and to
establish dynamic relations between actors and tasks.

Figure 2. Conceptual framework

����������	�


	��


����������

���

���	�

��������

����

�	��
����

�����

���	�����	��
������

����	�

 		!�������

�����

"�	�!

 �!�������

�������

���	
�

��


��
��

�������������

�

����
����

�

�

�

�� �

����

�

����

����

�

�

�

�

�

�

�


������������ �

�

� �

�

����

�

�

�������
�

�

�

�

�

������
��

�������

�������

� �

�

���������	�
#�	�	�	�


��

�

�

�

��

����������	�


	��


����������

���

���	�

��������

����

�	��
����

�����

���	�����	��
������

����	�

 		!�������

�����

"�	�!

 �!�������

�������

���	
�

��


��
��

�������������

�

����
����

�

�

�

�� �

����

�

����

����

�

�

�

�

�

�

�


������������ �

�

� �

�

����

�

�

�������
�

�

�

�

�

������
��

�������

�������

� �

�

���������	�
#�	�	�	�


��

�

�

�

��

Fig. 1. AMENITIES main concepts.

3.1 Model Basis

We define an object as the basic logic abstraction of everything, either physical
or not. Our objective is to treat all things as objects (lamp, student, person, bulb
or terminal), regardless of their true kind or nature, establishing a homogeneous
representation as the basis for the design. An object can store additional in-
formation (normally attribute-value pairs). In this way, a lamp interface should
specify its ability to be switched on and off, and storing and asking about its

UMICS'06 973



current state (among others). As our intention is to design dynamic environ-
ments, we must establish a method for relating behaviours and properties to
objects in order to concisely specify how objects work. An interface is defined
as a specification of a set of properties and/or methods which are exported by
objects that implement this interface. Physical objects are abstracted into logical
ones, and these will be the ones introduced into the system. We then proceed
to separate the object properties from its behaviour. This distinction enables us
to split the system in two: object implementation collected in its entities, and
its specification, collected in the interfaces. Figure 2 shows the proposed design
and an example of a device (computer001) encapsulated in an object (terminal)
working as an e-mail client and instant messaging client (interfaces emailClient
and IMClient).

Until this point, we have objects and interfaces to work with. In addition to
the creation of this type of entity, we can link them following these rules:

1. Interfaces can be related to any object except any interface. We must remem-
ber that the interfaces provide the behaviour of the objects, not of other
interfaces. An interface without an object is meaningless.

2. Objects can be related to any number of objects and interfaces. This implies
two things:

– An object can be related to many objects: we can define new objects
as addition, aggregation, or any kind of hierarchy. For example, a lamp
comprises a bulb, and this is represented by the model by saying that
the bulb is connected with the lamp.

– An object can be related to many interfaces: there is no specification
about interface complexity. For example, we could define an interface for
a messaging system, and another for a mail client, and have an object
computer that implements both interfaces.

Associations between entities (links) could be tagged to add additional in-
formation about the nature of the relation.

O

O

O

O

O

O

I

I

I

I

I

D

D

D

D

Fig. 2. Separation of devices, objects and interfaces. Composition of objects and in-
terfaces.

974 Ubiquitous Mobile Information and Collaboration Systems



In order to illustrate this, we shall consider an example concerning object
composition. We shall start with a simple classroom model, consisting of illumi-
nation, a door and the cooling system. The illumination models onto an abstract
object called lights, which is composed of three instances of the lamp class.
The room comprises the cooling system, lights and door, and each object has its
corresponding interface. It should be noted that since each lamp is considered
to be the same as the others, they all have the same interface. The resulting
diagram is shown in Fig. 3.

With this model we capture context by means of both:

– object attributes (e.g. the light status).
– the proper relationships between objects, for example, a person is inside a

room if there is an in relation connecting these two entities (as shown in the
figure).

cool1 : 

lights1 : 

door1 : 

setlight : 

classroom : 

light : 

room1 : 

coolsys : door : 

lamp1 : Lamp lamp2 : Lamp lamp3 : Lamp

PC PDA Mobile Laptop

Living RoomRoom Mairi

Fig. 3. Example of classroom composite (objects in clear background, interfaces in
shaded background). Context relative to placement stored into relation between ob-
jects.

3.2 Defining Modelling Entities

Due to space limitations, this section describes only some modelling entities
related to the concepts introduced in Sec. 2.2. These more complex objects are
also represented in our design model. They may also contain other types of
restrictions which can be described in the following sections.

Law An example of a law is that a class cannot start if the teacher is absent. This
object has the following properties: self-information for identifying the law itself;
preconditions, comprising a set of conditions that must be satisfied in order for
the law to be fulfilled; actions that are performed once the law has been fulfilled;
and finally, a logical expression connecting previously defined preconditions by
means of logical operators and possible events (with or without parameters)
producing changes in system activity. If this logical expression has not been
specified, then the AND operator between preconditions is assumed by default.

UMICS'06 975



A law is graphically described according to the scheme in Fig. 4. In order to
create the logical expressions, we need a set of operations. Although a logical
set is completely defined with only the operators or, and and negation, we will
define more for simplicity when expressions are created.

Precondition This comprises self-information, a set of restrictions specifying
a list of particular attributes that candidate objects to be chosen must have in
order to carry out system activities. These restrictions consist of elements with
the attribute to be evaluated, a condition to be satisfied for this attribute, and
a field indicating the obligatory nature of the restriction; a logical expression on
the defined restrictions or an implicit logic AND (if the logical expression has
been omitted). The obligatory nature can be used as a preference criterion for
the candidate object choice. For example, when we stablish the preference of one
classroom over another due to capabilities or equipment, we are speaking about
preconditions.

Law

Self-Information : String

Preconditions : Set

Actions : Set

Logical Expression : String

Precondition

Self-Information : String

Restrictions : Set

Restriction

Testing Attribute : String

Condition to Pass : String

Mandatory : String

LAW ACTION

PRECOND

EVENTS

0..* 0..*

0..* 0..*

0..* 0..*

Fig. 4. Components of laws, preconditions and restrictions. Law definition as object
composition.

Subactivity We use the term subactivity to refer to elaborated groups of ac-
tions or simpler ones. Analyzing the needs of a subactivity, we can define its
components as a finite state machine (FSM), which stores the behaviour of the
subactivity; links to roles, determining which ones take part in this subactivity;
links to outcoming events, determining what events are generated; links to in-
coming events, determining the ones needed; links to actions, specifying what
actions are done by the subactivity; and links to subactivities, determining what
subactivities are called from this one. Figure 5 shows a schematice representa-
tion of the subactivities. When we speak about a student doing his homework,
we are referring to a subactivity.

976 Ubiquitous Mobile Information and Collaboration Systems



Subactivity

Finite State Machine : String

Received Events : Set

Sent Events : Set

Actions : Set

Roles : Set

Subactivities : Set

SUBACTIV

ROLE

EVENT

ACTION

Fig. 5. Components of subactivities, and composition as objects where cardinality of
all relations is n and tags are omitted for simplicity.

Event The information about the specific use of the event is specified in the link
connecting this event with the object that uses it. This specification consists of
the type of relation with the event, i.e. whether the event is being sent or received;
a roles expression including at least one role or a composition of some of these
using an exclusive OR operator, or the reserved word any followed by a list of
roles to be excluded; and a list of parameters that might be necessary for certain
events. For example, when a teacher leaves the classroom, an event is generated.

For example, if a student generates the event EnterOnClass, the entity of
student will be linked to that event specifying on the link a type (send), a set
of valid roles (for example, student), and a list of parameters if needed (for
example, the classroom, class03).

OBJECT EVENT[tag]

Type, Roles, Parameters

Fig. 6. Specification of events relationships.

Role Comprising interruptible subactivities with both event-triggered and law-
controlled execution, a role is formed by the interruptible specification defining
under what circumstances a specific subactivity is interruptible; a task list com-
posed by a starting law, a subactivity and an ending law. Figure 7 shows a
graphical representation of this. When we speak about teachers or students, we
are using roles.

UMICS'06 977



Role

Interrumpible specification : String

Task list : Set

LAW

LAW

SUBACTIV

Starting law

Task

Ending law

Fig. 7. Specification of roles, and one item of the task list.

4 Implementation Phase

Our design proposal has been specially devised for AmI Systems. In particular,
this proposal is applied to U-CAT (ubiquitous collaborative adaptive training) -
a Spanish research project for creating intelligent e-learning active spaces. The
main goal is to develop an integrated environment that facilitates the realization
of educational activities in arbitrary places by using different physical devices
in different contexts and situations. These mechanisms should consider not only
each user and group’s features but also the characteristics of each specific situa-
tion or context, as well as information about the available devices for performing
the teaching activities. We are currently using several labs to simulate active
spaces.

4.1 Blackboard

The previously proposed design has been implemented using a blackboard-based
architectural design. This architecture is based on a paradigm called blackboard,
which stores the prominent information that is available about the environment
at any time.

Since the heterogeneous mix of software and hardware entities of AmI scenar-
ios imposes certain requirements, a global world model combined with an asyn-
chronous communication mechanism is therefore the best approach for achieving
complex interactions between components. A blackboard architecture has been
adopted in order to implement AmI spaces (laboratories). This blackboard re-
ceives and returns information in XML specifications using HTTP protocol. The
blackboard is mainly able to store a generic entity and relationships with a basic
push/pull information mechanism. Figure 8 shows the blackboard architecture.

There are two different kinds of clients that interact with the blackboard:
producers and consumers. These are distinguished according to whether they
contribute to or obtain information from the blackboard. When the producers
need to communicate new changes, they modify the information stored on the

978 Ubiquitous Mobile Information and Collaboration Systems



blackboard. There are two ways that consumers can find out what new informa-
tion is available: they can either consult the blackboard to see if there are any
new changes or they can subscribe to blackboard modifications whereby they are
notified of any modification. One of the advantages of the proposed paradigm
stems from the fact that it is not necessary for each client to be aware of the
existence of the remaining components; each client only knows the location of
the blackboard and the part of the model that they are interested in. This ap-
proach loosely connects the different components on two levels: a temporal level
and a spatial level. On one hand, clients do not need to be synchronized, which
means that a producer can make changes to the model and finish its execution.
A consumer can then make a request to the blackboard and retrieve the change
since it has been stored. On the other, when a client makes a modification on
the blackboard, he/she will not be aware of the users affected by that change.
Each client interacts with the blackboard as if they were the only one and so
development is easier.

This blackboard model [15,19] is provided with a solver system capable of
solving imposed restrictions, and can be functionally expanded as new black-
board clients are added. The blackboard solver has been widely used with great
success. The addition of a complete representation of an AmI system to the
blackboard allows a functional implementation of a modelled system.

Consequently, we can translate our conceptual model to this blackboard.
The model will be mapped as a set of objects representing actors, rules, etc.
reflecting the current state of the underlying AmI scenario. This architecture
allows different clients to request information from the blackboard in order to
perform actions, so their synchronization and correctness will be guaranteed if
the blackboard reflects the current state in a suitable way so as to manage shared
resources.

Fig. 8. Representation of U-CAT blackboard architecture.

UMICS'06 979



5 Case Study

In our e-learning AmI environment, an extract of a complex scenario might be
described as:

”Mairi came back home after her class, wanting to do her homework in
her room. As long as her classmates are also doing theirs, they can start
solving the exercises in a collaborative way, assisted by the system, which
allows commentaries and explanations to be exchanged. Any classmate
connected to the system can join the brainstorming session, regardless of
where they are or what device they are using to interact with the system
(a PC, a PDA, a mobile phone, etc.). When Mairi selects an exercise,
the system starts searching class notes and related external additional
information and informs her of which classmates solved it.”

PRE PRE PRE

LAW

ACT EVT

ROLE

EVENT

SUBACTIV

LAW

Fig. 9. Representation of object relationship inside case study example.

We can see how the previously described entities are present in this scenario:
student role, task/subactivity (DoHomework), collaborative for all the classmates.
This subactivity execution is triggered by the event StartHomework and con-
trolled by the law HasHomework. The law is formed by certain preconditions
which check the real existence of exercises to be done, and the presence of a device
which is useful for doing homework (NumberHomework, HasACapableTerminal).
When a student starts or finishes an exercise, some events are generated into the
system (ExerciseStarted, ExerciseEnded). The system executes its associated
subactivity, which looks for information (SearchFor) to assist the student. It will
also run the subactivity of establishing communication between students when
required. If dynamic changes occur in the system, e.g. when a teacher moves
from his/her office to the classroom, the proposed design and implementation
provide the support for reflecting this fact and launching the appropriate actions
(e.g. switch on the lights updating the context of this object). In the same way,
when Mairi enters her room, an event is triggered, updating the information

980 Ubiquitous Mobile Information and Collaboration Systems



stored to reflect the new current context, as a system actor has changed their
location on the system.

Storing Information into Blackboard As mentioned above, all the infor-
mation must be specified in XML when interacting with the blackboard im-
plemented by our system. For educational and clarification purposes, we shall
therefore show how part of the law and one precondition are represented in
blackboard XML notation. Figure 10 shows a template for introducing entities
onto the blackboard using their XML notation, and a fragment of a law using
that syntax.

<entity name="NAME" id="ID" type="TYPE">

<property name"NAME">
<paramSet name="NAME" id="ID">

<param name="NAME"> TEXT </param>
···

</paramSet>
</property>
···

<relation name="NAME"
destination="DESTINATION" id="ID">

</relation>
···

</entity>

<entity name="Law" id="1001" type="10">

<property name="[Info]">
<paramSet name="Self-Information" id="1">

<param name="Name">HasHomework</param>
</paramSet>

</property>
<relation name="precondition"

destination="NumberHomework" id="2">

</relation>
<relation name="precondition

destination="HasACapableTerminal" id="3">
</relation>
[... actions ...]

[... logical expression ...]
</entity>

Fig. 10. Skeleton of blackboard XML notation for objects, and a fragment of law.

Joining Model Specification and Solver Once all the XML information
has been stored on the blackboard, dynamic processing clients attached to the
blackboard can operate with the data. This allows the solver to find object goals
and to establish preferences between possible candidates as established in the
preconditions included in the laws. For example, given a specification of all the
existing components in the system, the solver is capable of determining which
documents are the most suitable for Mairi to resolve the exercise she is currently
solving. The system is then responsible for informing her of the existence of
such documents. Notification is another task that the system must accomplish.
Depending on the underlying technology available, sending a message, an SMS,
etc. will be selected as the specified modelling stage. When all the exercises are
finished, the system is responsible for deciding the actions to be performed. If
no other classmate is chatting to Mairi (since we have modelled that the student
must check the exercises after they have all been solved), the system decides to
close the shared brainstorming area and start an exercise checker, adopting the
role of academic examiner.

UMICS'06 981



6 Conclusions and Future Works

This paper focuses on ambient intelligence as a new step towards human and
group-centred interactions. In this direction, current methods should cover new
relevant features such as context-awareness, collaborative work, dynamic or
shared knowledge.

Starting from AMENITIES as a conceptual and methodological framework,
this paper has proposed a new task-driven design model that allows AmI system
features to be taken into account. This proposal focuses on object abstraction
as a way of developing a simpler but powerful design model for these systems.
This model is implemented on a blackboard model based on a client-server ar-
chitecture which is able to represent the AmI world consistently. Blackboard
clients are added (acting as solvers) in order to determine partial solutions for
these constraints, and to provide these systems with required functionality. This
two-step model states the computational representation of the concepts and the
relationships involved in AmI systems, covering relevant features such as coop-
erativeness, roles, context-awareness, or shared resources. We conclude that this
model, which has been developed from a theoretical conceptual framework, is
able to represent the main concepts for AmI systems, supporting their unique
features and obtaining an implementable design. Complex scenarios cannot yet
be fully managed as the model has not been completed. The model, however, has
proved to be a solid model design layer and is both extensible and adaptable.
Future work shall be directed towards fulfilling a general scenario, describing
context-aware information in detail, and connecting it with new solve features
to enhance proactiveness, dynamic space and collaborative spaces. We also plan
to extend the methodology to integrate these aspects into the general framework.

7 Acknowledgements

This research is partially supported by a Spanish R&D Project TIN2004-03140,
Ubiquitous Collaborative Adaptive Training (U-CAT).

References

1. C.K. Hess, R.H. Campbell: An application of a context-aware file system. Pers
Ubiquit Comput (2003) 7: 339-352

2. G. Riva, F. Vatalaro, F. Davide, M. Alcañiz.: Ambient Intelligence. IOS Press,
2005

3. F. Paternò: Model-Based Design and Evaluation of Interactive Applications.
Springer-Verlag, Nov, 1999

4. A.K. Dey, G.D. Abowd, P.J. Brown, N. Davies, M. Smith, P. Steegels: To-
wards a better understanding of context and context-awareness. Workshop of
Context-Awareness (CHI-2000).

5. G. Montoro, P.A. Haya, X. Alamán. Context adaptive interaction with an au-
tomatically created spoken interface for intelligent environments. IFIP Confer-
ence on Intelligence in Communication Systems (INTELLCOMM 04). Lecture
Notes in Computer Science (LNCS-3283). 2004

982 Ubiquitous Mobile Information and Collaboration Systems



6. R. Aldunate, M. Nussbaum, R. González, An Agent-Based Middleware for
Supporting Spontaneous Collaboration among Co-Located, Mobile, and not
necessarily Known People. Workshop on ”Ad-hoc Communications and Col-
laboration in Ubiquitous Computing Environments” ACM CSCW 2002.

7. N. Oliver. Towards Perceptual Intelligence: Statistical Modeling of Human In-
dividual and Interactive Behaviors. PHD Thesis. MIT Media Lab, 2000

8. M.R. Tazari, M. Grimm, M. Finke. Modeling user context. 10th International
Conference on Human-Computer Interaction (HCII), June 2003.

9. J. Pascoe, Nick Ryan, and David Morse: Issues in Developing Context-Aware
Computing. HUC’99, LNCS 1707, pp. 208-221, 1999.

10. S. Card, T. Moran, A. Newell. The Psychology of Human-Computer Interac-
tion. Hillsdale, NJ: Erlbaum, 1983

11. A. Takeuchi, T. Naito: Situated Facial Displays: Towards Social Interaction.
SIGCHI Conference on Human factors in computing systems, 1995

12. K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, & J-
C. Burgelman: Scenarios for Ambient Intelligence in 2010 Fi-
nal Report Compiled by February 2001 (ISTAG) IPTS-Seville.
ftp://ftp.cordis.lu/pub/ist/docs/istagscenarios2010.pdf (Nov 2001).

13. J.M. Carroll. Five reasons for scenario-based design. Interacting with Comput-
ers 13 (2000) pp 43-60.

14. W. G. Philips, N. Graham: Workspaces: A Multi-Level Architectural Style for
Synchronous Groupware. DSV-IS, 2003. Lectures Notes in Computer Science,
2844. Springer Verlag, 2003

15. P. A. Haya, G. Montoro, X. Alamán. A prototype of a context-based architec-
ture for intelligent home environments. International Conference on Coopera-
tive Information Systems (CoopIS 2004), Lecture Notes in Computer Science
(LNCS 3290), 2004.

16. M. Gea, J.L. Garrido, F.L. Gutiérrez, R. Cobos, X. Alamán: Representación
del comportamiento dinámico en modelos colaborativos: aplicación a la gestión
del conocimiento compartido. Revista Iberoamericana de Inteligencia Artificial,
Vol 24, 2004

17. Garrido J.L., Gea M. & Rodŕıguez M.L.: Requirements Engineering in Cooper-
ative Systems. Requirements Engineering for Socio-Technical Systems. Chapter
XIV. IDEA GROUP INC. (USA), 226-244, (2005).

18. Garrido, J.L., Paderewski, P., Rodŕıguez, M.L., Hornos, M.J. & Noguera,
M.: A Software Architecture Intended to Design High Quality Groupware
Applications. 4th International Workshop on System/Software Architectures
(IWSSA’05) - Proceedings of the 2005 International Conference on Software
Engineering Research and Practice (SERP’05) , LAS VEGAS (USA), 59-65,
(2005).

19. P.A. Haya, X. Alamán, G. Montoro: A Comparative Study of Communication
Infrastructures for the Implementation of Ubiquitous Computing. UPGRADE,
The European Journal for the Informatics Professional, Vol 2, 5, 2001

20. Garrido, J.L. (2003). Especificación de la Notación COMO-UML. Technical
Report LSI-2003-2. Departamento de Lenguajes y Sistemas Informáticos. Uni-
versity of Granada. Spain.

21. Nardi, B., Ed. Context and Consciousness: Activity Theory and Human-
Computer Interaction. Cambridge, MA, MIT Press, 1996.

22. Ellis, C., “Workflow Systems”, /Encyclopedia of Distributed Systems/, Das-
gupta, P., and Urban, J., (eds). Kluwer Academic Pub., 1998.

UMICS'06 983


